
Software Validation via Model Animation

Aaron M. Dutle, César A. Muñoz, Anthony J. Narkawicz, and Ricky W. Butler

NASA Langley Research Center, Hampton, Virginia 23681-2199

Abstract. This paper explores a new approach to validating software
implementations that have been produced from formally-verified algo-
rithms. Although visual inspection gives some confidence that the im-
plementations faithfully reflect the formal models, it does not provide
complete assurance that the software is correct. The proposed approach,
which is based on animation of formal specifications, compares the out-
puts computed by the software implementations on a given suite of input
values to the outputs computed by the formal models on the same inputs,
and determines if they are equal up to a given tolerance. The approach is
illustrated on a prototype air traffic management system that computes
simple kinematic trajectories for aircraft. Proofs for the mathematical
models of the system’s algorithms are carried out in the Prototype Ver-
ification System (PVS). The animation tool PVSio is used to evaluate
the formal models on a set of randomly generated test cases. Output val-
ues computed by PVSio are compared against output values computed
by the actual software. This comparison improves the assurance that
the translation from formal models to code is faithful and that, for ex-
ample, floating point errors do not greatly affect correctness and safety
properties.

1 Introduction

The formal verification of software written in widely used programming lan-
guages such as Java and C++ faces many hurdles. A typical approach for devel-
oping safety-critical software in these languages consists of specifying and verify-
ing the critical components of the software as algorithms in a formal verification
system, and then, translating either automatically or manually these formal
models into code. In this approach, visual inspection and peer-review techniques
are used to provide some assurance that the implemented code faithfully reflects
the formal models. However, despite the best efforts, implementation errors can
be accidentally introduced during the translation process.

The difficulty of the typical approach is increased by the large semantic gap
that exists between modern programming languages and the functional specifi-
cation languages often used in formal models. For example, imperative languages
support control structures for iteration that must be cast as recursive functions
in functional specification languages. This is complicated by the fact that itera-
tions in modern languages may produce side effects on an arbitrary number of
variables within their scope. In embedded systems, some of these complications
are avoided by restricting the programming languages to certain constructs.

https://ntrs.nasa.gov/search.jsp?R=20160006380 2019-08-31T03:10:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42696091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

However, for convenience and efficiency reasons, enforcing such restrictions is
not always desirable or even possible. Another difficulty arises from the fact
that modern programming languages utilize floating point arithmetic while for-
mal verification is usually performed over the real numbers. Therefore, bridging
the gap between implementations and their formally verified counterparts is a
challenging problem in the validation and verification of critical software.

Significant value can be obtained by validating the numerical computations of
a program against the actual theoretical values. Many subtle errors in the spec-
ification and implementation of an algorithm can be discovered and repaired by
this process. For example, numerical errors can cause the software to make com-
pletely different decisions from what would be done if the computations were
performed using exact values. The authors have found cases where two different
implementations of a formally-verified conflict resolution algorithm [20], com-
puted resolution maneuvers in opposite directions. This occurred even though
the two implementations, one in Java and the other in C++, were syntactically
almost identical. This undesirable behavior was due to the Java and C++ com-
pilers producing a different order of evaluation of an expression, which resulted
in different floating point results.

This paper explores a practical approach to the validation of software that
implements formally-verified algorithms. The approach, which is called model
animation, is based on animation1 of formal specifications. The technique com-
pares computations performed in the software implementations against those
symbolically evaluated on the corresponding formal models. While model ani-
mation does not provide an absolute guarantee that the software is correct, it
increases the confidence that the formal models are faithfully implemented in
code. The proposed approach is illustrated on a library of kinematic software
used for trajectory generation in conflict detection and resolution algorithms.
The validated library, which implements formally-verified algorithms, is one of
the core components of a prototype software for aircraft separation assurance.
This prototype software is under development at NASA Langley and is being
used for fast time simulations of advanced air traffic management (ATM) con-
cepts.

