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The Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) is a versatile 

long-reach robotic manipulator that is currently being tested at NASA Langley Research 

Center. TALISMAN is designed to be highly mass-efficient and multi-mission capable, with 

applications including asteroid retrieval and manipulation, in-space servicing, and astronaut 

and payload positioning. The manipulator uses a modular, periodic, tension-compression 

design that lends itself well to analytical modeling. Given the versatility of application for 

TALISMAN, a structural sizing methodology was developed that could rapidly assess mass 

and configuration sensitivities for any specified operating work space, applied loads and 

mission requirements. This methodology allows the systematic sizing of the key structural 

members of TALISMAN, which include the truss arm links, the spreaders and the tension 

elements. This paper summarizes the detailed analytical derivations and methodology that 

support the structural sizing approach and provides results from some recent TALISMAN 

designs developed for current and proposed mission architectures. 

Nomenclature 

A =   cross-sectional area 

a =   width of truss link and I-beam spreader webbing 

ARM =   Asteroid Redirect Mission 

ARV =   Asteroid Retrieval Vehicle 

B =   buckling coefficient (end fixity) 

Cw =   warping stiffness 

COTS =   Commercial Off-The-Shelf 

Dn =   principle diameters of boulder 

dt =   tab width on cutout webbing of open-section I-beam 

δp =   percent deflection 

δy =   tip deflection 

E =   modulus of elasticity 

EVA =   Extra-Vehicular Activity 

F =   internal member load 

Fkl =   kick load 

Fx, Fy, Fz =   applied tip loads in the principle directions 

G =   shear modulus 

h =   total height of spreader 

hcs =   height of closed-section side of spreader 

hos =   height of open-section side of spreader 

Io =   polar area moment of inertia 

I =   area moment of inertia 

J =   Jacobian Matrix 

J
+ 

=   Pseudo-Inverse Jacobian 

L =   length of a structural member 

Lbend =   length of moment arm in bending 

Llink =   length of a single link 
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Ltors =   length of moment arm in torsion 

Ltotal =   total length of TALISMAN 

LaRC =   Langley Research Center 

LSMS =   Lightweight Surface Manipulation System 

M =   mass 

MT 

Mx, My, Mz 

=   metric ton 

=   moments about the principle axes 

MATLAB =   MATrix LABoratory (software suite) 

OA =   obstacle avoidance 

Pcr =   critical buckling load 

R =   radius of tendon 

(SF)b =   safety factor on buckling 

(SF)s =   safety factor on strength 

T =   applied torque 

TALISMAN =   Tendon-Actuated Lightweight In-Space MANipulator 

t =   wall thickness 

W =   flange width or tendon webbing width 

Ẋ =   nodal velocities 

z =   vector of arbitrary joint velocities 

α =   truss link bay length / width ratio 

γ =   truss link bay depth / width ratio 

σs =   ultimate stress 

θi =   joint angles 

�̇� =   joint velocities 

I. Introduction 

ASA Langley Research (LaRC) Center has been studying long-reach, tendon-actuated manipulators for a 

decade. During the constellation program (2005-2009), there was a need for a versatile, dexterous manipulator 

that could offload payloads from the Altair lunar lander and that could also perform additional tasks on the lunar 

surface
1
. The Lightweight Surface Manipulation System (LSMS) was designed to meet these needs (Fig. 1a) and 

provided a highly mass-efficient approach to performing multiple tasks including payload positioning, digging, fork-

lift operations, grappling and precision welding
1, 2

. The modular, periodic, tension-compression design of the LSMS 

provides several benefits that have been incorporated into the latest generation, Tendon-Actuated Lightweight In-

Space MANipulator (TALISMAN). These benefits include the mechanical advantage provided by the spreaders that 

offset the tension elements at the joints, reducing the required motor size and providing geometric stiffness in the 

plane of the spreaders; and the simplicity of the structural design that allows rapid analytical modeling and sizing. 

TALISMAN, like the LSMS, provides multi-mission capabilities, with applications including asteroid retrieval and 

N 

 

     

 a) LSMS during field testing at Moses Lakes, WA.        b) TALISMAN prototypes at NASA LaRC.    

 

Figure 1. Long-reach manipulators developed at NASA LaRC. 
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manipulation, in-space servicing, and astronaut and payload positioning
3-5

. Given this mission versatility, a 

structural sizing methodology was developed to rapidly assess mass and configuration sensitivities for any specified 

operational work space, applied loads and mission requirements. This methodology allows the systematic sizing of 

the three sets of TALISMAN primary structural members (Fig. 1b), which include the truss arm links, the spreaders 

and the tendons (tension elements). This analysis capability allows TALISMAN designs to be integrated into 

mission architecture trade studies that are ongoing at NASA and provides the initial design sizing for more detailed 

dynamics
6, 7

 and controls
8
 studies being performed within the TALISMAN research team. This paper details the 

implementation of the structural sizing methodology in a custom code written in MATLAB, and provides results 

from a recent design of multiple TALISMANs envisioned for use on the Asteroid Redirect Mission (ARM) Concept 

