
 

 

American Institute of Aeronautics and Astronautics 
 

 

1 

An Integrated Framework for Modeling Air Carrier 

Behavior, Policy, and Impacts in the U.S. Air Transportation 

System 

Brant M. Horio1, Vivek Kumar2, Anthony H. DeCicco3, Shahab Hasan4, Virginia L. Stouffer5 

LMI, McLean, VA 22102  

and 

Jeremy C. Smith6, Nelson M. Guerreiro7 

NASA Langley Research Center, Hampton, VA, 23681 

The implementation of the Next Generation Air Transportation System (NextGen) in the 

United States is an ongoing challenge for policymakers due to the complexity of the air 

transportation system (ATS) with its broad array of stakeholders and dynamic 

interdependencies between them. The successful implementation of NextGen has a hard 

dependency on the active participation of U.S. commercial airlines. To assist policymakers in 

identifying potential policy designs that facilitate the implementation of NextGen, the 

National Aeronautics and Space Administration (NASA) and LMI developed a research 

framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). 

This framework integrates large empirical data sets with multiple specialized models to 

simulate the evolution of the airline response to potential future policies and explore 

consequential impacts on ATS performance and market dynamics. In the ATS-EVOS 

configuration presented here, we leverage the Transportation Systems Analysis Model 

(TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept 

Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of 

which enable this research to comprehensively represent the complex facets of the ATS and 

its participants. We validated this baseline configuration of ATS-EVOS against Airline 

Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we 

verified the ATS-EVOS framework and agent behavior logic through scenario-based 

experiments that explored potential implementations of a carbon tax, congestion pricing 

policy, and the dynamics for equipage of new technology by airlines. These experiments 

demonstrated ATS-EVOS’s capabilities in responding to a wide range of potential NextGen-

related policies and utility for decision makers to gain insights for effective policy design. 

I. Introduction 

HIS paper is an extension of research by Horio1 in which we first introduced the ATS-EVOS framework and its 

approach for exploring system-wide ATS performance impacts due to ATS stakeholder behaviors—in 

particular, behaviors of U.S. commercial airlines—under the influences of NextGen technologies and potential 

policies related to equipage and operational changes. The ATS is a highly interdependent and complex network of 

systems, subsystems, stakeholders, and policies. A change in any aspect of this system has cascading effects, 

ultimately influencing the safety, performance, environmental impact, and economics of the ATS as a whole. These 
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stakeholder-level decisions and behaviors have both a tactical and a strategic perspective, and they are influenced by 

socioeconomic, technological, and policy interactions. 

U.S. commercial airlines are a key stakeholder in the ATS and successful implementation of NextGen requires 

airlines to equip their fleets with enabling technologies, with the bulk (if not all) of the capital expense at their own 

cost. There are potentially significant installation costs involved and policies are necessary to best incentivize 

airlines to equip their fleets. The ATS-EVOS framework is from a stakeholder perspective and as such, leverages 

models developed in an agent-based context to more easily represent individual and organizational behaviors in 

response to proposed policies and other changes in the system2. 

Ultimately, we seek to provide a tool for decision makers to gain better insight into how the design of policies 

and incentives may help ensure system performance is balanced with stakeholder utilities, and reduces risk and 

uncertainty for achieving a more efficient, robust, and safer ATS. The focus on this paper is not on a specific model, 

but is in reference to the overall ATS-EVOS framework, the integration of its component models, and the utility of 

the approach. 

II. Research Approach 

We developed a research framework to sufficiently represent the real-world ATS in Horio1, focusing on the 

dynamic interactions between airlines, customers, and policy. This approach—which is modular and uses different 

computational tools to address the modeling components for demand generation, airline behavior, ATS 

performance, and environmental assessments—is called ATS-EVOS. 

We have since refined and expanded the framework and in the particular configuration of ATS-EVOS that we 

discuss in this paper, we leverage TSAM3, AIRLINE-EVOS1,4, ACES5, and AEDT. A high-level diagram of the 

ATS-EVOS framework and the interaction between its modeling components and input data sets is shown in Fig. 1. 
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Figure 1. ATS-EVOS Framework. This figure shows a high-level overview of the ATS-EVOS framework and how 

external data inputs and the individual computational modeling components relate to each other. The dashed line 

connections highlight iterative feedback loops that are used for model calibration and agent learning. 
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A. Modeling Components of ATS-EVOS 

ATS-EVOS employs in its current configuration uses four component models: 

 

 Virginia Tech’s TSAM is a transportation mode choice model with a national scope and is used by ATS-

EVOS for (1) calibrating AIRLINE-EVOS simulated market demand to the projected commercial air travel 

demand from TSAM scenario runs, and (2) for assigning representative demographic characteristics to 

every customer agent within AIRLINE-EVOS. These characteristics are specific to each agent and include 

travel type (business, leisure), household income, ticket purchasing behavior preferences, and individual 

perception of other decision factors such as value of time. 

 LMI’s AIRLINE-EVOS simulates airline agents and their behavioral responses due to interaction with the 

customer agents, other airlines, and systemic conditions of the ATS. AIRLINE-EVOS employs an agent-

based approach to simulating these agent behaviors and interactions, ideal for the complex system 

dynamics in the ATS; airline agents are adaptive, making tactical and strategic changes to their airfares, 

network, and schedules under the influence of reinforcement learning, to best generate profit and compete 

in markets. Customer agents choose to purchase or not purchase airline tickets. Our research with this 

model has simulated as many as 26 individual airlines in three business model categories (full-service, low-

cost, and regional) and their interactions with nearly one million customer agents over 30,800 daily flights. 

 NASA’s ACES model simulates system-wide effects of proposed air transportation concepts and is used by 

ATS-EVOS to track the related performance impacts of AIRLINE-EVOS simulated decisions by the airline 

agents. AIRLINE-EVOS outputs a modified flight schedule as a result of airline decisions; we need a tool 

to assess the consequential impacts of those decisions in the ATS. These impacts measures are related to 

flight delay and congestion in the airspace. 

 FAA’s AEDT also models performance at an aircraft level and is used by ATS-EVOS to track fuel burn, 

emissions, and noise. This is a new feature of the ATS-EVOS suite and allows environmental impacts to be 

included with our experiment results. 

 

In addition to these component model parts, AIRLINE-EVOS accepts data input from external sources to give 

our airline and customer agents more robust characteristics. The data include operational costs from the Bureau of 

Transportation Statistics (BTS) Form 41, aircraft performance characteristics from the EUROCONTROL Base of 

Aircraft Data (BADA), and starting airfare pricing parameters from the BTS Airline Origin and Destination Survey 

(DB1B). In addition, we use DB1B and the Official Airline Guide (OAG) as a source for validation patterns to 

compare against AIRLINE-EVOS outcomes. 

B. ATS-EVOS Process Flow 

The general process flow for the ATS-EVOS framework shown in Fig. 1 is described in the following steps. 