2 Model Animation

In this paper, the concept of software validation refers to the process of checking
that a software component meets its formal specification. The proposed soft-
ware validation approach assumes the availability of formally-verified models of
the software’s critical algorithms in the specification language of an interactive
theorem prover. It also assumes that the software implementations follow the

1 The term animation used here refers to having a (usually static) specification actually
perform calculation. In this sense, the formal model is brought to life, or animated.
This is not to be confused with a tool such as PVSioWeb [16] which provides a
graphical interface to, and interaction with, a PVS specification.

control and data structures of the formal models2. These two assumptions can
be satisfied by either manual or automatic translation [13]. Furthermore, they
do not have to be satisfied in any order. Indeed, an advantage of the proposed
approach with respect to the correct-by-construction approach [17] is that for-
mal models can be written a posteriori, which is usually done in the validation
of legacy critical code. The model animation technique involves the following
steps.

1. Automate the calculation of exact answers for specific inputs of the for-
mal model. Where exact answers are not possible, e.g. formulas involving
transcendental functions, provide semantic attachments that enable precise
computations on the formal models.

2. Automatically generate input values and compare the symbolic evaluation
of these values in the formal models to those computed by the software
implementation, to determine if are equal up to a specified tolerance.

This approach is illustrated on a core component of the prototype air traffic
management (ATM) software package called Stratway, which is being developed
at NASA Langley [10]. Stratway provides conflict detection and resolution algo-
rithms using kinematic aircraft trajectories. These trajectories are generated in
Stratway from a flight plan described by a sequence of 4D waypoints (aircraft
position and time). The simplest model for flight based on this flight plan would
be to assume that an aircraft follows a straight line trajectory with constant ve-
locity between each successive pairs of waypoints. Of course, an aircraft cannot
actually fly such a model consistently, since all but the most basic flight plans
contain instantaneous changes in velocity and direction. On the other hand,
high-fidelity modeling of how an aircraft would actually fly a given flight plan
is both dependent on the dynamics of the aircraft, and the details of its control
systems. The trajectories generated in Stratway strike a balance between these
two extremes, producing trajectories with continuous velocities that obey the
basic laws of motion. Instantaneous changes in direction are replaced with cir-
cular arcs, and instantaneous changes in ground or vertical speed are replaced
with segments of constant acceleration [11]. The resulting kinematic flight plan
is a sequence of points (called trajectory change points, or TCPs) where each
segment between successive points is either 1) a constant velocity straight line
segment, 2) a constant vertical acceleration segment, 3) a constant ground speed
acceleration segment, or 4) a circular turn segment. This kinematic flight plan
is compact in its representation and also gives a realistic picture of an aircraft
flying a given route.

The functions that compute the position and velocity of an aircraft through-
out each type of segment, as well as functions for determining the amount of time
needed to keep the velocity continuous throughout the flight plan, reside in a
kinematics library used by Stratway. Much of the core functionality of Stratway,

2 While this assumption is not strictly necessary for the approach to be carried out,
this syntactic similarity is one reason for trusting the software implementation. The
behavioral similarity justified by the outlined approach provides the other.

including trajectory generation and conflict detection and resolution algorithms,
depends on the correctness of this library. Hence, strong assurance of the correct-
ness of these basic kinematic functions is desired for a safety-critical application.
On the other hand, Stratway is intended to be used as a convenient tool for sim-
ulation, and for testing new algorithms and concepts for air traffic management.
Because of this, Stratway is available in both Java and C++ software libraries.
The formal verification of the actual code is extremely challenging, which is why
a practical approach to validate the software components of the library against
their formal models was undertaken.

For the ATM software examined, the core algorithms used in the kinematic
library were formally specified and verified in the Prototype Verification System
(PVS) [21]. The formal verification of these algorithms involved several aspects.
Foundational theorems are proved showing that the algorithms used for position
and velocity obey basic Newtonian physics. For example, a function computing
a velocity based on acceleration is proven to be equal to the integral of the
acceleration. Putative theorems are also proven in the theorem prover to show
the algorithms perform their desired task. For instance, for an algorithm designed
to model an aircraft moving from its current altitude to a target altitude, one
such theorem would say that the altitude at termination of the algorithm is the
target altitude.

