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Abstract

Scalable Implementation of Finite Elements by NASA (ScIFEN) is a parallel finite
element analysis code written in C++. ScIFEN is designed to provide scalable solu-
tions to computational mechanics problems. It supports a variety of finite element
types, nonlinear material models, and boundary conditions. This report provides an
overview of ScIFEi (“Sci-Fi”), the implicit solid mechanics driver within ScIFEN.
A description of ScIFEi’s capabilities is provided, including an overview of the tools
and features that accompany the software as well as a description of the input and
output file formats. Results from several problems are included, demonstrating the
efficiency and scalability of ScIFEi by comparing to finite element analysis using a
commercial code.

1 Introduction

The Scalable Implementation of Finite Elements by NASA (ScIFEN) package is a
parallel finite element analysis code written in C++. It is designed to enable scalable
solutions to computational mechanics problems and supports several different finite
element types, nonlinear material models, and boundary conditions. Within ScIFEN
are both implicit and explicit time integration procedures called ScIFEi and ScIFEx,
respectively. This report provides an overview of ScIFEi.

ScIFEi is developed with scalability and usability as the two primary design
goals. It leverages several open-source high peformance computing libraries in an
effort to satisfy the former, see Figure 1. The Mesh-Oriented datABase (MOAB)
[1] and Hierarchical Data Format (HDF5) [2] libraries are used to enable parallel
I/O operations for reading input data as well as writing simulation results. An
HDF5 file is a smart data container with rich data annotations and structuring
capabilities, as well as performance enhancements such as compression and parallel
I/O. A frequently used analogy depicts HDF5 files as “file systems in a file” where
HDF5 groups are viewed as directories and HDF5 datasets are viewed as “files”
that store typed, multidimensional arrays. Like directories, HDF5 groups can be
nested. Furthermore, HDF5 attributes provide a convenient mechanism for adding
descriptive metadata such as comments, units, or calibrations to HDF5 groups and
datasets. MOAB defines a specific schema for the finite element groups and datasets
stored in HDF5.

For scalability, the Portable, Extensible Toolkit for Scientific Computation (PETSc)
[3–5] provides the parallel numerical linear algebra routines used by ScIFEN. Both
ScIFEi and ScIFEx utilize parallel PETSc vectors and matrices. Additionally,
ScIFEi utilizes the Krylov subspace methods, parallel Newton-based nonlinear solvers,
and scalable parallel preconditions [4]. ScIFEi exposes all available solver and pre-
conditioner options offered by PETSc to its users for customization. Furthermore,
PETSc supports the inclusion of additional solvers such as MUMPS [6] and Su-
perLU [7].

In terms of the usability design goal, ScIFEN development aims to provide user-
friendly access and to enable a convenient transition from at least two popular finite
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Figure 1: ScIFEN stack diagram with first-level dependencies.

element analysis codes: 1) Sierra Mechanics by Sandia National Laboratories [8]
and 2) Abaqus by Simulia [9]. The model input file (containing all input data
except mesh data) structure used by ScIFEN is organized similar to that of Sierra
Mechanics. Hence, Sierra Mechanics users should find it easy to master the ScIFEN
syntax structure. Mesh data, unlike Sierra Mechanics, is stored in a MOAB file
[1]. ScIFEN also provides direct support for Abaqus user subroutines (user-defined
elements and materials) and offers tools to help execute existing Abaqus models in
ScIFEN. Furthermore, the ScIFEN distribution includes both a Python module and
a graphical user interface for generating input files to make running analyses more
convenient. Such ScIFEN tools provide a high-level interaction with the underlying
libraries, e.g. HDF5, MOAB, and PETSc, such that users need not be familiar with
them.

The goal of this report is to provide an overview of ScIFEi’s features and ca-
pabilities and to demonstrate its parallel performance. A brief formulation of the
analysis performed by ScIFEi is first provided in the following section. An overview
of the features and tools that are included in the ScIFEi distribution is given next.
The following sections describe ScIFEi input and output files. Finally, the results
of a parallel performance study are discussed before the document is concluded in
the summary section.

2 Implicit Finite Element Formulation

This section provides an overview of the formulation and solution of the governing
equations for ScIFEi. The resulting system of equations is presented and the solution
procedure is briefly discussed. The presentation is intentionally kept brief and the
reader is referred to [10] for more details of the finite element formulation and
PETSc [3] for the solution of the resulting nonlinear system of equations.