Except for Step 1, all are major updates since Horio1. 

 

1) Data from TSAM and other sources are loaded into AIRLINE-EVOS, and agent populations are 

instantiated for airlines, customers, and markets. Necessary calculations are made for assigning individual 

agent characteristics and other behavior-driving factors. 

2) Once the AIRLINE-EVOS system has been set up, a calibration loop—indicated by a dashed line—is 

started to match AIRLINE-EVOS simulated outcomes for airfare and demand to TSAM projections, as 

described in Kumar6. This calibration process implemented a search algorithm that iteratively adjusted on a 

market level, airfares and customer willingness-to-pay. This is a significant development since our previous 

publication in that it enables existing TSAM functionality to be included in our analysis assumptions, such 

as the influences of new modes of travel (e.g., high-speed rail, on-demand mobility) that compete with 

demand for commercial air travel. It also enables the use of TSAM-based scenarios that use projections for 

future fleet evolution and schedule changes. 

3) Given a calibrated AIRLINE-EVOS model, we simulate airline and customer interactions within 

AIRLINE-EVOS. We may optionally use multiple iterations of this model run to allow airlines to learn 

from repeated customer interactions. At the end of the iteration cycles, AIRLINE-EVOS generates an 

output flight schedule that has been modified in line with airline agent decisions under influences of 

reinforcement learning. 

4) The AIRLINE-EVOS output flight schedule is processed in ACES to measure the performance impacts on 

the ATS. 
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5) Steps 3 and 4 are repeated for some number of replications to allow airline agents to evolve over some 

period of time and through reinforcement learning based on feedback loops from ACES results. Effects, in 

the form of delay metrics, are input back into AIRLINE-EVOS where they are monetized and incorporated 

into subsequent airline decisions, allowing them to more robustly evolve their response while accounting 

for observed performance in the airspace, changing market dynamics due to consumer decisions, and 

competitive effects between airlines. This is important for fully exploring system dynamics for scenarios 

such as equipage of new technologies. Based on operational feedback results of prior investment decisions, 

these realized benefits may update subsequent cost/benefit calculations and spur expanded fleet equipage. 

6) Steps 1 through 5 are fully automated through an automation script that processes data, runs the model 

components in a serial fashion, and between modeling steps, modify output data as necessary into a format 

compatible for input into the next model. At this time, AEDT is not part of the automated process and has 

been used only when the specified number of ATS-EVOS replications have been run. When appropriate, 

we export the final ACES run output data into AEDT. We use this model to measure environmental 

impacts, specifically, the emissions effects on the system due to the AIRLINE-EVOS schedule 

adjustments. This may be viewed as determining the environmental impacts of the convergent state of an 

ATS-EVOS scenario for making relative comparisons against the experiment baseline. 

 

AIRLINE-EVOS also experienced major improvements to its model structure and functionality but its specific 

updates are further discussed in Horio3, currently in consideration for publication. These updates are primarily 

focused on implementation of a more robust and representative set of behavioral responses for the airline agents 

with respect to network modification and schedule adjustment logic. We present in the appendix, an updated model 

description of AIRLINE-EVOS from Horio1 using a standard protocol known as ODD (Overview, Design concepts, 

and Details)7,8. The ODD here is abbreviated. For the full ODD description, reference the final NASA report10. 

III. Verification and Validation 

We conducted verification and validation (V&V) through comparisons of a baseline scenario of ATS-EVOS 

against validation patterns representative the current time frame to help establish the legitimacy of the virtual world 

within which ATS-EVOS and AIRLINE-EVOS operate. 

A. Verification 

Our baseline scenario of ATS-EVOS followed the process discussed in the previous section. Using our 

calibrated airfares and customer WTP values, we allow the ATS-EVOS iterations to evolve from that starting point 

and establish the baseline case. We simulated three iterations of the entire ATS-EVOS cycle with ACES in the loop 

and using a 2012 baseline flight schedule. Results are shown in Fig. 2 and describe how system enplanements and 

mean airfare have changed over the different ATS-EVOS iterations. 

 
Figure 2. ATS-EVOS baseline for enplanements and mean airfare. This figure shows simulated airfares in 

comparison to DB1B results. Dashed lines indicate the distribution means. 
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Airline agents in AIRLINE-EVOS sequentially execute five strategic behaviors to adapt to changing conditions 

in the market and due to competition. These strategies have the objective—as in the real world—to improve airline 

profits and performance. The primary mechanism for this is related to adjusting airfares and/or the schedule 

offerings to make their airline service more attractive to the public. With respect to airfares, pricing is decreased to 

regain lost demand and gradually increased during sustained periods of ticket sales in order to capture as much profit 

as possible. For scheduling-related strategies, airlines may adjust departure times, service frequency, and their 

network structure to better meet demand needs. The results in Fig. 2 indicate that airline strategies are functioning as 

intended, which is for the airlines to ultimately fill seats and make revenue—as enplanements go down, airfares are 

dropped to attract more sales, and as enplanements go up, airfares are carefully and incrementally increased. We 

observed that of all the strategies, market pricing adjustments are the most aggressive in raising mean airfare, and in 

general, as airfares become more affordable, enplanements increase. Airfare changes in baseline conditions move in 

a very incremental manner, and as the model evolves over multiple ATS-EVOS iterations, variances between 

successive iterations decrease, suggesting a trend toward convergence. It should be noted that our baseline input 

schedule and data do not account for seasonality changes and other major perturbation factors and assumes a fairly 

constant system. Off-nominal conditions such as seasonal peak effects may be explored in ATS-EVOS and just 

requires a more specific experiment scenario. 

As further V&V for airlines strategies, we observe in Fig. 2 that by the third iteration, airfares, after airlines 

employ strategic behaviors, are higher than the airfares at the beginning of the ATS-EVOS iteration. Paired with the 

insights that enplanements also increase, results suggest that the airline strategies are helping airlines evolve their 

operation into more lucrative scenarios. This is further corroborated with our tracking of industry-wide metrics in 

the model that show airline profits increasing over time. 

B. Validation 

Validation was conducted by comparing AIRLINE-EVOS outputs against Airline Origin and Destination Survey 

(DB1B) data, a 10-percent quarterly sample of all airline tickets sold in the U.S. and is the most accessible and 

relevant data for U.S. commercial airline airfares. The distribution of DB1B trends also provide a validation pattern 

for the entire ticket purchasing process, including how airlines price airfares and how customers, in turn, decide 

which tickets to buy, if at all. The validation of this overall process effectively validates AIRLINE-EVOS in its 

entirety, with respect to sufficiently capturing the complexity of the internal system mechanics to ultimately result in 

the overall system performance. Simulated results from AIRLINE-EVOS and its comparison to relevant DB1B 

results are shown in Fig. 3. Both results are representative of the 3rd quarter in 2012; AIRLINE-EVOS uses a 2012 

historical flight schedule calibrated to 2012 TSAM model results, and DB1B data is representative of the same 

timeframe as the flight schedule. 