B. Derivations of the sizing equations are provided in the Appendix.  

II. Structural Sizing Methodology 

 Initially, closed-form, parametric equations were derived for sizing the three primary sets of structural members 

for TALISMAN and were used in a rapid-design spreadsheet described in Doggett et al
3
. This spreadsheet-based 

design tool produced conservative structural mass estimates and sizing for a fully-extended TALISMAN, subject to 

in-plane tip loads, where the design used the same member geometry for each set of arm links, spreaders and 

tendons throughout. However, the closed-form equations did not include axial tip loads, and only the maximum 

resultant loads in each set of primary structural members were used for sizing. Recent mission analyses have 

required a more comprehensive structural optimization approach that includes the ability to vary individual member 

lengths; size members based on the individual member loads; include the effects of different manipulator poses; and 

consider a well-defined and actively-controlled operational envelope to better specify the loading and stiffness 

requirements. As a result, a new and more sophisticated design tool was created in MATLAB and is being used for 

sizing and sensitivity analyses that are based on current NASA mission architectures and possible future 

TALISMAN applications.  

 

 The TALISMAN structural geometry that is used in the MATLAB sizing code is shown in Fig. 2. The arm links 

are truss beams that can be manufactured from water-jetting an off-the-shelf rectangular tube made of metal or 

composite. This results in the wall thickness, t, being the primary sizing parameter for the arm links. The truss link 

width, a, and link depth, γa, are chosen to closely house the motors, gearbox and electronics inside the truss beam, 

providing them protection and also enabling the TALISMAN to have a compact packaging scheme while still 

maximizing the area moments of inertia of the links. A rectangular cross-section is chosen to provide additional out-

 
Figure 2. TALISMAN geometry, primary members, loads, and tip displacement definitions. 
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of-plane stiffness, since the global stiffness in that direction is not aided by the spreaders. The truss links have an 

additional sizing parameter, α, that defines the length of the local bays in each link. This parameter changes the 

angles of the diagonals and allows optimization of the link torsional stiffness that may be required for out-of-plane 

loads induced when the joint angles, θi, are non-zero. The spreaders are the vertical members attached at each joint, 

and used in conjunction with the tendons, to provide mechanical advantage and in-plane stiffness. I-beams are used 

for the spreaders to enable compact stowage alongside the arm links. Each spreader is composed of two cross-

sections; a standard, closed-section I-beam on one side of the link, and an open-section I-beam on the otherside 

(with a large portion of the central webbing cut out from top to bottom). The open-section side allows the spreader 

to be unlocked at the joint and driven in the direction of the closed section
5
, providing the ability to dynamically 

alter the geometry of the TALISMAN for a specific operation, such as increasing the in-plane stiffness on that side. 

In addition, a more compact packaged state can be achieved by retracting the spreaders. Since the packaging scheme 

requires a Z-fold of the links, the open- and closed-section sides of the spreaders alternate at each adjacent joint 

along the length of the TALISMAN to provide the most compact packaging. The spreaders are constrained to the 

width of the truss links, a, however, the wall thickness, t, could be used as a sizing parameter, although it is also 

partially constrained by the desire to maintain a compact joint. The flange width, W, is therefore used as the sizing 

parameter, as its magnitude is only restricted by the link depth, γa, on each side. Finally, the tendons are cables in 

the current, as-built hardware prototypes, but future variants of the TALISMAN may use composite webbings or 

tapes for their increased stiffness and linearity. The sizing parameter is the cable radius, R, but since the sizing is 

only based on the tensile strength, the sized area can be readily converted to a width and thickness of a candidate 

webbing for future studies. 

A. TALISMAN Sizing Code 

 The MATLAB sizing code includes three major sections: (1) define the materials, loads, tip deflection and 

geometry, i.e. create the TALISMAN model and the pose cases, (2) determine the equilibrated load state that 

maintains the minimum pretension level in all tendons and achieves the tip deflection requirement, and (3) size the 

structural members and output the results. A flowchart of the sizing code and its two primary sizing functions are 

provided in Fig. 3. 

 In the first section of the code, the material properties are stored in arrays that define the modulus of elasticity, 

density, and ultimate stress in tension and compression. Safety factors on strength and buckling are defined and a 

separate, higher safety factor on tendon strength is also designated due to a requirement on tensioned cables in 

proximity to personnel, such as astronauts performing an extra-vehicular activity (EVA). The primary design inputs 

(or objectives) are the applied tip loading and stiffness, since these parameters govern the operational capability of 

the manipulator. The TALISMAN achieves high structural efficiency, in terms of tip force and stiffness, by 

maintaining the applied loads in the plane of the spreaders through judicious path planning and control. An out-of-

plane load is however included in the sizing as a defined percentage of the in-plane load, to provide robustness to 

small, off-nominal side loads. The minimum desired pretension level and a kick load are also defined. The 

TALISMAN system considered in this analysis is “active-active”, or actively-antagonistic, meaning that motors 

actively control tendons that oppose each other about a joint. This allows the pretension level to be controlled prior 

to, and during, external load application. A kick load is required for structures used during EVA to account for 

incidental contact by an astronaut, and is defined as a 556 N (125 lbf) impulse load on any exposed part
9
. Adding 

this load case to a prototype design helps to ensure the structure is robust to typical handling. Finally, in this section, 

the TALISMAN geometry is defined to include link lengths and cross-sectional dimensions; spreader heights with 

wall thickness and open-section tab length, dt; and a matrix of poses, where each row of the matrix is a set of joint 

angles used in the sizing analysis. The nodal coordinates of the connections between the primary members are 

calculated in the straight out (zero-joint angle) configuration, and a connectivity matrix is defined to associate the 

nodal coordinates with each member (graphically shown in Fig. 4a). 