An assumption of the proposed approach is that the software implementa-
tions and the formal models share similar data and control structures. Ideally,
variable and function names should be preserved. However, this is not always
possible due to different naming conventions in the languages involved. The syn-
tactic similarity allows for a simpler visual comparison of the different versions
of the algorithms, which increases the confidence that they do the same compu-
tation. For the kinematic ATM software, the PVS formal models were manually
translated into Java and C++ code. This paper focuses on the Java code, but
the same approach can be used on the C++ code. Much of the kinematic ATM
software analyzed in this project already existed, and the formalization was done
to give a higher level of assurance of its correctness. For a few of the existing al-
gorithms, the formal specification and putative theorems revealed subtle errors,
which were subsequently corrected.

Algorithms written in functional specification languages, such as PVS, cannot
always be evaluated due to the presence of non-computable operations over real
numbers such as square root and trigonometric functions. This issue is addressed
in the proposed approach by providing semantic attachments [9] that compute
guaranteed approximations of real-valued functions. In the case of PVS, the
animation of functional specifications, including semantic attachments, is sup-
ported by the animation tool PVSio [19]. PVSio provides semantic attachments
for several real number functions that are guaranteed to be correct up to a given
precision. These semantic attachments do not guarantee that all computations
are correct up to that precision, as approximation errors accumulate, but they
significantly improve the quality of numerical outputs over floating point com-
putations.

One important aspect of the proposed approach is to determine an appro-
priate collection of test input values for each algorithm. The following process
is used. First, for each parameter of an algorithm, an appropriate range for the
parameter is determined. For example, an altitude parameter is restricted to be
between 0 and 40,000 feet. Three models for testing are then used. In the first
model, a sequence of inputs are randomly selected to lie within the specified
ranges for the parameters, and the software and PVS output compared, check-
ing to see if they are the same up to a defined tolerance. In the second model,
the range of each parameter is split according to a mesh size. For example, the
altitude parameter might be split into 1000 foot blocks. For an algorithm with N
different inputs, this splits the input space into an N dimensional grid, and the
software and PVS outputs are compared at each intersection point. The third
method starts with the same grid as in method two, but instead of testing at
the grid intersection points, a random point from inside each block that this grid
defines is selected for comparison of the software and PVS outputs. For methods
two and three, variation in the mesh size allows for a tradeoff between the level
of assurance that the software and PVS algorithms agree and the amount of
time and computer resources used.

3 Formalization and Implementation of ATM Kinematic
Library

Among the several algorithms comprising Stratway’s library, the algorithms that
were validated using the proposed technique are those related to the generation
of kinematic trajectories and, in particular, the algorithms that deal with turn
dynamics, vertical acceleration, and ground speed acceleration. Furthermore, in
order to complete the full specification, a host of additional helper algorithms
and datatypes had to be specified. For example, a large collection of basic vector
operations were implemented, including projections between 3D and 2D vectors,
conversions to and from velocity vectors specified in Euclidean coordinates versus
vectors in polar coordinates specified by track angle and ground speed, and many
others.

In addition to specifying the algorithms that are used explicitly in the kine-
matics library, a wide variety of mathematical background must be built into
the theorem prover in order to prove the foundational and putative theorems
that provide assurance that the algorithms are specified correctly. For instance,
in order to prove that a velocity function is the integral of a specified acceler-
ation, the theory of integration must be accessible to the theorem prover. The
NASA PVS Library3 contains much of the required mathematical background
(including integral calculus [6]), but the required mathematics is almost never
fully ready to apply directly. For example, the vertical speed algorithms are
essentially described by piecewise constant acceleration functions. In order to
prove the corresponding foundational theorems, a theory of piecewise defined
functions and their integration was written and employed.

3 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.

For brevity, the remainder of the section focuses on the case of turn dynamics.

3.1 Turn Dynamics in PVS

The kinematics library includes algorithms to compute the trajectory of an air-
craft in a frictionless banked turn, which is turning to leave one leg and join
another leg of a predetermined flight plan. The trajectory of such an aircraft
traces out a circular arc. In PVS, algorithms are specified as strongly-typed
functions. For instance, the following PVS function computes the position and
velocity of a turning aircraft at a given time.

turnOmega(so,vo : Vect3, t : real, ω : real) : [Vect3, Vect3] ≡
IF ω = 0 THEN (so + t · vo,vo)

ELSE LET

v = groundSpeed(vo)/ω,

s = (sox + v · (cos(trk(vo))− cos(tω + trk(vo))),

soy − v · (sin(trk(vo))− sin(tω + trk(vo))),

soz + tvoz),

v = (groundSpeed(vo) · sin(tω + trk(vo)),

groundSpeed(vo) · cos(tω + trk(vo)),

voz) IN

(s,v)

ENDIF .