We do not expect the comparison of results in Fig. 3 to match exactly because we are modeling simplified airline 

behaviors that may not capture variability factors inherent in the DB1B data, such as seasonality, airline yield 

management practices, and day-of-

week pricing strategies. We are 

also only simulating a single 

representative day. We use this 

validation pattern to gain insights 

into how our abstraction of airfare 

pricing logic—which considers 

advance purchase day, load factor 

at time of purchase, market-

specific base airfare, customer 

willingness-to-pay estimates, and 

options for nonstop or a single 

connection itinerary—sufficiently 

captures the complexity of real-

world pricing. Given these 

considerations, comparison of 

mean airfares in Fig. 3 suggest that 

AIRLINE-EVOS airfare pricing 

logic is fairly representative of the 

real world. Customer decisions 

about tickets to purchase are 

 
Figure 3. Simulated airfares between AIRLINE-EVOS and DB1B. This 

figure shows simulated airfares in comparison to DB1B results. Dashed lines 

indicate the distribution means. 
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dependent on the airfares offered, thus validation of consumer choice—as observed by the comparison of 

distribution shape between AIRLINE-EVOS and DB1B—simultaneously offers approximate visual validation for 

the ticket purchasing logic of our customer agents. 

IV. Proof-of-Concept Experiments 

We further verified the ATS-EVOS framework and agent behavior logic through three scenario-based 

experiments. These experiments demonstrate ATS-EVOS’s capabilities in responding to a wide range of potential 

NextGen-related policies and provides us confidence that our research approach and modeling framework, when 

used in rigorous analytical studies, would yield decision-quality results. These results however are not designed for, 

nor intended to directly inform policy decisions. Future analyses would follow a similar experimentation process but 

would require more complex and detailed experiment parameters. 

A. Experiments 

Airline behaviors influence the performance of the ATS and the service provided to consumers. Airline decisions 

related to pricing, scheduling, and resource allocation are key to these impacts, influencing congestion, delay, and 

customer quality of service. We sought in these proof-of-concept experiments a way to ensure that our approach 

provides system performance metrics that account for representative airline responses to proposed policies. 

This modeling of airline behaviors in the context of the ATS-EVOS framework, forms the foundation for 

exploring three airline response dynamics we were interested in. These scenarios were focused on (1) adaptive 

response to operating cost changes, (2) mitigation of overscheduling behaviors, and (3) evolutionary response to 

investment decisions. The experiments with some further details are shown in Table 1. 

 
We discuss the experiments for adaptive response to operating cost changes using a notional carbon tax scenario, 

and also for evolutionary response to investment decisions in Horio3. In that discussion, we found that in the carbon 

tax scenario, we observed airline agents sense revenue implications and adapt their pricing and scheduling responses 

to maintain profitability. In the results for exploring the evolutionary response to investment decisions, we illustrated 

how airline agents make profit-maximizing decisions that can be informed by system performance feedback from 

prior states, and through learning, allow airlines to evolve their decision making over time to better match 

environmental conditions. 

We focus our discussion in this paper on the proof-of-concept experiment exploring potential policy for 

mitigation of overscheduling behaviors. We believe it is particularly relevant for this paper as it depends upon the 

feedback loop from the ACES component for informing subsequent AIRLINE-EVOS decisions. It is our opinion 

that demonstrating representative mechanics for this behavioral response—in conjunction with other findings 

presented in Horio3—shows that emergent outcomes from ATS-EVOS experiments are plausible and reasonable, 

and provides strong evidence that this approach may be used for research into many topics of interest for NASA and 

the larger aviation research community. 

B. Proof-of-Concept Scenario for Congestion Pricing Policy 

This experiment explored a potential disincentive designed to improve service levels at congested airports. We 

investigate the effectiveness of such policies in decreasing congestion and delays. An optimal policy would have 

Table 1. Proof-of-concept experiments. 
 

Experiment Description 

Adaptive Response to 

Operating Cost Changes 

Focused on a notional carbon tax, scoped as a national policy affecting all 

airlines. Assesses impacts and airline response to operating cost increases. 

Mitigation of Overscheduling 

Behaviors 

Focused on a notional congestion pricing policy, scoped to be locally 

implemented at a single, highly congested airport. Assesses congestion pricing 

impacts on airline scheduling behaviors. 

Evolutionary Response to 

Investment Decisions 

Explore decision logic and influencing factors for our model’s abstraction of 

an airline’s assessment of costs and benefits for a new technology, the 

decision to incrementally equip their fleet, and the potential evolution of that 

decision over time. 
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minimal impact on enplanements, by essentially relating the airline cost structure at congested airports to the 

airlines’ scheduled flight times and force a more efficient flight schedule. 

At some airports, runway service demand is so high during peak traffic periods that the airport is overwhelmed 

and runway queues form, resulting in long delays. For some of these airports, the problem is restricted to a few, 

relatively brief periods; the airports’ runway resources are underused at other times of the day. Where this is this 

case, mitigating the service issues may be possible by implementing policies that  

 

 discourage flight scheduling during high-traffic periods, 

 encourage flight scheduling during low-traffic periods, or 

 a combination of the two. 

 

Congestion pricing is a method for imposing a congestion-based fee on the use of a limited public resource so as 

to reduce congestion. This experiment explores the use of a congestion pricing policy and its associated impacts on 

airline scheduling behaviors, which includes overscheduling. The overscheduling behavior at specific times of the 

day coincide with disproportionate demand for tickets during these travel times. These peak demand travel times are 

therefore very profitable to the airlines because they are able to charge premiums in the form of higher ticket prices. 

The higher profitability of these slots exacerbates the overscheduling behavior of airlines because they all want to 

maximize their operating profits. 

Historically, some airports have dealt with flight congestion through fixed landing fees. Using a fixed fee per 

aircraft, rather than a weight-based fee, encourages airlines to use fewer and larger aircraft during peak use periods, 

since the cost of the fee per customer is lower and revenue per fee higher. 

Finally, some New York metroplex airports have levied fees upon aircraft that use the airports during congested 

periods. In this case, only certain aircraft are affected, and the fee was levied only on aircraft having fewer than 

some number of seats determined by the airport. The effect of this policy was to discourage GA flights out of the 

busiest New York airports. This is the only implementation that directly penalizes operations during the peak-use 

period. 

C. Method 

AIRLINE-EVOS is capable of modeling any of the aforementioned congestion pricing implementations, but the 

most informative experiment is to model the strongest form of congestion pricing possible, which would be to model 

an expansion of the third type of implementation, where any aircraft using the airport during congested periods 

would have to pay a fee. To encourage the use of larger aircraft, the fee should be flat.  

Johnson9 conducted a study focused on Chicago O’Hare (ORD), which is a highly congested airport, especially 

in the latter part of the day. The study estimated the relationship between the number of flights wishing to depart and 

the delays they experience, to calculate congestion fees designed to incentivize airlines to move some flights from 

the peak period and/or adjust departure times. 