 In the next section of the code, the joint angles in the model are updated to one of the requested poses and the 

load analysis is performed. The MATLAB design tool takes advantage of the pinned-truss geometry of the 

TALISMAN by using the matrix stiffness method to calculate the loads in the system. This method assumes that all 

primary structural members are axially loaded. Even though there may be a small offset distance on each side of the 

joint, where the tendons connect to the motor/gearbox, the tendons intersect the link at the same distance along the 

link providing a net axial compression. The matrix stiffness method constructs the equations of equilibrium and 

compatibility in matrix form, along with the elemental stiffness matrix, to define the relationships between the 

external loads, pretensions, nodal displacements and boundary conditions, with the internal member loads and 

displacements. This computational method can solve statically indeterminate (internally preloaded) structures such 

as the TALISMAN and is computationally inexpensive. The preloads in the members are included in the model by 
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converting them, through the equilibrium matrix, to nodal forces that are added to the external nodal load vector. 

Initially, the preloads are set to zero and the member loads are calculated with only external loads applied, which 

results in some of the tendons going into compression. The tendons with the lowest loads associated with each link 

(see Fig. 4 for definition of the member groups) are selected as the driving tendons for the pretension iterations, in 

order to guarantee all tendons will achieve the minimum required preload after equilibrium. The initial pretensions 

are set equal to the applied tip load in the first pretension iteration, after which they are updated by polynomial curve 

 
 

Figure 3. TALISMAN sizing code and function flow charts. 

 

 
 

Figure 4. Nodal coordinates and connectivity for a 4-link TALISMAN in a zero joint angle configuration. 

(Colors represent structural members associated with each of the four links). 
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fitting of the initial and resultant preload data from each iteration. Once the model obtains an equilibrated load state, 

where the minimum tendon load is met, the members are sized (as detailed below) and the tip displacement 

requirement is checked. If the tip displacement does not meet the requirement, then the tendon radius is scaled in 

proportion to the current tip displacement and the load and sizing calculations are performed again until the tip 

displacement requirement is satisfied within a defined error bound. 

 The sizing section of the code is split into three functions that size the truss links, spreaders and tendons. The 

derivations of the sizing equations used in these functions are included in the Appendix and a flow chart of the truss 

link and spreader sizing functions are given in Fig. 3. The tendon sizing function is the simplest, as it only requires 

checking the ultimate tensile strength to size the radius. However, as detailed in the previous section, iterations are 

also performed (in the green loop A of Fig. 3) that adjust the radius to meet the global tip stiffness requirement. The 

truss links are sized primarily by the local members that are produced from water-jetting a rectangular tube. These 

local members are the longerons and diagonals of the truss link and have square cross-sections of side t (i.e. the wall 

thickness of the link). The truss link sizing function receives the property data for the current link and its member 

forces. If an out-of-plane load is specified, the bending and torsional moments, produced at the root of the link, are 

calculated and included in the resultant loads for sizing. Buckling and strength equations are formulated for the 

longerons and diagonals (Appendix) and the maximum wall thickness, t, is calculated along with the resulting truss 

link mass. These equations are executed within an iterative loop that searches for the α (local truss bay length / 

width ratio, Fig. 2) that produces the lowest link mass. The final values of t, α, cross-section area, mass and the 

sizing failure criterion are returned to the main code. The spreader sizing function also receives the properties and 

member loads, but is unaffected by any out-of-plane tip load for these initial sizing assumptions due to its location at 

the joint. In theory, a large moment at the tip could impact the spreader locally, but the joint and links are likely to 

fail first under such loading. Buckling and strength criteria are defined, for both the open- and closed-sections of the 

spreader (Appendix) and the flange width, W, is sized for both sections. Since the spreader is a continuous member, 

the maximum value of W, from both sides, is selected and used to calculate the spreader mass. The final values of 

W, cross-section area, mass and the sizing failure criterion are then returned to the main code.  

 Sizing of the truss links and spreaders is only performed in the first iteration of the outer, tip displacement loop 

(loop A in Fig. 3). This might seem counter-intuitive for a statically indeterminate structure, where a change in the 

stiffness of the tendons could alter the loads, and hence the required sizing of the other members. However, due to 

the pretension level being set in each iteration, and the applied loads remaining constant, the member loads also 

remain constant throughout this loop. For each TALISMAN pose case, a data array is produced that stores 

geometric, mass, and failure criterion data. After all pose cases are processed, the maximum member sizes are 

selected from all analyzed cases and are output as the final design sizing from the code. This design meets all load 

and displacement requirements across all pose cases. 