(1)

The parameters so and vo are vectors in R3 that represent the initial position
and velocity of the aircraft, respectively. The parameter t is the future time at
which the state of the aircraft along its turn is computed. Finally, ω is the angular
velocity. The output of this function is the position and velocity of the aircraft at
the time t along its turn, which is relative to the current time. The function trk

used here computes the track angle of a vector as measured from true north.4

For a banked turn, there is a simple relationship between the angular velocity ω
and the radius R, given by the following equation.

ω = dir · groundSpeed(vo)/R.

The parameter dir is either −1 or 1, depending on whether it is a right turn or
a left turn, respectively.

The following theorem expresses the correctness of the function turnOmega. It
states that for all times t, the distance between the position output of turnOmega
and the center of the turn is given by the turn radius.

4 As typical in air navigation, angles are measured clockwise with respect to true
north.

Theorem 1. For all t ∈ R, so,vo ∈ R3, ω 6= 0 ∈ R, let v = groundSpeed(vo)
ω , w =

so + (v cos(trk(vo)),−v sin(trk(vo)), tvoz), (s,v) = turnOmega(so,vo, t, ω),
then

‖s−w‖ = |v|.

Theorem 1 implicitly states that w is the center of the turn. This theorem has
been formally proved in PVS and its proof depends only on basic properties of
sine and cosine. Figure 1 illustrates the geometric relations involved in Theo-
rem 1.

w

v

s

so

R

tω
vo

R

Fig. 1: Illustration of Theorem 1

3.2 Turn Dynamics in Java

The structural differences between PVS and Java play a large role in the way that
the Java versions of algorithms are implemented. For example, some practices
that are fairly common programming style in Java, such as exiting a program
without returning a value, or returning a default failure value, are not possible
in PVS. Another difference is that PVS functions must be provided all of their
parameters, while a normal Java program may invoke or alter the values of
any number of globally specified variables. For the kinematics library, all of the
algorithms are written in Java as static methods to better reflect the functional
specification style in PVS. Figure 2 illustrates the implementation of the function
turnOmega, specified by Formula (1), in Java. While differences are apparent,
the two versions are closely matched.

4 Model Animation of ATM Kinematic Library

The specification of an algorithm in a theorem prover such as PVS, along with
an appropriate collection of theorems showing that the algorithm produces the
desired output, allows for an extraordinarily high level of assurance that the
algorithm is designed and implemented correctly. The translation of such an al-
gorithm in a syntactically close way from the formal models to code carries along

static Pair<Vect3,Velocity> turnOmega(Vect3 s0, Velocity v0, double t,

double omega) {

if (Util.almost_equals(omega,0))

return new Pair<Vect3,Velocity>(s0.linear(v0,t),v0);

double v = v0.gs()/omega;

double theta = v0.trk();

double xT = s0.x + v*(Math.cos(theta) - Math.cos(omega*t+theta));

double yT = s0.y - v*(Math.sin(theta) - Math.sin(omega*t+theta));

double zT = s0.z + v0.z*t;

Vect3 ns = new Vect3(xT,yT,zT);

Velocity nv = v0.mkTrk(v0.trk()+omega*t);

return new Pair<Vect3,Velocity>(ns,nv);

}

Fig. 2: Java implementation of turnOmega

much of this assurance of correctness. The final step in the proposed validation
process is to evaluate the formal models on a selected collection of test inputs
and to compare the outputs of this evaluation to the outputs computed by the
code.

The reason why this model animation is important is two-fold. First, the
algorithms that are examined invariably rely on simpler functions, which in turn
rely on simpler functions, and so on, down to the basic functions defined in
each respective language. While the syntactic similarity of the formal models
and their implementations suggests that they perform the same computation,
even slight differences in the lower-order functions could introduce significant
differences in behavior. The comparison of the outputs of the two versions of the
algorithm on a wide range of inputs can catch these invisible differences.