Table 2 shows the congestion fee results9 for four different airlines, identified in the table by their ORD market 

share at the time of the study. The fees are based on six different late-day hour-long epochs, starting from 15:00 and 

ending at 20:00. Because of the marginal disutility imposed on the system and to the airlines themselves, you can 

see that the fee amounts are lower for airlines with greater market shares, based on an assumption that more 

dominant airlines have an inherent incentive to keep congestion low and do not require as much of a financial 

penalty to drive behavior. 

 

Table 2. Congestion pricing fees at ORD, by market share and peak period hour epochs. 

Market share 
Peak period hour epochs  

15:00 16:00 17:00 18:00 19:00 20:00 

Atomistic $16,878 $12,848 $9,958 $8,688 $5,241 $670 

0.023 $16,482 $12,546 $9,724 $8,484 $5,118 $655 

0.405 $10,035 $7,638 $5,920 $5,165 $3,116 $399 

0.488 $8,629 $6,569 $5,091 $4,442 $2,680 $343 
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The study was conducted in 2006, so assuming that the congestion pricing relationships between market share 

and fee are still valid in our current 2012 schedule scenarios, we adapt these study results to fit our experiments. We 

do so by using the values in Table 2 to generate simple linear regression models for each epoch. We show the 

resulting pricing fee models in Fig. 4. 

The two main trends observed in the pricing models shown in Fig. 4 are that it is cheaper to fly later in the 

congestion pricing time window, and within a given time epoch, the congestion pricing fee decreases as market 

share increases. 

We implement these models into AIRLINE-EVOS, applying them only to ORD departures that leave within the 

specified epochs. The congestion pricing fees are added to flight costs within the model; if they sufficiently penalize 

a flight’s profits, they will be subject to strategic action (e.g., network or departure time modification, gauge 

change). Airline market share is allowed to be dynamic to reflect change as the model evolves and consumers 

respond to airline decisions. Each new iteration of ATS-EVOS will determine an updated ORD market share that 

will be used in the AIRLINE-EVOS modeling component for applying the congestion pricing fee. 

The overall research approach for conducting experiments within the ATS-EVOS framework follows a process 

of establishing a baseline following the process outline of Fig. 1, including seeding the initial AIRLINE-EVOS run 

with inputs from a baseline ACES run and TSAM calibration. We then run through the same process again—

repeatedly for a specified number of iterations—providing outputs from individual models as inputs to subsequent 

modeling steps of ATS-EVOS after introducing rules and values for projected impacts for a given experiment 

scenario. This enables a comparison of emergent model run results against the baseline to determine relative 

differences with respect to ATS performance impacts and environmental metrics. Experiments were run for a 

historical flight schedule in 2012. This particular experiment did not include an assessment of emissions impacts 

using AEDT, though the capability to do so existed. 

V. Results 

We first assess the ACES-simulated schedule impacts due to our implementation of the congestion pricing 

policy. As explained earlier, this study was limited in scope by only applying the congestion pricing fee to 

departures from ORD, a total of 1,083 flights. Table 3 shows, for the 2012 baseline and congestion pricing 

 
Figure 4. Drop in congestion pricing fee models for ORD by market share. This chart shows our ORD 

congestion pricing fee models that were adapted from research by Johnson9. 
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scenarios, the count of delayed flights and average delay durations related to ORD takeoff delays. One of the main 

objectives of implementing a congestion pricing policy is to reduce excessive congestion during peak periods. The 

results in Table 3 confirm that this objective is met because the number of flights delayed at takeoff drops from 787 

flights to 783 flights. The average takeoff delay of the departures at ORD also reduces by 0.01 minute. Despite 

observing a reduction in takeoff delays in the congestion pricing scenario, the magnitude of these reductions is 

minimal. This may be because the congestion pricing fees do not negatively impact flight profitability enough to 

cause the airlines to move their departures to a less costly departure time. 

 

Table 3. ORD departure schedule performance for congestion pricing experiment using 2012 flight schedule. 

ATS metric 

Baseline 

performance 

(Iteration 3) 

Scenario 

performance 

(Iteration 3) 

Change from 

baseline 

Total number of flights delayed for takeoff 787 flights 783 flights ‒4 

Flights with over 15 minutes of takeoff delay 0.0 flights 0.0 flights 0 

Average takeoff delay per flight (all flights) 1.22 minutes 1.21 minutes ‒0.01 

Average takeoff delay per flight (delayed flights only)  1.68 minutes 1.67 minutes ‒0.01 

 
One of the main purposes of this experiment was to explore the effectiveness of a congestion pricing-based 

policy on overscheduling practices. Fig. 5 shows the change in the ORD departure schedule during the congestion 

pricing policy time frame. The blue line shows the original departure counts for each time epoch—where each epoch 

represents 1 hour—and the orange line shows the departure counts for the congestion pricing experiment. The x-axis 

starts at 14:00 because the congestion pricing is applied only to the flights departing after 15:00. Since the 

congestion prices decrease from 15:00 to 21:00, we expect that some flights in the high peaks of the original 

schedule will shift to later (and hence cheaper) departure times, which is exactly what we observe. For example, at 

16:00, there is a drop in the departure count and a shift from that peak into the next time epoch. A similar event of 

peak reduction is observed at 18:00 with a rescheduling to a later time at 19:00. 

 

 
Figure 5. Change in departure schedule at ORD due to congestion pricing policy scenario. This plot shows 

schedule depeaking that resulted from airlines considering our notional congestion pricing scenario over 

multiple iterations of the ATS-EVOS simulation cycle. 
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VI. Conclusion 

In our research progress from Horio1, we have demonstrated in our ATS-EVOS framework and its component 

simulation models, the viability and utility of this approach for enabling a method to: 

 

 Quantify the effects of modeled airline behavior with inputs representing the current ATS and a projected 

future state of the ATS. 

 Quantify the effects of incentive policies to explore airline responses such as the prevention of 

overscheduling and reduction of carbon emissions. 

 Quantify the effects of competition from other modes of transportation, including high-speed rail and 

private air vehicles. 

 Quantify the effects of new technologies on airline equipage behavior. 

 

We used our fully operational ATS-EVOS framework to conduct three experiments that improved upon the 

initial analyses. Those experiments assessed notional and simplified policies for a carbon tax, congestion pricing, 

and introduction of new technology for equipage. The experiments leveraged an AIRLINE-EVOS model that is 

calibrated to TSAM, may be run over multiple iterations of ATS-EVOS, and accounts for schedule delays (and any 

relevant equipage benefits) as simulated by ACES in a previous iteration. Multiple iterations of ATS-EVOS allow 

the system to learn and evolve over time, a critical dynamic for robustly assessing future policies and their impacts 

on the ATS. Each experiment, except for the equipage scenario, was conducted using a 2012 schedule to represent 

the current system and in a similar process, is capable of representing a projected future state of the system by using 

a different input flight schedule. 