B. TALISMAN Geometry / Link Sizing Code for ARM 

 The MATLAB sizing code described in Section II. A, takes the initial geometry of the links and spreaders as an 

input. For a given TALISMAN design, the number and length of the links are chosen to provide both a desired reach 

and operational workspace, i.e. dexterity within the reach envelope. Packaged volume may also be important for a 

particular mission, thus more shorter links may be advantageous over fewer, longer links. The most recent design 

study for which TALISMAN sizing was performed was for the Asteroid Redirect Mission (ARM) Concept B
4
. This 

mission architecture employed three TALISMANs as grapple arms to pick up a boulder on the surface of a  

100 m class asteroid, and three additional TALISMANs as landing legs to enable a soft touchdown on, and push-off 

from, the asteroid. This mission architecture added a further series of constraints on the TALISMAN geometry and 

workspace by requiring obstacle avoidance around the spacecraft, the boulder, and the surface of the asteroid. To 

expedite the selection of link and spreader lengths for ARM-like architectures, an additional MATLAB code was 

written to investigate and size the TALISMAN geometry required for grapple and landing operations. This code, to 

define and plot the geometry, and its core joint angle configuration function is described by the flow charts in Fig. 5.  

 The TALISMAN ARM geometry code requires the user to input the dimensions of the Asteroid Retrieval 

Vehicle (ARV) to which the TALISMAN grapple arms and landing legs are attached around the ARV hexagonal 

baseplate. The boulder is defined as an ellipsoid, with principle axes (diameters) of lengths D1, D2, and D3. 

Additional inputs include the current distance between the ARV baseplate and the asteroid surface (Fig. 6); the 

buried depth of the boulder; the minimum clearance distance between the TALISMAN spreaders and the boulder; 

and the tip contact point on the boulder for the grapple arms or on the surface for the landing legs. The three grapple 

arms and three landing legs are run as two separate sizing cases. For the grapple arm case, each of the three 

TALISMANs may have a unique set of joint angles if the radius (semi-major axis of the elliptical surface path) of 

the tip contact point on the boulder is different for each, which depends on the dimensions of the boulder ellipsoid. 
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As all three grapple arms have to perform a coordinated grapple and retraction (or for the landing legs, an extension 

and push-off), the tips of the TALISMANs in both cases trace a vertical path. Therefore, a final parameter defines 

the tip location along that vertical motion path, as a percentage of the total distance it travels in each case, 

simplifying the definition of the tip contact point for the user. Initial link and spreader lengths are defined and the 

 

 
 

Figure 5. TALISMAN geometry code and joint angle function flow charts. 

 

 
 

     Figure 6. TALISMAN grapple arm geometry with key features and nodes highlighted. 
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ARV, boulder and surface plane are plotted in three-dimensions (3-D). Each of the three TALISMANs, for a given 

mission design analysis, are equally spaced at 120 degrees around the base of the ARV. The grapple arms and 

landing legs are adjacent to each other, 60 degrees apart. The actuation plane of each grapple arm is aligned with an 

elliptical slice through the boulder. This elliptical surface path defines the set of viable grapple arm tip contact points 

and is added to the 3-D plot for each arm. This ellipse is also used in the joint angle configuration function to define 

the two-dimensional (2-D) shape of the boulder. 

 The joint angle function is called for each of the three TALISMANs in a set (either grapple arms or landing legs) 

and includes the following inputs: the elliptical surface definition, the base node and tip contact coordinates, the 

boulder buried depth, the slope at the boulder-tip contact point (for the grapple arms) and the minimum clearance 

distance. This function was primarily written to adjust the joint angles of the grapple arms while following three 

objectives: 1) place the tip at the desired contact point on the boulder; 2) avoid ancillary contact between the 

TALISMAN and the ARV, boulder or surface; and 3) try to balance the joint angles to reduce the peak magnitude of 

any one angle (i.e. eliminate kinks) and thus reduce peak loads in the TALISMAN. An example of a grapple arm 

with balanced joint angles is shown in Fig. 6. Currently, a pseudoinverse kinematics approach is being explored to 

iterate the joint angles, while also implementing forcing functions for obstacle avoidance and joint angle balancing, 

as described in the robotics literature
10, 11

. The pseudoinverse, J
+
, is a generalized inverse of the Jacobian, J, for 

transforming nodal velocities, , into joint velocities, , in manipulators with redundant degrees of freedom. From 

reference 10, where I is the identity matrix and z is an arbitrary vector of joint velocities: 

 

  (1) 

 

The first part of Eq. 1 is the least squares solution to the redundant system of equations, and the second part is a 

homogeneous solution that operates in the null space of the transformation. z can be produced by a forcing function 

and projected, via the term in parentheses, into the null space. Several forcing terms can be included in this manner 

that influence the joint angle iterations without hindering the primary goal of directing the tip to the desired contact 

point. The obstacle avoidance (OA) forcing terms are written for three OA nodes (shown in Fig. 6) that make the 

closest approaches to the ARV, boulder and asteroid surface. An OA term is only activated once the OA node comes 

within a defined sphere of influence (SOI) of the obstacle with which the OA node is associated. The gain of the OA 

term is then ramped up quadratically as the node approaches the obstacle until a maximum gain is reached at a 

prescribed distance. These distances and gains can be varied in the code to adjust their influence on the joint angle 

iterations. Soft joint limits are also prescribed, using a fourth forcing term that acts in a similar manner to the OA 

terms, ramping quadratically to a maximum gain at the joint limits around a defined optimal angle. These limits are 

classified as ‘soft’ as there is not a hard cutoff of the analysis at the joint limits, instead the specified maximum gain 

would be exceeded. The optimal angles are defined as the set of balanced interior angles (Fig. 6) that place the tip at 

the desired contact point given a fixed base point. If the obstacle constraints are met in this initial, balanced angle 

configuration then no iteration is needed. If an obstacle constraint is violated then iterations are performed to 

progress towards a more optimal joint angle solution. It is also possible that no solution exists, if the original link or 

spreader dimensions were poorly chosen for the current boulder geometry. At each stage of the iteration cycle, a plot 

like that shown on the right side of Fig. 6 is produced to display the progress of the optimization to the user. Once a 

final set of joint angles are obtained, the angles and nodal coordinates are returned to the main geometry code.  