The second reason for the comparison of Java and PVS outputs is due to the
inherent differences between how PVS and Java operate on numerical values.
In PVS, like almost every other specification language, numerical operations are
defined over real numbers. In contrast, Java, like almost every other program-
ming language, uses floating point arithmetic. This means that for any algorithm
which manipulates numerical values, calculations in Java may introduce estima-
tions that make the output slightly different than what the calculation would
produce if performed over the real numbers. For any one calculation, the differ-
ence between the expected real number output and the floating point estimate
are generally small (on the order of 10−15), but for an algorithm that performs
hundreds of calculations, the effect of compounding small errors may lead to
noticeable differences.

4.1 Test Generation

As mentioned in Section 2, three methods were chosen for selecting the input
data for testing the output of the PVS specified algorithms versus the Java coun-
terparts. All three methods assume that an appropriate range has been chosen

for each input variable of the function under consideration. If d is the number of
input variables, the allowable range of input values forms a d-dimensional hyper-
rectangle in Rd. For concision, any such rectangle will be referred to simply as
a box.

The first method, which will be referred to as the random method, chooses
a user specified number of points uniformly at random from the defined box.
This method benefits from being simple to implement, and continuable in the
sense that additional testing is unlikely to duplicate points, so further tests can
be easily combined with previous results. The randomness aspect also helps
mitigate the possibility that the outputs of a function match well for whole
numbers or simple fractions, but not for long decimal expansions.

In the second method, referred to as the grid method, the user specifies a
mesh size for each variable in the function being tested. For example, suppose the
range for the variable t is 0 ≤ t ≤ 2, and a mesh size of 0.5 is specified. Then the
range for the variable t is split into the 4 subintervals [0, 0.5], [0.5, 1], [1, 1.5], and
[1.5, 2]. In general, if the range of variable t is [a, b], and the mesh size is εt, then
the number of subintervals created is roughly (b− a)/εt. As should be expected,
if the variable range is large, or the mesh size is small, the number of subintervals
created can be very large. Each endpoint of a subinterval is used as a possible
input for the given variable. For example, there are 5 inputs for the variable t
above. These values are calculated for each variable, and every combination of
the values is used as a test point. Essentially, the original range box is sliced in
each dimension, and the intersection points of the slices are taken as test points
for the function. The major benefit of this method versus the random method is
guaranteed coverage of the input space. The main drawbacks are that the number
of points created can be very large (depending on the number of variables, their
ranges, and mesh sizes), and that the points tested may not represent “average”
points, since they lack the randomness element of the first method.

The third method, called the grid random method, combines these two tech-
niques. It first splits the range of each variable into subintervals using a user
defined mesh size. Note that every possible choice of one such subinterval for
each variable defines a sub box of the original range. This method selects one
point uniformly at random from within each such box. This method benefits
from the guaranteed coverage of the grid method, and the randomness of the
random method, but is the most computationally expensive of the three.

The combination of the three methods above offer a number of advantages, in
that they are simple to describe and implement while also allowing any plausible
input value a non-zero probability of being selected. The grid and grid-random
methods also provide for fairly uniform coverage of the input space. On the other
hand, the methods above do not necessarily satisfy any code coverage criterion,
such as MC/DC [12]. In general, any method that can generate test cases from
either the software implementation or the formal specification can be used to
produce the test inputs. Some of these possibilities are discussed in Section 5.

Once a method for determining function inputs has been selected, the follow-
ing four steps must be performed in order to compare the outputs of a function
under test.

1. Generate the set of test points according to the specified testing method.
2. Determine the output of the Java version of the function on each test point.
3. Determine the output of the PVS version of the function on each test point.
4. Compare the values of the two outputs, to determine if they agree up to

some user-defined tolerance.

Because the Java versions of each function are purposely built for computa-
tion, and the actual inputs from end-users will be processed through Java, the
first two steps are carried out using Java. To do this, a Java program was writ-
ten specifically for each function and testing method. The output of the Java
program is a collection of text files, each containing a list of formatted records in
PVS syntax. Each record consists of a single test point, which lists the floating
point input value of each variable in the function being tested, as well as the
floating point output of the Java version of the function on evaluation at the
test point.