ScIFEi assembles and PETSc solves the nonlinear equilibrium equations gov-
erning a three-dimensional solid under a specified load where inertial forces are
negligible. The system of the governing equations after employing the principle of
virtual work and a suitable finite element discretization are written as

F(u) = P− I(u) = 0 (1)

where F is the force imbalance, u is the displacement vector, and the external (P)
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and internal (I) force vectors are given by

P =

∫
[N]TτdΓ +

∫
[N]TbdV (2)

I(u) =

∫
[B]Tσ(u)dV (3)

where [N] and [B] are the matrix of finite element shape functions and their spatial
derivatives, respectively, τ is an applied traction, b is a volumetric body force, and σ
is stress. Γ denotes the portion of the surface of volume, V, with an applied traction.
Note that here the assembly over elemental quantities is implied and it is has been
assumed that the system nonlinearity is a result of history-/displacement-dependent
material models.

ScIFEi uses the PETSc implementation of Newton’s method (see the SNES
nonlinear solvers in the PETSc documentation [3] ) to solve the nonlinear finite
element equations F(u) = 0. Starting from an initial guess u0, Newton’s method
progresses from iteration k to k + 1 as follows:

[J(uk)]∆uk+1 = −F(uk) (4)

uk+1 = uk + ∆uk+1 (5)

where [J] is the Jacobian of F, given by

[J(u)] =
∂F

∂u

=

∫
[B]T [L(u)][B]dV (6)

Here, [L(u)] is dependent on the material model. At each time increment, Newton’s
method (Equations 4 and 5) is iterated on until a convergence criterion is met,
indicating that the system is in equilibrium.

3 Features and Tools

The ScIFEN source code is distributed with several accompanying features and
tools intended to make it easier and more convenient for users to carry out their
analyses. This section provides a brief and broad overview of some of these tools.
The interested reader is encouraged to consult the full user guide included with the
ScIFEN distribution for more in-depth coverage, including tutorial examples. Below
is a summary of tools to assist in building, running, and pre- and post-processing
results with ScIFEN.

CMake Build System

CMake [11] is a cross-platform, open-source build system that can be used to manage
the software compilation process. It automatically generates appropriate makefiles
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and can greatly simplify compiling complex software projects with multiple sub-
directories and external library dependencies. ScIFEN uses CMake to increase its
portability and simplify the build process for users. After installing ScIFEi’s de-
pendencies (PETSc, HDF5, etc.), the user is only responsible for modifying one
configuration file with appropriate variables for their environment. Complete build
instructions for both ScIFEi’s dependent libraries and running CMake are included
in the user guide.

Regression Test Suite

The ScIFEN source code comes with a suite of example problems and regression test
scripts both for ongoing software development and for users to ensure their ScIFEN
build is working properly. At the time of publication, the test suite includes 34
problems that test a majority of ScIFEi’s capabilities (boundary conditions, ele-
ment types, material models, etc.), while new tests are continually being added as
development progresses. The example problems in the suite may also serve as a tool
to help new users learn the ScIFEN input file structure.

scifenpy Python Module

To simplify the preprocessing of ScIFEN models and postprocessing of simula-
tion results, the ScIFEN distribution has an accompanying Python module called
scifenpy. scifenpy is built on the Python module h5py for manipulating the
HDF5 and MOAB (which is HDF5-based) files that are used to store ScIFEN input
and output. It includes a submodule scifenpy.sierrahdf5 (referring to Sierra
Mechanics) that is used to generate the model input files. All ScIFEN input file
commands and data have accompanying functions in sierrahdf5 to prescribe them
and are documented in the user guide. An additional submodule scifenpy.moab

is included for pre- and post-processing of the MOAB mesh and results data. The
scifenpy module provides several other capabilities such as simple model checks
to ensure proper specification and querying simulation results at particular mesh
entities.

ScIFEN GUI

For those ScIFEN users with less programming experience, a graphical user inter-
face (GUI) is included in the code distribution as an alternative to the scifenpy

module for generating ScIFEN input files. The GUI offers a slightly reduced set of
functionality in return for the added convenience, but can still be used to perform a
majority of common analyses. The GUI can be used to generate new ScIFEN input
files or to view/modify the contents of existing files.