 The function is repeated for the other two TALISMANs and the final configurations are plotted in the original  

3-D figure. The configuration results are stored to an output data file that can be referenced in the TALISMAN 

sizing code as pose input data. When performing configuration analyses in which multiple different sized boulders 

are to be retrievable by the capture system of grapple arms and landing legs, it is likely, that the initially chosen link 

and spreader lengths will have to be updated and additional runs of the program performed to obtain a final 

geometry for the arms and legs that satisfy all boulder cases (outer loop of TALISMAN ARM geometry code,  

Fig. 5). The following section discusses results from a recent case study for the ARM Concept B that utilizes both 

codes described in Section II to size sets of grapple arms and landing legs with the capability to retrieve a wide 

range of different boulder sizes from an asteroid. 

III. Results from ARM Concept B Mission Sizing for asteroid 2008 EV5 

The ARM Concept B was selected in March 2015 as the focus for ongoing studies into a boulder retrieval and 

return mission with a possible launch in late 2020. Several candidate 400 m+ diameter carbonaceous asteroids have 

been identified as possible targets for such a mission including: Bennu, currently the target of the OSIRIS-Rex 

X 

 zJJIXJ   
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sample return mission; 1999 JU3, the target of the Japanese Hayabusa 2 sample return mission; and 2008 EV5. 2008 

EV5 is currently preferred
 
in the NASA ARM Concept B studies

12
 due to EV5 having been extensively observed 

and characterized from ground-based infrared telescopes and radars (Fig. 7). The MATLAB codes described in 

Section II were used to size three TALISMAN grapple arms and three TALISMAN landing legs for a conceptual 

boulder retrieval mission to 2008 EV5. The key stages of the capture operation are shown in Fig. 8 for a previously 

studied boulder retrieval mission to Phobos, using the same TALISMAN-based capture architecture. The current 

baseline operations for the capture portion of the EV5 mission begin with the ARV at zero relative velocity to the 

surface, 20 m above the center of the boulder. The ARV then uses the low gravity of EV5 to pull itself towards the 

surface at a very slowly increasing velocity until the landing legs make contact. The landing legs then lower the 

ARV toward the surface until the grapple arms can secure the boulder at three points. The grapple arms then retract 

the boulder and secure it against the ARV, after which the landing legs push the ARV off the surface, reaching a 

maximum velocity that, at a minimum, propels the ARV to a height of 50 m above the surface.  

 

A. TALISMAN Geometry and Configuration 

 The ARM mission Concept B is focused on retrieving one boulder, 1 m to 5 m in diameter, with a maximum 

mass of 70,000 Kg (70 metric tons [MT]) from the surface of 2008 EV5. The LaRC ARM study team defined ten 

ellipsoid boulder geometries for study that encompassed a wide range of sizes (Fig. 9). These shapes provide a 

baseline set of analysis cases that any capture system must be able to grapple and secure, and assist in the push-off 

of the spacecraft and boulder from the asteroid surface. From a geometric sizing perspective, the links of the grapple 

 

 
 

     Figure 7. 2008 EV5 properties
13, 14

 and radar shape model from Ref. 14.
 

 

 
 

       Figure 8. Artist’s concept of TALISMANs used as landing legs and grapple arms for a Phobos boulder 

retrieval mission.
 



 

American Institute of Aeronautics and Astronautics 
 

 

10 

manipulators must be able to reach around any of the boulders and maintain tip contact throughout the grapple and 

secure maneuver while avoiding any ancillary contact with the boulder, surface or ARV. The landing leg geometries 

are not as constrained by the boulder geometry, but they must provide enough force and vertical stroke to launch the 

full mass of the ARV and boulder to at least a height of 50 m above the surface. The launch height is stipulated in 

the mission architecture to avoid having to use thrusters near the surface of the asteroid, which could cause 

damaging dust particles to be ejected toward the spacecraft and solar arrays. A push-off stroke of 1 m was chosen 

for the landing legs as a reasonable estimate (given the low gravity environment) over which to accelerate the ARV 

and boulder to a velocity that could achieve the required 50 m height.  

The boulder cases that drove the sizing were found to be the smallest boulder (1 m by 1 m by 1 m), and the two 

largest boulders (5 m by 5 m by 2.5 m and 4 m by 4 m by 4 m). These three cases are all axisymmetric about the 

vertical axis and thus only one set of poses was required for each set of grapple arms and landing legs. The mass of 

the 1 m by 1 m by 1 m boulder is only 1 MT to 2 MT, but due to the requirement of using the same manipulator 

geometry for all ten boulder sizes, retracting such a small boulder leads to a larger range of motion and more severe 

joint angles which must be checked. For the two largest boulders (cases 9 and 10 in Table 1), the manipulators are 

geometrically sized to achieve minimum clearances. The range in density of 2008 EV5 allows for a factor of 2 

difference in mass for any given boulder volume. Due to the maximum payload limit of 70 MT for this mission, the 

only way the two largest boulders could be retrieved would be if their densities were at most, approximately 2 

g/cm
3
. For boulder cases 1 to 8, the density is assumed to be 4 g/cm

3
 to be conservative.  