Our experiments were successful in that we demonstrated the ATS-EVOS approach as a viable tool that can 

produce meaningful metrics for analyzing airline behaviors. Our observed results, while slight in movement, exhibit 

directional trends that seem to be reasonable, explainable, and representative of the real-world system. We also 

validated the results with our team of industry experts. The results from our experiments are not designed or 

intended to directly inform policy decisions; future analyses would use the experimentation process outlined in this 

report but would require more complex and detailed experiment parameters. 

For a full reference of the final research, please see the final NASA report10. 

Appendix: AIRLINE-EVOS Model Description 

We now describe AIRLINE-EVOS, along with its general formulation, using a standard protocol known as ODD 

(Overview, Design concepts, and Details)7,8.ODD was designed to create factually complete and easily understood 

model descriptions that are standardized and consistent8. What we present here is an abbreviated ODD; readers 

should reference our full report to NASA for the complete ODD description.6 

A. Overview 

1. Model Purpose 

The purpose of AIRLINE-EVOS is to formally model airline behaviors, accounting for their response to 

customer ticket purchasing choices and other external environmental factors—such as NextGen and FAA policy 

implementations—to enable the analysis of consequential, systemic impacts on the ATS as a whole and with respect 

to the system stakeholders. 

 

2. Customer Agents and State Variables 

The model has two different entities: customers and airlines. They are modeled as distinct agents that behave 

autonomously and interact with each other, accounting for influences and constraints introduced by specified 

external factors. We first discuss customer agents. 

Customer agents are modeled as heterogeneous agent populations, with a number of differentiating attributes, 

including the origin-destination (O-D) pair that defines the agent’s desired route. In the current version of AIRLINE-

EVOS, their behavior is strictly concerned with making a decision about whether to purchase an airline ticket, and 

which ticket to purchase. Modeling that behavior requires (1)  a customer population based on forecasted demand, 

(2) relevant state variables, and (3) agent behavior logic for identifying feasible candidate ticket options and 

selecting a ticket from among those candidates based on preferences specific to the agent. After selecting airline 

tickets, the role of the customer agents in the model has been satisfied 

AIRLINE-EVOS instantiates multiple customer populations at the beginning of each model run, each unique in 

size and specific to an air travel market defined by an O-D pair. The model uses market demand curves generated 
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from previous research on market elasticities11—specific to O-D pairs and to the type of travel, business or leisure—

which determines the number of potential customers that may buy tickets, as well as the amount each customer is 

willing to pay for a single ticket. Thus the customer willingness to pay (WTP) attribute is integrally linked with the 

size of a market’s demand. We then calibrate for each market, its WTP curve through a search algorithm described 

in Kumar6. In this way, we get close to accurately matching the level of market demand projected by TSAM 

scenarios through approximating customer decisions to not purchase a ticket if all of the offered airfares are more 

expensive than the maximum amount they are willing to pay. 

We also use TSAM results to assign customer agent-specific attributes, derived from how TSAM segments its 

output. In particular, we are interested in demographics of customers in each air travel market, including leisure or 

business traveler status, and the distribution of household income among those two categories, all of which is 

provided in TSAM output. The customer agent state variables used in AIRLINE-EVOS are described in Table A1. 

  
Customer agents possess only one decision-making behavior. They select which available ticket they will 

purchase, based on a cost- and inconvenience-minimizing utility function, with some degree of randomness. We 

Table A1. Customer agent state variables. 
 

State Variable Description 

Desired O-D travel Customers are instantiated in groups, as segmented by TSAM, each with a specific 

O-D pair. For each agent, we assign an appropriate origin airport and destination 

airport matching the O-D pair of the group they were instantiated from. 

Traveler type Decisions made by customers are motivated by the type of traveler they are, 

categorized in AIRLINE-EVOS as either business or leisure. TSAM segments 

each O-D demand forecast by the same traveler type categories, enabling us to 

assign each agent with a traveler type according to the ratio determined by TSAM, 

during the AIRLINE-EVOS instantiation. This state variable will be a factor in 

determining a customer’s advance purchase time, arrival time sensitivity, and 

airfare price sensitivity. 

Household income TSAM further segments each O-D demand forecast into five income range 

brackets. We use this segmentation of the demand to derive a specific income from 

the ranges for each customer agent. 

Value of time We quantify an approximation for perception of the value of time of each customer 

agent, to be used in the decision-making process for a customer to select an airline 

ticket to purchase. It acts as a weighting coefficient that makes more inconvenient 

itinerary options less attractive to customers (i.e., longer travel time durations, 

including distances and connecting flights). By approximating an hourly value of 

time, we can monetize the cost perception of a particular ticket in the customer 

utility function.  

Advance purchase time Tactical airfare pricing strategies by airlines are assumed to be a function of 

several factors. One significant factor is how early a customer decides to purchase 

a ticket prior to the actual departure date. This state variable for each customer is 

considered in the airline agent logic for adjusting airfare offerings for a specific 

customer. 

Departure time preference We assume that departure time preference is a factor in the customer’s ticket-

choice decision; this agent-specific value is used to evaluate ticket choices, 

weighting their preferences toward itinerary options that depart closest to the 

preferred departure time or earlier. We use this variable to capture the general 

behavior of business travelers; when leaving home, they take flights early in the 

day, and when returning home, they take flights later in the day. Leisure travelers 

are assumed to be insensitive to the travel time. 

Airfare sensitivity Airfare sensitivity reflects how significant airfare is to the customer, which is 

specific to the traveler type. Higher price sensitivity means that a customer cares a 

great deal about price and wants to spend less money. This state variable is an 

input into the customer’s determination of the most preferable ticket choice. 

Willingness to pay WTP is used in the ticket choice submodel of the customer agents to generate a 

subset of all offered tickets whose airfares are acceptable to a customer agent. 

Wealth This measure is an approximation of customer wealth, which we assume is 

separate from income, though highly correlated. Measure of wealth is used in the 

airline ticket choice submodel. 
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assume that customer agents are not completely rational and, therefore, with some random probability, do not 

strictly maximize their utility decisions. These behaviors are discussed in more detail in the submodels section. 

 

3. Airline Agents and State Variables 

The primary entities of AIRLINE-EVOS are airline agents. Airline agents possess behavior rule-sets that 

influence how they price their airfares and adjust fleet allocation in their flight schedules. They do so through an 

iterative learning process that involves both tactical and strategic decision logic. Modeling of these behaviors 

requires (1) generation or input of the airline agents, their starting flight schedules, and an initial allocation of 

aircraft equipment across the schedule; (2) relevant state variables; and (3) decision logic for dynamic airfare 

pricing, flight schedule adjustment, and equipage of new technology for airline fleets. The airline agent state 

variables used in AIRLINE-EVOS are described in Table A2. 