Importing & Using Abaqus Models

As a component of the ScIFEN development goal for improved user-accessibility,
direct support is provided for Abaqus users who are interested in running analyses
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with ScIFEN. Note that although SciFEi only supports a subset of Abaqus’ ca-
pabilities, a user may find ScIFEN’s improved computational efficiency helpful for
large-scale analyses (see Section 6). ScIFEN offers a capability for translating an ex-
isting Abaqus finite element mesh into a ScIFEN-compatible MOAB mesh using the
Write ScIFEN Abaqus plug-in included in the source code distribution. ScIFEN
also provides support for Abaqus user subroutines so that researchers developing
material models via (V)UMATs or finite element formulations via (V)UELs can
easily run an analysis with ScIFEN.

4 Input Files

There are two input files required for any ScIFEN simulation, a model input file
and a mesh input file. The input files are organized with the model (light) data
in a file, which references the mesh (heavy) data stored in a separate MOAB file.
ScIFEN model input files are HDF5 files, which are organized similarly to Sierra
Mechanics in terms of structure and nomenclature [8]. Model data consists of ma-
terial model parameters, boundary conditions, results specifications, and any other
requisite input other than mesh geometry and topology.

In addition to defining a common ground for organizing finite element mesh
data in a HDF5 file in an optimized manner, MOAB can store structured and
unstructured mesh data and provides a library which wraps the HDF5 library for
automating the reading, writing, and querying of mesh data. The MOAB data
model consists of entities, entity sets, and tags. Entities are the basic topological
descriptors, such as vertices, edges, faces, and volumes. Entity sets are a collection
of those entities’ objects. Tags are a mechanism for attaching an arbitrary dataset to
entities or entity sets, which have a user-defined name, size, and type. Furthermore,
MOAB includes a utility called mbconvert, which allows translation to and from
other finite element mesh file formats. The mesh input files read by ScIFEN are
expected to abide by the MOAB specifications, which are documented elsewhere [1]
and are not repeated here for brevity.

The concept of separating the model data from the mesh data provides an im-
portant performance enhancement when creating and analyzing models in ScIFEN.
ScIFEN can read and write large contiguous datasets stored in MOAB to achieve
improved parallel I/O performance. The physical complexities attached to the finite
element mesh are then described in the light data portion, which is relatively small
and easily handled.

ScIFEN, in a fashion similar to Sierra Mechanics, uses the concept of “scope”
to group similar input commands. Scope is implemented in ScIFEN model input
files via HDF5 groups. Data with global scope (i.e. that can be referred to from
anywhere within the file) are placed within the root group of the model input file.
Information such as functions or material definitions that could be relevant to both
ScIFEi and ScIFEx analyses are defined at the root level. The ScIFEN distribution
is accompanied by both a Python module (scifenpy.sierrahdf5) and a GUI to
assist in generating the model input file.

Figure 2 illustrates the hierarchical scheduling of a ScIFEN simulation. A single
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ScIFEi or ScIFEx analysis from start (t0) to termination time (tf ) is referred to
as a procedure. Each procedure consists of regions and time blocks. As shown in
Figure 2, multiple regions can be nested within a procedure, while multiple time
blocks can occur within each region. Furthermore, multiple time blocks can be used
in a region to turn on and off boundary conditions and adjust time incrementation
within a particular time step. Note that while Figure 2 depicts the general case, a
single region and time block is often sufficient to fully define a ScIFEN analysis.

Figure 3 shows an open ScIFEN model input file, scifen model input.h5, in HD-
FView [12]. The root level of the file is shown at the top of the image, with the
SCIFEI PROCEDURE and FINITE ELEMENT MODEL groups expanded at the
bottom of the image. The expanded SCIFEI PROCEDURE group illustrates the
use of multiple procedures, e.g., Procedure-1 and Procedure-2. Procedure-1 is ex-
panded and consists of a SCIFEI REGION group and TIME CONTROL group.
Each region, e.g., Region-1, contains a referenced finite element model (in the USE
FINITE ELEMENT MODEL dataset), boundary conditions (e.g., FIXED DIS-
PLACEMENT and TRACTION), SOLVER specifications, and RESULTS OUT-
PUT. The TIME CONTROL group contains multiple time blocks.