 
The final sized link lengths for the grapple arms and landing legs, that met all constraints and boulder cases, 

were determined to be 1.3 m and 1.6 m, respectively. 4-Link TALISMANs were used for both the grapple arms and 

landing legs to provide greater dexterity for orienting the tip while performing the operations described. Although a 

3-link landing leg configuration was considered, and could provide the necessary motion paths for the EV5 mission, 

the 4-link design was selected because it provides tighter packaging around the base of the ARV alongside the 

grapple arms, and some degree of operational redundancy since the design loads on both the arms and legs are very 

similar for this mission. The spreader lengths for both sets of TALISMANs were 0.25 m on each side of the link  

(0.5 m total height). At the root link, the tendons are connected directly to the ARV (nodes 2 and 3 in Fig.4) in place 

 

 
 

Figure 9. Boulder geometry cases for ARM Concept B (dimensions in meters). 

 

 

Table 1. Boulder dimensions and masses for 2008 EV5 expected density range. 
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of spreaders. As the ARV hexagonal baseplate (to which all the TALISMANs connect) is 2 m in diameter, and the 

ARV is 3 m in diameter, the connections are placed at the maximum distance of 0.5 m on each side of the root link. 

It would also be possible to use telescoping spreaders at the root to provide greater mechanical advantage, but since 

the final structural masses for the EV5 mission were relatively small, this approach was unnecessary. The pose cases 

determined for the structural sizing are shown in Table 2, with Fig. 10 illustrating the pose cases studied for the 5 m 

by 5 m by 2.5 m boulder, as an example. The landing legs react the full inertial load throughout the push-off 

maneuver, as they accelerate the ARV and boulder; therefore the legs have to be sized to meet the design 

 

Table 2. 2008 EV5 TALISMAN landing leg and grapple arm pose cases and sized dimensions. 
 

 
 

 

a) Grapple Arms lifting partially buried boulder to secured position against ARV. 

 

 
b) Landing Legs pushing ARV off the surface to escape velocity. 

 

Figure 10. Grapple arm and landing leg positions for the 5 m by 5 m by 2.5 m boulder case. Dashed lines 

represent the geometry code tracking the minimum clearance distances to the spreaders. 
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requirements throughout their motion path. Three points along the landing leg motion path for each boulder were 

selected for sizing, at 0 m (boulder is on the surface), 0.5 m, and 1 m (full acceleration has been reached). The 4 m 

by 4 m by 4 m and 5 m by 5 m by 2.5 m, 70 MT boulders generated the peak load and geometric sizing cases. It was 

determined to be feasible, given the low gravity of EV5, to design the legs to propel the ARV and boulder to escape 

velocity. As a result, given the total mass of the ARV and boulder (79,000 Kg), the escape velocity on EV5  

(0.26 m/s), and the 1-m stroke distance, the inertial load on each landing leg at launch is calculated to be 921 N  

(207 lbf). The peak load for the grapple arms occurs after the ARV has returned to cis-lunar space
12

 during the final 

docking maneuver, thus only the fully retracted pose is structurally sized for each of the three critical boulder cases 

mentioned previously. The docking load on each arm is 885 N (199 lbf). 

 The structural sizing code is run using the link and spreader lengths, together with pose cases determined in the 

geometry sizing code, and a final sizing and mass estimate for each TALISMAN is returned (Table 3). The link 

cross-sectional dimensions of 76 mm by 38 mm (3 in. by 1.5 in.) used here were chosen based on the volume needed 

for the internal systems, such as motors, gearboxes and electronics for these smaller manipulators. The tendon radii, 

particularly at the roots of these TALISMANs, are quite large in this sizing due to the highly conservative 

requirement of 1% tip deflection (which has been used in previous TALISMAN sizing studies). The TALISMAN 

team is currently studying the flexible multibody dynamics
6, 7

 and the means to control
8
 this class of manipulators 

which could reduce the conservative static stiffness requirements currently imposed during design sizing, and 

decrease the radii of the tendons. The total masses for a single grapple arm and landing leg are given in Table 3, 

where the quantity and total mass of each set of components is given. The structural mass for an entire arm or leg for 

this mission is approximately 4.5 Kg (10 lbs) using current polymeric composite materials. The system mass for 

each TALISMAN is based on known masses of commercial off-the-shelf (COTS) components that are being used in 

the two laboratory prototypes shown in Fig. 1b. The COTS control box masses are reduced by a factor of four to 

reflect the change from modular, plug-and-play electronics to custom, integrated circuits. The current camera masses 

were doubled to reflect upgrading to space-rated cameras for a flight system. The end effector is application 

dependent and currently not well defined, thus an estimate was made to indicate a simple, lightweight boulder or 

 

Table 3.  2008 EV5 TALISMAN landing leg and grapple arm component masses. 
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surface contact pad. The other component masses are scaled based on the change in geometry of the cross-section 

and the link lengths. Finally, a 30% growth factor is added to the subtotal to cover small design changes, space 

hardening and additional minor hardware that has not been specifically accounted for. The landing leg and grapple 

arm TALISMANs are estimated to have masses of 29 Kg (64 lbs) and 26 Kg (58 lbs), respectively, resulting in a 

total system mass of 166 Kg (366 lbs) for all six TALISMANs. 