4.2 Model Animation

To determine the output of a PVS function on a particular input, it is necessary
to be able to evaluate the function on concrete input values. In PVS, this can be
done through the ground evaluator [24] assuming that the functions are written
in the executable fragment of PVS. Most functions in the ATM kinematic library
are a priori computable, except that they rely on non-computable real-number
functions such as square root and trigonometric functions. The PVS ground
evaluator does not support evaluation of these kinds of functions.

To evaluate functions that are not supported by the ground evaluator, it is
necessary to use semantic attachments [9]. A semantic attachment is a piece
of code that links an uninterpreted PVS function to another function, possible
another PVS function, for the sake of evaluation. For example, the square root
function cannot be exactly evaluated, since it often returns an irrational number
on a rational input. In a formal specification on the other hand, the precise square
root function can be reasoned about, and properties proven about it theoretically.
If a function in this formal specification is to be evaluated, some computable
method to approximate the square root, the semantic attachment, is provided.
Any time a square root is encountered in the execution of the specification, the
semantic attachment is evaluted instead.

In general, semantic attachments are not safe as there is no guarantee that the
semantic attachments soundly and completely realize the original functions. For
instance, it is impossible to provide safe semantic attachments to irrational real-
valued functions. Indeed, a semantic attachment has no guarantee to have any
relation to the function it is attached to. Hence, in PVS, semantic attachments
are allowed in the animation of specifications, but not in a formal proof.

Since writing semantic attachments is error prone, PVS includes the anima-
tion tool PVSio [19] that provides a predefined library of semantic attachments.
The PVSio library of semantic attachments includes input/output operations,
imperative features, and floating point arithmetic. For this project, PVSio has
been extended with semantic attachments for exact arithmetic definitions of
square root, sine, cosine, and arctangent. Concretely, if f is one of these math-
ematical functions, a semantic attachment f sa is provided that satisfies the
following property for all x ∈ R

|f sa(x)− f(x)| ≤ ε, (2)

where ε is a small positive number provided by the user. With these semantic at-
tachments, all evaluations are then performed using exact arithmetic. However,
it should be noted that Formula (2) does not guarantee that the computational
error is always bounded by ε, as errors accumulate when combined in large nu-
merical expressions. Overall, these semantic attachments provide a much better
numerical precision than floating-point arithmetic and, since arithmetic is al-
ways exact for all the other operators, evaluation of numerical expressions is
independent of the order of evaluation.

For this project, PVSio has also been extended with a library of semantic at-
tachments that automate the process of checking test files in the format discussed
in Section 4.1. This library provides functionality for reading text files, convert-
ing floating point inputs into exact rational number representations, symbolically
evaluating these rational inputs in PVS, comparing the outputs to a given tol-
erance, and printing the results. This library, which is called PVSioChecker, is
now part of the NASA PVS libraries.

4.3 Results

The five functions that were chosen for comparison between the PVS and Java
versions were the following:

From the vertical speed algorithms, the functions tested were

– vsAccelUntil,
– vsAccelUntilWithRampUp,
– vsLevelOut.

From the ground speed algorithms, the function tested was

– gsAccelUntil,

From the turn algorithms, the function tested was

– turnOmega.

Each function was tested using all three test-point selection methods (ran-
dom, grid, and grid random), where the upper and lower bounds for the majority
of the parameters come from Stratway defaults. The only parameters lacking de-
fault values in Stratway are the horizontal position coordinates. For these, upper

and lower bounds were chosen to be 1000 and -1000 nautical miles in each co-
ordinate. Several of the bounds apply to multiple parameters. For instance, the
bounds on ground speed apply to both the initial ground speed of the aircraft,
and to the goal ground speed used in a gsAccelUntil maneuver. The parameters
and corresponding bounds are listed in Table 1.

Table 1: Global bounds for input parameters.

sox, soy altitude ground speed track angle

lower -1000 nmi 500 ft 50 kn 0 deg

upper 1000 nmi 40,000 ft 700 kn 360 deg

vertical speed bank angle acceleration1

lower -5000 ft/min -30 deg 0.1 m/s2

upper 5000 ft/min 30 deg 2 m/s2

1Bounds apply to ground speed and vertical speed acceleration.