The USE FINITE ELEMENT MODEL dataset in Procedure-1 references Model-
1 in the FINITE ELEMENT MODEL group. Within Model-1, the MOAB mesh
input file is specified in the DATABASE NAME dataset. The PARAMETERS FOR
BLOCK subgroup of Model-1 can contain multiple element blocks, e.g., Elem Block-
1 and Elem Block-2, each of which attach a MATERIAL and SECTION to a list
of ELEMENT SETS. Finally, Figure 3 illustrates that the definitions for the ref-
erenced MATERIAL, Material-1, and SECTION, Section-1, are defined within the
root groups, PROPERTY SPECIFICATION FOR MATERIAL and SECTION, re-
spectively. Each referenced MATERIAL defines necessary material model and pa-
rameter data and each SECTION specifies the required finite element integration
and formulation types. Further discussion of the available material models and el-
ement formulation and integration options are beyond the scope of this paper and
the reader is referred to the user guide available through the ScIFEN code release.FEAWD&Simulation&Layout&

&
&

!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
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!
!

Driver&Pseudocode&&
&

&
[Inputs: feawd input file & procedure name] 
 
TC = TimeController(inputFile, procName) 
 
while(TC.nextRegion()): 
 
 <Read/initialize finite element model for region> 
 
 while(TC.nextTimeblock()): 
 
  <Read/initialize region/timeblock BCs>  
 
  //Run until final time in current TB: 
  while (TC.t() < TC.t_f()):  
 
   <Solve system at current timestep> 

Time  

Procedure-1  

Region"1! Region-2  

Time Block-1  Time Block-2  Time Block-3  

t0 tf

Figure 2: Diagram of a typical ScIFEN simulation.
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Figure 3: ScIFEi model input file example. Solid lines indicate group expansion.
Dashed lines indicate groups referenced by a dataset.

5 Output and Visualization

ScIFEN output files are formatted using MOAB, as was discussed in Section 4.
Computed results that are specified for output are added as tags to the output
MOAB file. Since the finite element mesh is included in the output MOAB file it
can also be used as an input mesh file. Also, there are mechanisms for visualization
of MOAB files within the VisIt [13] and ParaView [14] open source visualization
and analysis tools.

For additional flexibility, the MOAB output file can be used within the eXten-
sible Data Model and Format (XDMF) concept [15]. XDMF is a library which
distinguishes the metadata (light data) and the values themselves (heavy data). An
XML file serves as a mechanism to explicitly define light data or to reference a
HDF5 file storing the heavy data [15]. ParaView, VisIt and EnSight [16] visual-
ization programs are able to read XDMF. The XDMF format provides the ability
to customize the data being used for visualization by manipulating the XML file.
The scifenpy module includes a method for automatically generating the XML file
from an existing MOAB file.
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6 Comparison and Scalability

This section discusses the results of testing parallel performance of ScIFEi in two
separate studies. First, the amount of time required to complete simulations of
various sizes on a workstation with shared memory is compared between ScIFEi and
Abaqus. The motivation of the comparison with Abaqus is to serve as a point of
reference for parallel performance of an existing commercial finite element code; no
comparisons are implied regarding breadth of capability. Next, the ability of ScIFEi
to take advantage of a distributed memory supercomputer to solve an otherwise
computationally-intractable problem is illustrated using the NASA supercomputer,
Pleiades [17]. In the second study, no reasonable comparisons can be made to
Abaqus (or another commercial finite element code) since it does not currently take
full advantage of modern computing platforms.

6.1 Workstation Parallel Performance

The first benchmarking test was performed in order to investigate the performance
and scalability of ScIFEi in a workstation environment. The study was performed
on a 32 cpu core workstation (eight Quad-Core AMD Opteron 8378 processors) with
shared memory. In the study, a 0.01 [m.] displacement was applied to a face of a
unit cube while fixed on the opposite face. The boundary conditions are summarized
by:

ux(x = 0) = 0.0

uy(x = 0, y = 0, z = 0) = 0.0

uy(x = 0, y = 0, z = 1) = 0.0

uz(x = 0, y = 0, z = 0) = 0.0

ux(x = 1) = 0.01,

(7)

where ui(j = k) is the applied displacement, in meters, in the i direction applied to
all nodes where the j coordinate is equal to k [m.]. The cube was modeled using
a linear elastic material with Young’s modulus and Poisson coefficient of 100 [Pa.]
and 0.3, respectively. One time step was taken, such that the governing system of
equations was solved only once.