IV. Conclusion 

In this paper, a structural sizing methodology and analysis code for sizing the geometry and structure of the 

TALISMAN system was presented. The sizing code enables the rapid investigation of the sensitivities of a design to 

a variety of parameters including the number, length and cross-section of the arm links; spreader height and 

geometry; required material properties; safety factors on strength and buckling; the lacing pattern of truss diagonals, 

and; tip loads and deflections. Due to the low computational requirements of the sizing code, a large number of 

parametric analyses can be performed on multiple sets of poses within a few minutes. The code also generates plots 

of the sized geometry that includes deformations and loads, and provides an output file containing parameterized 

sizing results from all analysis cases, from which it determines the sizing that meets all requirements for all poses. 

The pose cases can be obtained, for missions like the ARM, via the geometry sizing code that provides the user with 

the tools to quickly converge on feasible member lengths to perform the mission and provide the TALISMAN 

geometry to the sizing code for analysis. This initial design sizing can serve as a basis for further analysis using 

detailed finite element models, which may direct further cycles on the initial design via updated load requirements. 

Similarly, ongoing research into a TALISMAN control system could also refine the stiffness requirements, which 

may require further iterations on the initial design. 

Results were presented that detailed the sizing of a TALISMAN capture system in application to the ARM 

Concept B. The masses for non-structural items, such as the joints, motors, gearboxes, electronics, and additional 

hardware were estimated, added to the sized structural mass and used to compute the total mass for the grapple arm 

and landing leg TALISMAN capture system. Finally, the derivations of the structural sizing equations, used in the 

customized sizing script, are presented in the attached appendix. 

Appendix – Derivations of Structural Sizing Formulas 

The appendix provides the derivations of the structural sizing formulas used in the MATLAB sizing code for the 

truss links, spreaders and tendons. The final sizing equations used in the code are highlighted with a box drawn 

around them. 

 

I. Truss Links – Longeron Buckling 

 

The truss links are loaded in axial compression from equilibrium with the tendon tension loads and any bending 

moments resolved into the truss link longerons due to out-of-plane tip loads (Fig. A1). These compressive loads are 

carried solely by the four longerons of the truss links. The structural efficiency of TALISMAN comes from 

concentrating stiffness in one-primary plane of operation (the plane-of the spreaders), thus operationally, lateral 

loads should be minimized. For the design case presented in this paper, a lateral load equal to 10% of the applied in-

 

 
  a) Axial member load.       b) Bending load reacted by longerons.    c) Bending and torsional moment arms  

 

Figure A1. Truss link axial loads from equilibrium with in-plane and out of plane tip loads. 
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plane tip load is included and accounted for as detailed below when calculating the longeron buckling loads.The 

Euler buckling load, Pcr, with buckling factor, B, that accounts for end fixity is: 

 

 
  2

2

LSF

EI
BP

b

cr


  (A-1) 

 

where E is the modulus of elasticity, I is the area moment of inertia, (SF)b is the safety factor on buckling and L is 

the length of the member. The area moment of inertia for a square longeron of side, t, is: 

 

 12/4tI   (A-2) 

 

The longeron length, in terms of the truss width, a, and the truss link bay length / width ratio, α, is: 

 

 aLlong 2  (A-3) 

 

Two loads affect the sizing of the longerons: the axial member load, F, (which is applied equally to all four 

longerons) resulting directly from equilibrium with the in-plane tip load; and the resultant axial load in each 

longeron, Flong_bend, induced by an applied bending moment due to an out-of-plane tip force, Fz: 

 bendlonglong F
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  (A-4) 

 

The length of the moment arm, Lbend, is defined as the axial distance from the end of the link, being currently sized, 

to the tip (Fig. A1). This assumes a rigid link between the two points, which is conservative given that the arm is 

flexible and bending would shorten this distance. The bending load is resolved into the four longerons as: 
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Where, Fz is the out-of-plane tip load. Eq. A-5 can be solved for F_long_bend  and substituted back into Eq. A-4 to give: 
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Now, Eqs. A-6, A-2 and A-3 can be substituted into Eq. A-1 to yield the wall thickness, tbkl_l, that meets the buckling 

requirement in the longerons: 
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II. Truss Links – Diagonal Buckling 

 

Torque in the truss links is due solely to the out-of-plane tip load, Fz, and is resolved entirely by the diagonal 

members. The torsional moment arm is the normal distance, Ltors, from the end of the link to the tip (Fig. A1):  
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 torsz LFT   (A-8) 

 

 

In reference to Fig. A2a, the resultant load, F, due to an applied torque, T, is: 
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The relationships between the cross-sectional link geometry and the angle of the load, F, are:   
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The angle of the long-side diagonal in Fig. A2b can be found from the relationship:  
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Using Eqs. A-9, A-11 and A-12, the long diagonal force, Fdl, is: 
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The angle of the short-side diagonal in Fig. A2c can be found from the relationship:  
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Using Eqs. A-9, A-10, and A-14, the short diagonal force, Fds, is: 

 

 

 
              Isometric view        a) Front view.          b) Top view.             c) Side view. 