Airline agents must also possess computational methods for accurately initializing, accessing, and updating all 

state variables, in particular, all those related to flight management, such as tracking seat availability for each 

individual flight as customers purchase tickets and take up available seats. Available capacity changes in a market 

will have the most direct influence on the competitive response behaviors of the airline agents. 

Airline agent decisions are based on profit-maximizing utility functions and, as such, are dependent on ticket 

purchasing decisions by the customer agents. That modeling enables a determination on how to allocate revenues 

and market share among the representative airlines being modeled and, subsequently, influences airline behavior 

responses for adjusting airfare or reallocating the aircraft equipment across the flight schedule. In the current version 

of AIRLINE-EVOS, these airline behaviors address the two primary responses by airlines to market forces: dynamic 

airfare pricing and strategic adjustment to the flight schedule. More specifically, airfare adjustment behaviors  

customize airfares to the specific customer desiring travel, with respect to how close the ticket purchase is from the 

day of departure, and the number of seats available on the offered flight at the time of purchase. Schedule changes 

by the airline agents are strategic equipment gauging decisions that attempt to increase revenues by improving 

captured market share, and modification of departure time, service frequency, and/or network structure to better 

capture market demand. Airlines consider equipage decisions on a subfleet basis; a decision is made for a given 

technology set with cost and benefit assumptions specific to airline and subfleet type. 

Most other airline responses are executed over extended time frames, involve high capital costs, and require 

more complicated decision making, such as deciding on new aircraft purchases, leases, or refurbishment of the 

existing fleet. These actions will be investigated in future versions of AIRLINE-EVOS. 

 

4. Model Spatial and Temporal Scale 

The spatial scale is used to measure the flying distance, in nautical miles, between origin and destination pairs. 

The spatial scale is key for calculating metrics such as fuel burn and travel time. 

Regarding temporal scales, AIRLINE-EVOS is dimensionless, meaning the duration of the time steps used 

during a model run is not specified. Time steps are required only during the learning iterations of the model run. 

Each iteration is reflective of a process in which airlines will assess their performance and make appropriate 

strategic changes to their schedule or pricing. In an iterative way, the market is then reengaged after any changes, 

and the airlines determine success or failure of those changes with respect to profitability. The outcome of this 

assessment influences subsequent strategy decisions by the airline. Each learning iteration loop is considered the 

next available time for the airline to publish and implement a flight schedule change; it is not a specified increment 

of time. It is also assumed that all learning iterations and the resulting model outcomes for experiment scenarios are 

within context of the same seasonal period of the starting schedule. 
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5. Process Overview and Scheduling 

The dynamics of the model involve the processes that change the state variables of the model entities, describing 

who does what, in what order, and when the state variables are updated, specific to how time is being modeled. This 

process overview describes AIRLINE-EVOS, from the instantiation of agent populations, to their interactions, 

Table A2. Airline agent state variables. 
 

State Variable Description 

Airline We do not intend to model the behavior of a specific airline; rather, we model 

proxy airlines that are representative of similar real-world entities with respect to 

business model, network, operating costs, and aircraft fleet. Using ATS-wide 

schedule inputs, airline agents are based on real-world airlines. Business models 

are primarily full-service (FSC), low-cost (LCC), and regional carriers. 

Flight schedule Input flight schedules are a standard, real-world ATS-wide schedule, in ACES 

schedule input file format (FDS-2 or FDS-3). This input schedule includes the 

following for every flight: origin and destination airports, aircraft type assigned to 

the route, departure time, filed cruise speed and altitude, and route waypoints. 

Feasible set of flight itineraries Airline agents determine a feasible solution set of all possible itineraries for a 

specific O-D pair, constrained to the airline’s network as specified in the input 

schedule for the given airline’s real-world counterpart. Currently, our generated 

itineraries are either nonstop or have one connection. 

Fleet inventory Each airline agent is assigned an aircraft fleet based on the actual fleet inventory 

for their real-world airline counterpart, using Enhanced Traffic Management 

System (ETMS) and Aviation System Performance Metrics (ASPM) data, or for 

future time frames, projected fleet inventories. 

Fleet allocation assignment to 

the schedule 

We assign specific aircraft to the flight schedule according to the allocation 

specified in the input flight schedule. 

Fleet age Each airline subfleet is assigned an average age, based on available online data, to 

enable consideration of aircraft retirement in the model’s equipage logic. 

Subfleet categorization AIRLINE-EVOS categorizes each subfleet based on the ease with which new 

technology/avionics can be installed. In analyses for different equipage scenarios, 

these categories are associated with specific costs for each category type. 

Technological performance of 

the aircraft fleet 

Aircraft performance variables (e.g., customer capacity of the aircraft, cruising 

altitude, speed, acceleration, and fuel burn rate during the climb, cruise, and 

descent phases of flight) are assigned to each aircraft and then applied to each 

flight accordingly. The capacity is used to track the number of available seats on 

the route. The other metrics are used to calculate the aircraft’s total fuel burn and 

total travel time in the air. Variables are derived from Base of Aircraft Data 

(BADA).8 

Hedged fuel price Due to their unique business models and corporate strategies, each airline agent 

has a different price that it pays for fuel. 

Airline-specific operating costs 

by flight 

Each airline agent is assigned a specific operating cost by flight, accounting for 

nonfuel-related and fuel-related expenses. Nonfuel-related operating costs are 

represented by operating costs per flying hour, based on Bureau of Transportation 

Statistics (BTS)9 data, which is specific to the business model of the airline and the 

aircraft type being flown. Fuel-related operating costs are based on the assigned 

aircraft type, travel time, fuel burned, and airline hedged fuel price. This is a factor 

in determining a flight’s base airfare and the airline’s profit determination. 

Airline-specific delay cost Each airline agent is assigned a specific cost of delay for each aircraft type in its 

fleet, used for calculating monetized benefits from operational savings due to 

delay reductions. 

Airline performance metrics State variables associated with airline performance metrics are dynamic and are 

continuously updated throughout the AIRLINE-EVOS model run. The airline 

performance metrics include available seat capacity by flight and load factor by 

flight. 

Airline and flight profits For a given airline, profit is determined by a straightforward calculation of the 

difference between the summed revenue and the operating costs, across every 

flight that the airline operates on its schedule. This state variable is used as a 

trigger mechanism for initiating airline behaviors. 
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behavioral responses, learning iterations, and, ultimately, the generation of an adjusted ATS-wide flight schedule. 

Fig. A1 shows a high-level modeling flow diagram that illustrates the AIRLINE-EVOS process, scheduling, and 

interaction points between the agents. The process flow shown in Fig. A1 are described in the following steps: 

 

Step 1. A customer agent population is generated for each O-D pair based on market elasticity assumptions, 

calibrated to DB1B data, and assigned attributes based on TSAM demographics. TSAM calibration also 

updates a customer’s WTP attribute. 

Step 2. An airline agent population is instantiated, based on predetermined representative airline business 

models. Each airline agent loads an initial flight schedule, aircraft equipment-related data, and fleet 

allocation assignments. TSAM calibration also updates an airline’s base market price. 