The test was performed using 10 finite element discretizations (meshes) of the
cube where the resulting number of degrees of freedom (dof) were approximately
50,000; 100,000; ... 500,000. Each mesh was constructed using the same finite
element type: linear tetrahedra. The 10 meshes combined with the above boundary
conditions result in 10 finite element models, which will henceforth be referred to by
their approximate number of dof (e.g. 50K dof). To illustrate the parallel properties
of ScIFEi and compare this to Abaqus, each finite element model is solved using
both ScIFEi and Abaqus with a range of cpu power, from 1 to 16 cores. The result
is 160 unique finite element simulations for both codes. Finally, to minimize any
effects of machine load and to maximize accuracy in simulation timing, each reported
timing value is the average of 10 runs of the same simulation. The resulting test
array provides insight into the performance and scaling properties of ScIFEi as it
pertains to parallelization and problem size. To the best possible degree, the Abaqus
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simulations are replicas of the ScIFEi simulations, including iterative solver type,
solver tolerances, and output variables.

For verification of the ScIFEi code and to ensure that the iterative solvers of
ScIFEi and Abaqus were solving the system of equations to a similar degree of accu-
racy, the relative differences between nodal displacements (u) and element stresses
(σ) computed by each code were calculated. Table 1 shows these relative differences,
defined by

∆u =
‖uScIFEi − uAbaqus‖2

‖uAbaqus‖2
(8)

∆σ =
‖σScIFEi − σAbaqus‖2

‖σAbaqus‖2
, (9)

for each of the 10 finite element discretizations. Good agreement is observed between
the displacements and stresses computed by ScIFEi and Abaqus, with ∆u < 5.0e−5
and ∆σ < 8.2e−6 for all discretizations considered.

Figure 4a illustrates the wall clock time taken for ScIFEi and Abaqus simulations
of two finite element models (differing numbers of dof) as a function of the number
of cpu cores used. A typical scaling curve is seen in which more processing power
corresponds to faster computation. By comparison, the ScIFEi simulations are
notably faster than the Abaqus simulations. As shown in Figure 4b, the ScIFEi
simulations are approximately 1.5 to 3 times faster than the Abaqus simulations,
depending on the finite element model size and number of cpu cores used. This
trend is, in part, due to the fact that ScIFEi is a specialized code which allows it
to have less overhead, but also demonstrates the efficacy of the PETSc software
package. It should also be noted that the Abaqus simulation times do not include
the license checkout time but rather only the time taken from input parsing through
final output.

A strong scaling plot is shown in Figure 5a which illustrates how many times
faster (speed up) a finite element model runs on multiple cpu cores than the same
finite element model on a single core. Notably, ScIFEi scales better than Abaqus in
general, especially when using more cpu cores. Figure 5b illustrates the improved
strong scaling of the PETSc solver relative to the Abaqus solver. This indicates
that, in models dominated by solver time (e.g., more dof and/or time increments),
the advantage of using ScIFEi will become more pronounced as the number of cpu

50k 100k 150k 200k 250k

∆u 1.33e-6 3.45e-6 4.94e-6 8.88e-6 1.97e-5
∆σ 2.42e-6 2.55e-6 3.44e-6 3.76e-6 4.14e-6

300k 350k 400k 450k 500k

∆u 1.91e-5 3.23e-5 3.90e-5 1.75e-5 4.96e-5
∆σ 5.10e-6 8.06e-6 4.80e-6 7.76e-6 8.15e-6

Table 1: Relative differences between displacements and stresses (Equations 8 and
9) calculated by ScIFEi and Abaqus.
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cores increases. Here, even for the largest model, Abaqus speedup plateaus at 12
cpu cores.
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Figure 4: Comparison of ScIFEi and Abaqus performance. (a) Wall clock time for
two example finite element models and (b) the speed up of a ScIFEi simulation when
compared to the same simulation performed with Abaqus.
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Figure 5: Strong scaling for ScIFEi and Abaqus. The scaling is calculated on (a)
the total wall clock time and (b) solver wall clock time.
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6.2 Supercomputer Parallel Performance

The motivation in developing a parallel finite element code, like ScIFEN, is to take
advantage of modern supercomputer architectures to solve otherwise computationally-
intractable problems. The NASA supercomputer, Pleiades [17], was used here to
demonstrate this capability. Pleiades compute nodes contain two ten-core Intel
Xeon E5-2680v2 processors which communicate over an InfiniBand R© network. The
parallel file input/output is enabled by a Lustre R© filesystem.