The output of each function on a test point is a pair of vectors containing a
calculated position and velocity for some point of the chosen maneuver. Given
a test point, this pair of vectors is computed using both the PVS and the Java
versions of the function, and if the PVS and Java outputs for any single coordi-
nate differ by more than a tolerance value, which is set to 10−8, the test point is
marked as a fail. The precision used for the semantic attachments of real-valued
functions is 10−15. In general, the threshold for tolerance will depend on the par-
ticulars of the software under consideration. For the software considered here,
the input data are positions and velocities of aircraft, which in the use-case are
obtained through the Automatic Dependent Surveillance - Broadcast (ADS-B)
system on each aircraft. At the highest level of fidelity that these systems may be
certified at, the horizontal position is required to be accurate to with 3 meters,
the vertical position accurate to within 45 meters, and the horizontal velocity
accurate to within 0.3 meters/second5 [1]. The minimum acceptable standards
are far less precise. All calculations are performed in these units, and so a toler-
ance of 10−2 would likely be sufficient in this case. The tolerance used, 10−8 was
selected because it reveals the edge of where the Java and PVS implementations
differ. The precision for the semantic attachments was chosen through trial and
error to be as small as possible without significantly increasing the computation
time.

5 There is no requirement for vertical velocity accuracy.

For each function and point selection method, Table 2 lists the number of
records created, the number of fails, and the CPU time of testing.6 Approx-
imately 2 million test points were generated for each function, spread fairly
evenly over the three testing methods. For the random method, the number of
points to be tested is simple to explicitly specify. For the grid and grid random
methods, the number of test points is governed by the step size chosen for each
parameter. Each function has, as input, an initial 3D position and velocity, a
time parameter, and some number of other parameters. Because each function
has a parameter space of at least 8 dimensions, a decrease in step size by half in
each parameter would result in at least 256 times as many records than before
the decrease. Due to this, certain parameters of each function were given prior-
ity for allowing small step size. For instance, for the vertical speed algorithms,
the altitude, vertical velocity, and vertical acceleration parameters were priori-
tized, since the horizontal position and velocity are simply projections in these
algorithms. The step sizes were then calculated that would produce the desired
number of test points.

In all, over 8 million test records were generated, and fewer than 0.01 %
of the records failed with the specified tolerance of 10−8. A few further notes
about the results are in order. First, if the tolerance is increased to 10−6, there
are no failures at all. Second, the function testing whether two numbers are
almost equal compares them in terms of absolute error. If compared in terms of
relative error at the same tolerance, then there are again zero failures. Lastly, it
is notable that almost all of the failures occurred in the function turnOmega. This
is likely due to the function modeling a circular turn, while the other functions
maintain straight-line trajectories. Because of this, the output of turnOmega is
highly sensitive to any error in the calculation of several trigonometric functions.
Nevertheless, a closer examination of the actual failures records for turnOmega

was conducted. The examination revealed that nearly all failures occurred when
the angular velocity parameter is below 0.2 deg/sec, and the time parameter is
over 1000 seconds. This corresponds calculating a point over 16 minutes into a
turn with a very slight bank angle. Such turns are rarely executed in reality,
where the standard turn rate is approximately 3 deg/sec, taking just 2 minutes
for a full 360 degree turn.

5 Related and Future Work

Model animation is a key feature of model-based development tools. For instance,
MathWork’s Simulink7 is a widely-used simulation environment for the analysis
of dynamical systems, which are specified using state charts. In the context of
formal methods, tools like PVSio-web [16], which is also built on top of PVSio,
and PetShop [22], which animate Petri nets, provide powerful features for pro-
totyping and validating formal specifications. In [2], VDM models are animated

6 All testing was performed on a 2014 Macbook Pro with a 2GHz Intel Core i7 pro-
cessor and 8 GB of RAM.

7 http://www.mathworks.com/products/simulink.