Step 3. Feasible customer itineraries for each O-D pair are generated from the initial airline schedules. 

Perceived O-D market value and airline-specific operational costs are considered in the determination of 

the airline-specific base airfare to be offered for each itinerary. 

Step 4. Customer agents request itinerary options from the airline agents based on desired travel for a 

particular O-D pair, assigned as an attribute at instantiation. 

Step 5. Airline agents evaluate the base airfare of the requested itinerary using a cost basis, making pricing 

adjustments to the airfare based on the advance purchase time of the requesting customer agent and on the 

remaining seat availability at time of purchase. This is done for each itinerary that the airline agent is 

offering the customer. 

Step 6. Customer agents make a utility maximizing choice, with some randomness, to determine which airline 

ticket to purchase. Steps 4, 5, and 6 are taken for all customer agents in our model population. Each is 

handled one at a time in sequential order based on when the customer decided to purchase a ticket, 

determined from their attribute value for advance purchase time. 

Step 7. Each customer purchase feeds back into the airlines’ airfare calculations. Choices made by customer 

agents dynamically influence pricing adjustments the airlines make to better compete in the O-D market. In 

other words, as each customer agent chooses what ticket to purchase, subsequent customers may have 

uniquely different choices to consider as the supply of available customer seats diminishes from earlier 

transactions. Steps 6 and 7 may be thought of as an internal loop that is repeated until all customers have 

made an airfare decision. 

Step 8. Metrics like seat availability are tracked and updated for each flight and for all airlines as tickets are 

purchased. Profits are also updated on a flight-by-flight basis and aggregated to an airline route and overall 

airline basis. Likewise, airline market share in an O-D market is updated as tickets are sold. 

Step 9. After all customer agents have made their selection, airline agents assess their current operational and 

financial state. Considering strategic behavior rule-sets, they may adjust their fleet allocation, including the 

gauging of scheduled aircraft. Alternatively, they may change the base fare price in individual markets to 

initiate or respond to competitive actions or to adopt a different economic operating point in particular 

markets to aggressively try to gain more market share. Equipage decisions for new technology are also 

made at this point in the AIRLINE-EVOS process. These strategies are applied in a sequential order—

based on SME input—and include (1) market base airfare adjustment, (2) network modification, 

(3) departure time modification, and (4) equipment/gauge swapping. 

Step 10. For each type of airline strategy implemented, a feedback loop is executed in which the same 

customer agent population is reengaged to consider the resulting new set of itinerary and airfare options. 

This is representative of an airline trying to improve its performance by testing new schedule and airfare 

strategies at the next available incremental schedule change opportunity. It is a “learning” process, repeated 

until some convergence or modeling threshold is reached. These strategies are all part of a single iteration 

of AIRLINE-EVOS. Despite the strategies being executed in an order preferred by real-world airlines, we 

believe we must run multiple iterations of AIRLINE-EVOS within each iteration of ATS-EVOS. These 

nested iterations of AIRLINE-EVOS should facilitate a convergence of strategic decision outcomes and 

further mitigate any undesirable effects due to the specific ordering of strategies. 

Step 11. The resulting ATS-wide schedule aggregates the adjusted flight schedules from all the modeled airline 

agents. This consolidated schedule is now available for input into NASA’s ACES, along with cargo carrier 

schedules, international gateway flights, and projected flight schedules for UASs, to determine ATS-wide 

impacts as a consequence of airline decisions. 
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B. Design Concepts 

The ODD protocol identifies 11 design concepts that are key to robustly describing the dynamics and behaviors 

of complexity models we expect to observe. The following describes how AIRLINE-EVOS exhibits these design 

concepts. 

 

1. Basic Principles 

Central to AIRLINE-EVOS are the dynamic interactions between customer choices, airline decisions, and the 

performance of the ATS as a whole. As illustrated in Fig. A1, airline agents interact by providing airfares and 

itineraries to customer agents, and they evolve over multiple learning iterations through strategic pricing and 

scheduling changes that allow them to better compete in the market and gain revenue. 

 

 
 

2. Emergence 

Airlines dynamically modify airfares as they are purchased, based on customer advance purchase time 

characteristics and the available seats for a given flight, and this gives rise to several emergent behaviors in 

AIRLINE-EVOS: 

 

 Market-based dynamics of customers, with respect to purchasing behaviors over time and travel trends by 

traveler type and O-D pair (e.g., leisure travel on a decreasing trend in certain markets). 

 Competitive airline behaviors, with respect to how airfares change over time, change in profit, and the 

resulting evolution of market share. 
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Figure A1. Overview of the AIRLINE-EVOS Process Flow. 
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 Airline operations, with respect to load factor trends and equipment gauging by market, in addition to 

decisions to equip their fleets with new technology. 
 Other emergent effects at the ATS-level are expected to result after running AIRLINE-EVOS schedule 

output in ACES. These operational-related performance metrics include measures of airspace congestion, 

delay, violation of safe separation, and others. 

 

3. Adaptation 

The airlines alter schedules and airfares over time to account for changes in the competitive environment and the 

resulting suboptimal schedules. 

 

 The airlines potentially sell different numbers of tickets for their flights during each iteration, which can 

result in financial losses at the flight level that can be corrected through changes to the schedule. 

 The airlines change equipment assignments and modify ticket prices based on customer purchasing behavior, 

which is in turn a reaction to airline schedule offerings. Airlines observe which itineraries are selling well 

and which are not, and swap aircraft between flights to best match scheduled offerings to demand. 

Likewise, airlines respond to customer demand by raising or lowering prices. Competing airlines also make 

price and schedule adjustments, to the effect that when they are responding to customer demand patterns, 

they are also responding to the competitive actions of other airlines. 

 

4. Objectives 

Airlines have the explicit objective of maximizing short-term profit. They make changes to their schedule and to 

ticket prices, then evaluate those changes based on their effect on profit. Customers pursue their objective of 

maximizing their utility. In every iteration of the model, customers explicitly choose the ticket that will maximize 

their utility, taking into account their individual preferences. 

 

5. Learning 

Airline agents change their adaptive traits over time. After all customers have made ticket purchasing decisions 

during an iteration, airlines reassess the performance and profitability of previous changes to those behaviors and 

either abandon those changes and take a different approach, or they build on the previous changes to further improve 

performance and profitability. The airlines learn to make gradual changes to airfares, both to learn the ideal airfare 

for a particular market and to allow the airfare to drift when significant changes to the market affect the pattern of 

customer behavior. Likewise, airlines make gradual changes to the schedule to better accommodate current market 

conditions. 

 

6. Prediction 

Predictive behavior is not present in the current version of AIRLINE-EVOS although there are plans for airline 

agents to include the ability to consider the impact of forecasted competitive behavior and market reactions before 

acting themselves, in addition to the iterative learning already modeled. 