This section serves to demonstrate the capability of ScIFEi in computing solu-
tions for necessarily-large models and to quantify the current level of scalability for
such models. Spear et al. recently generated one such model of a 3-D volumetric
finite element mesh obtained by using near-field high-energy X-ray diffraction mi-
croscopy (nf-HEDM) data [18]. The nf-HEDM results provided a high-resolution
(approx. 2 [µm.]) spatial quantification of the microstructural features, grain mor-
phology, immediately surrounding a crack in an Al-Mg-Si alloy. From a mesh-
convergence study, it was determined that the characteristic element sizes could be
coarsened from the nf-HEDM provided 2 [µm.] size to 6 [µm.], while maintaining
converged solutions in the areas of interest.

Figure 6 is an illustration of the concurrent multiscale mesh used for these par-
allel performance trials. The regions representing the macroscale specimen and the
microscopic grains were represented with a linear elastic material model, where for
each region a Young’s modulus was randomly sampled from a normal distribution
ranging from 65-75 [GPa.]. A global strain of 1% was applied in uniaxial tension
to the top face of the macroscale model, while the bottom face was held fixed, see
Figure 6. The microscale finite element mesh was embedded at the notch root of the
macroscale model, see Figure 6. The microstructure and macroscale model had con-
forming boundary meshes such that no multiple point constraints were required. The
entire resulting finite element mesh had 15,931,139 nodes and 11,856,757 quadratic
tetrahedra, the simulation of which required a supercomputing platform. The so-
lution was obtained using the PETSc conjugate residuals implementation with the
block-Jacobi preconditioner.

To test the parallel performance of ScIFEi, the finite element computations were
run on 200, 500, 1000, and 2000 cpu cores, which resulted in approximately 240K,
100K, 50K, and 25K dof per cpu core, respectively. In each of the trials, all 20 of
the cpu cores were utilized on each node. Figure 7 is an illustration of the obtained
results of the parallel performance study on Pleiades. The wall clock time represents
the entire time for ScIFEi to complete the computations. Furthermore, Figure 7
illustrates the most significant contributions to the wall clock time: MOAB reading
the mesh file in parallel, and PETSc iteratively solving the system of equations.
Between 200 and 500 cpu cores, the simulation speed up was greater than ideal,
i.e., 2.5 times the number of cores resulted in a 2.7 times speedup. This rate slowed
significantly when fewer than 100K dof were on each cpu core. The implementation
of more sophisticated solution methods such as multigrid solvers are planned for
ScIFEi to improve scalability.

Also illustrated in Figure 7 is the monetary cost to complete each of the simula-
tions. The cost is computed from the number of nodes used, the wall clock time, the
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Figure 6: Concurrent multiscale finite element model as obtained from the study
presented in [18].

cost per node hour ($0.28), and a multiplication factor (2.52) unique to the compute
nodes chosen. From this combined illustration of the monetary cost along with the
total wall clock time it is clear that the most efficient use of resources was between
500 and 1000 cpu cores, i.e., 50K-100K dof per cpu core.

7 Summary

This report is a brief introduction to basic ScIFEi concepts, features, vocabulary,
and depedencies. To help potential users understand the advantages of using ScIFEi,
results of several parallel performance tests are provided. On a single workstation,
the scalability of ScIFEi was evaluated and compared against the commercial finite
element analysis code, Abaqus, as a point of reference. It is noted that no com-
parisons are implied regarding breadth of capability between the two codes. Most
notably, the results of a single test illustrate that ScIFEi produced a speed up of up
to 3.25x when compared to Abaqus performance. Furthermore, relative differences
between the outputs of each code were provided as verification of ScIFEi and to
ensure that each code’s iterative solver was solving the system of equations to a
similar degree of accuracy for the timing comparisons.

Commonplace today in computational mechanics research is the requirement
to analyze the large 3-D finite element models that are produced using state-of-
the-art experimental capabilities, e.g., those obtained via X-ray computed tomog-
raphy or near-field high-energy X-ray diffraction microscopy. Largely because of
its dependence on PETSc and MOAB, ScIFEi is able to take advantage of high-
performance computing architectures to analyze these models. Consequently, par-
allel performance tests were run on Pleiades, a NASA distributed memory super-
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Figure 7: Parallel performance test results from the Pleiades supercomputer.

computer. These preliminary results indicate that 50K-100K dof (approximately
15K-30K nodes) per cpu cores is most cost effective. Future attempts for realiz-
ing scalability beyond this should consider the inclusion of multi-grid solvers and
graphics processing unit cores.
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