 

Figure A2. Truss link diagonal loads from an applied torque. 
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The length of the long diagonal is:  

 

 21  aLdl  (A-16) 

 

The length of the short diagonal is:  

 

 22   aLds  (A-17) 

 

Using Eq. A-1, and substituting in; the long diagonal force from Eq. A-13; the area moment of inertia from Eq. A-2; 

and the long diagonal length from Eq. A-16, yields the wall thickness that meets the buckling requirement in the 

long diagonals: 
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Similarly, using Eq. A-1, and substituting in; the short diagonal force and length from Eqs. A-15 and A-17; and the 

area moment of inertia from Eq. A-2, yields the wall thickness that meets the buckling requirement in the short 

diagonals: 
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III. Truss Links – Ultimate Stress Longerons and Diagonals 

 

 The ultimate stress, σs, of the longerons and diagonals is determined according to Eq. A-20, where (SF)s is the 

safety factor on strength, and the load, F, is replaced by the forces from one of Eqs. A-4, A-13 or A-15: 
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The cross-sectional area of the longerons and diagonals is: 

 

 2tA   (A-21) 

 

Rearranging Eq. A-20, and substituting in Eq. A-21 yields the wall thickness sized for the ultimate strength 

requirement: 
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IV. Truss Links – Mass Calculation 

 

The truss link mass is calculated by determining the total length of all of its longerons, diagonals and the two end 

frames (i.e. the two rectangles at the end of each link, shown in Fig. A2b and multiplying by the density and area. 

The perimeter length of the end frames is: 

 

 aaLends 44   (A-23) 

 

and the total length of the longerons and diagonals for a single truss bay is: 

 

 dsdlbay LLaL 224    (A-24) 

 

where Ldl and Lds were determined in Eqs. A-16 and A-17. To find the total length of all local truss members, Lbay is 

multiplied by the total link length, L, divided by the bay length, αa, then added to Lends. The total mass is then: 
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V.  Spreaders – Area and Mass 

 

The spreaders are I-beams with an inner width of a (the width of the truss links), flange width, W, and a wall 

thickness of t. The cross-sectional area and mass of the closed-section side of a spreader with height, hcs, are: 

 

 atWtA  2  (A-26) 

 

 cshaWtM )2(    (A-27) 

 

and the open-section side of a spreader has the following cross-sectional area and mass, where dt is the tab width 

(shown in Fig. 2c) and hos is the open-section side height: 
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VI. Spreaders – Lateral Buckling due to Axial Compression 

 

The area moments of inertia for the spreaders are found by applying the parallel axis theorem in Eq. A-30. The 

parallel axis theorem divides the I-beam into rectangular areas, Ai, with parallel axes at distances, δyi from the 

centroidal axis of the I-beam. The theorem is written: 
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The spreaders have a strong and weak direction in bending. The strong direction is in the plane of the webbing (i.e. 

out of plane with respect to the TALISMAN, about the x-axis), while the weak direction is in the plane of the 
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flanges (about the z-axis), which are typically shorter than the webbing width, a. For the closed-section side of the I-

beam spreader, the following area moments of inertia are obtained: 
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Likewise, the area moments of inertia for the open-section side of the spreader are: 
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Rearranging Eq. 1 in terms of the area moment of inertia, and substituting in Eq. A-31, and the height of the closed-

section side of the spreader, hcs, for L, the sizing equation for W, based on buckling for the closed-section side of the 

spreaders in the strong direction (about the x-axis) is: 

 

 
 



















 


223

2

2

212
2

12

tat
Wt

ta

EB

hSFF csb


 (A-35a) 

 

 
 



















 



22

2

322

212
24

12 tat
W

EtB

EtaBhSFF csb




 (A-35b) 

 

 
 

  222

322

__
62

12

tatEtB

EtaBhSFF
W csb

xcsbkl








 (A-35c) 

 

Similarly in the weak direction (about the z-axis), substituting in Eq. A-32 instead, the sizing equation is: 
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For the open-section side with height, hos, the strong direction sizing equation for buckling is: 
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and in the weak direction: 
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VII.  Spreaders –Torsional Buckling due to Axial Compression 

 

 The torsional stiffness, GIo, and warping stiffness, Cw, for the closed-section side of the spreader are defined as: 
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The warping stiffness, Cw, for the open-section of the spreader is the same as Eq. A-40, while the torsional stiffness 

for the open-section is defined as: 
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The polar area moment of inertia is defined in Eq. A-42. The area moments of inertia for the closed and open section 

sides of the I-beam spreaders in Eqs. A-31 and A-32, and in Eqs. A-33b and A-34, respectively, can be substituted 

into Eq. A-43 and, then through substitution of the appropriate cross-sectional area from Eqs. A-26 or A-28, can be 

used to size the flange width based on torsional buckling: 
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VIII. Spreaders – Ultimate Stress 

 

The spreaders can experience both tension and compression during normal operations as the joint angles vary, 

therefore the ultimate strength of the materials used for the spreader must be defined in both tension and 
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compression. The general sizing equation for the critical stress was defined in Eq. A-20. Rearranging this equation 

to equate to the cross-sectional area and substituting in Eq. A-26 for the closed-section side of the spreader gives: 
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and for the open-section side, where Eq. A-28 is substituted into Eq. A-20 it follows: 
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I. Tendons – Ultimate Stress 

 

 Since the tendons only experience tension, only the ultimate strength equation is required for sizing: 
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