 

7. Sensing 

Airlines have imperfect awareness of their environments. They know what tickets they have sold in the current 

iteration in response to the prices they have imposed, and they keep track of the seat availability of their own flights, 

as well as the amount of time remaining until departure, but they know little else. 

 

8. Interaction 

Airlines and customers interact directly, with the airlines offering itinerary choices and airfares and the 

customers choosing a ticket to purchase. Airlines also interact indirectly with each other, mediated through customer 

ticket transactions that change the remaining unmet customer demand in a market, a shared resource for which 

airlines compete. 

 

9. Stochasticity 

Stochastic processes, based on pseudorandom numbers, are used when assigning certain state variables to 

customer agents (e.g., preferred departure time, traveler type), and when determining whether customers will choose 

the ticket that maximizes their utility or act irrationally and choose an alternative ticket in a random manner. 
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10. Collectives 

The current AIRLINE-EVOS has no collectives. Airline agents cannot be grouped by common traits, and each 

market defines a different, unique customer environment. 

 

11. Observation 

AIRLINE-EVOS currently employs extensive observation into processes in the model, most prominently 

through the use of logging statements, but also through special purpose output files created to generate a more 

processed form of quantitative output, ready for analysis and a final schedule file. 

C. Details 

1. Model Initialization 

The state variables described for airline and customer agents in Tables 1 and 2 are initialized to values derived 

from assumed distributions, point-value estimates, BTS data sources9, and other freely available information from 

the Internet. Please reference the full NASA report complete details of our model initialization assumptions.6 

 

2. Submodels 

Currently, AIRLINE-EVOS implements eight submodels that enable agents to assess and interact with their 

environments. Table A3 describes the role and function of each submodel. 

 

 

Acknowledgments 

This work was accomplished under NASA research announcement (NRA) NNH10ZEA001N, “Research 

Opportunities In Aeronautics–2010”, Amendment 6, NextGen—Systems Analysis Integration And Evaluation 

Projected C.3 Subtopic 2: Comprehensive Modeling Of Air Carrier Behavior. The authors would also like to thank 

Table A3. AIRLINE-EVOS Submodels. 
 

Agent Type Submodel Description 

Customer Airline Ticket Choice Customers decide upon a ticket to purchase from flights matching their 

desired origin and destination. The Airline Ticket Choice submodel 

models the customer decision-making process by mathematically 

modeling the utility of the individual tickets to the customer evaluating 

them. 

Airline Flight Cost Airlines determine the operating costs of their flights, based on a number 

of factors that include the technological performance specific to the 

aircraft equipment being used on the flight. 

Profit Calculation Airlines calculate profit at the flight and airline levels, the results of 

which trigger behavioral responses by the airlines. 

Dynamic Airfare Pricing Airlines adjust offered airfares depending on the time remaining until the 

date of travel and on the number of tickets remaining to be sold for 

individual flights. 

Network Modification Airlines explore the modification of either the origin or destination of 

poorly profiting flights, in an effort to gain greater profit. 

Departure Time 

Modification 

Airlines explore the modification of flight departure times of poorly 

profiting flights, in an effort to gain greater profit. 

Airline  

Equipment Swapping 

Once tickets have been sold, airlines may choose to switch equipment 

for flights to better accommodate market demand or to better match the 

equipage or performance profile to market and demand characteristics. 

Technology 

Equipage Decision 

Airlines weigh, on a subfleet basis, costs and benefits for given 

technology sets and decide if they will equip their subfleets. 

 



 

 

American Institute of Aeronautics and Astronautics 
 

 

18 

William Cotton of Cotton Aviation Enterprises and Vince Costanzo for their counsel and advice, and Jeffrey 

Goldsmith, James Hebden, and Terry Thompson of LMI, for their contributions and support of this research. 

References 
1Horio, B. M., A. H. DeCicco, V. L. Stouffer, S. Hasan, R. L. Rosenbaum, and J. C. Smith. 2014. “Agent Based Modeling of 

Air Carrier Behavior for Evaluation of Technology Equipage and Adoption.” In Proceedings of the 14TH AIAA Aviation 

Technology, Integration, and Operations Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics. 
2Lempert, R. “Agent-Based Modeling as Organizational and Public Policy Simulators.” Proceedings of the National 

Academy of Sciences of the United States of America. Vol. 99.Suppl 3, 2002. pp. 7195–7196. 
3Baik, H., and Trani, A. A. “A Transportation Systems Analysis Model (TSAM) to Study the Impact of the Small Aircraft 

Transportation System (SATS)” (presentation, 23rd International Conference of the System Dynamics Society, 2005). 
4Horio, B. M., Kumar, V., and A. H. DeCicco. “An Agent-Based Approach to Modeling Airlines, Passengers, and Policy in 

the U.S. Air Transportation System”, 2015 Winter Simulation Conference, INFORMS (submitted for publication). 
5Sweet, D., Manikonda, V., Aronson, J., Roth, K., and Blake, M., “Fast-Time Simulation System for Analysis of Advanced 

Air Transportation Concepts,” AIAA-2002-4593, American Institute of Aeronautics and Astronautics, AIAA Modeling and 

Simulation Technologies Conference and Exhibit, Monterey, CA, Aug. 2002. 
6Kumar, V., Horio, B. M., A. H. DeCicco, S. Hasan, V. L. Stouffer, J. C. Smith, and N. Guerreiro. 2015. “Understanding Air 

Transportation Market Dynamics using a Search Algorithm for Calibrating Travel Demand and Price.” In Proceedings of the 

15TH AIAA Aviation Technology, Integration, and Operations Conference. Reston, Virginia: American Institute of Aeronautics 

and Astronautics. 
7Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginotet, V., Giske, J., and et al., “A Standard Protocol for Describing 

Individual-based and Agent-based Models,” Ecological Modelling, Vol. 198, Issues 1–2, Sept. 2006, pp. 115–126. 
8Grimm,V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., and Railsback, S. F., “The ODD Protocol: A Review and 

First Update,” Ecological Modelling, Vol. 221, Issue 23, Aug. 2010, pp. 2760-2768. 
9Johnson, T., “Departure Delays, the Pricing of Congestion, and Expansion Proposals at Chicago O’Hare Airport,” Journal of 

Air Transport Management, Vol. 12, No. 4, July 2006, pp. 182–190. 
10Horio, B. M., V. Kumar, A. H. DeCicco, J. H. Goldsmith, S. Hasan, J. S. Hebden, V. L. Stouffer, T.R. Thompson, 

Comprehensive Modeling of Air Carrier Behavior: Final Report, NS403T3, McLean, VA: LMI, March 2015. 
11InterVISTAS Consulting, Inc., Estimating Air Travel Demand Elasticities: Final Report, prepared for the International Air 

Transport Association, December 2007. 
12Mavris, D. N., and Garcia, E., Decision Making Support for NASA’s Aeronautics Research Mission Directorate, NAS1-

02117, Contract 6075, March 2007. 