Table 2: Testing Results

vsAccelUntil vsAccelUntilWithRampUp

Records Fails CPU time Records Fails CPU time

Rand 1,000,000 0 11.32 hr Rand 960,000 0 11.7 hr

Grid 622 ,080 0 4.11 hr Grid 340,416 0 2.45 hr

G-R 332,659 0 2.88 hr G-R 665,429 0 6.48 hr

totals 1,954,739 0 18.31 hr totals 1,965,845 0 20.63 hr

vsLevelOut gsAccelUntil

Records Fails CPU time Records Fails CPU time

Rand 810,000 0 11.53 hr Rand 330,000 0 12.29 hr

Grid 518,400 0 4.88 hr Grid 315,000 0 11.8 hr

G-R 915,000 8 11.42 hr G-R 340,000 0 11.7 hr

totals 2,243,400 8 27.83 hr totals 985,000 0 35.79 hr

turnOmega Global Totals

Records Fails CPU time Records Fails CPU time

Rand 615,000 225 13.06 hr Rand 3,715,000 225 59.9 hr

Grid 504,000 300 7.89 hr Grid 2,299,896 300 31.13 hr

G-R 436,066 309 8.4 hr G-R 2,689,154 317 40.88 hr

totals 1,555,066 834 29.35 hr totals 8,704,050 842 131.91 hr

and used as oracles on generated test cases to uncover requirement errors. These
works, however, do not aim at validating formal models against their software
implementations as the approach proposed in this paper.

The approach presented in this paper is similar to the one supported by tools
like QuickCheck [8] for Haskell and AutoTest [18] for Eiffel. These tools check
software annotations on a set of randomly generated test cases. Similar tools exist
for theorem provers [3] and other formal methods [26]. The presented approach
also has similarities to the animation of EventB/B models using tools such as
JeB [25] and ProB [14]. Indeed, JeB even provides support for a type of semantic
attachment in the form of “hooks” for the user to supply Java code where a
function in the specification is undefined. These tools, though, are generally
intended for early testing of a specification, and for model checking. To the best
knowledge of the authors, none of these tools attempt to bridge the gap between
code and formal specifications due, for example, to numerical computations.

Concolic test [23] and other test generation techniques [7] combine concrete
and symbolic execution of code to generate test cases that satisfy some coverage
criteria. Generation of test cases is a step of the proposed approach. Hence, the
software validation approach proposed in this paper can directly use these tech-
niques. Indeed, an early reviewer of this paper suggested the following technique.
Generate a test suite by determining a set of inputs that provide guaranteed path
coverage on the formal specification, and another set of inputs that guarantee
coverage on the software implementation. Using the full test suite would guar-
antee similar behavior of the software and its specification on every possible
execution path for a concrete test value.

Future work involves employing the approach to validate more of the code
utilized by the NASA air traffic management software under development, as
well as further employing and developing tools to automate the code generation
from specification. Another line of research is to develop a method for produc-
ing guaranteed output precision, or upper and lower bounds, for the symbolic
evaluation of a function in PVS.

The NASA PVS library also contains a specification of floating point numbers
and operations on them. Algorithms specified in this context can be translated
to code in a more faithful way, and the behavior is likely to be much closer
between the two. The hurdle to this pursuing this line of research is that proving
properties of the functions inside the context of floating point numbers is much
more difficult.

6 Conclusion

Despite recent progress on the formal analysis of floating point programs [4,5,15],
verification of software involving numerical computations is still a challenging
problem. An alternative approach to software verification consists on the de-
velopment of code from formally verified models of safety-critical algorithms.
While this approach does not provide strong guarantees of software correctness,
visual inspection of both the code and the formal models increases the confi-
dence that the software behavior closely reflects its formal specification. This
paper proposes a new approach that automates the validation of software imple-
mentations against their formal models. This approach, which is based on model
animation, compares the output of algorithms implemented in a programming
language to the results obtained from the symbolic evaluation of formal models
enriched with semantic attachments. These semantic attachments enable sym-
bolic evaluation of even irrational, real-valued functions, via precise numerical
computations. The proposed approach is illustrated on an air traffic manage-
ment system currently used at NASA for conducting research on advanced air
traffic management concepts.

References

1. Federal Aviation Administration. Airworthiness approval of automatic dependent
surveillance-broadcast (ads-b) out systems. Advisory Circular AC 20-165A, FAA,

Nov 2012.
2. Bernhard K Aichernig, Andreas Gerstinger, and Robert Aster. Formal specification

techniques as a catalyst in validation. In High Assurance Systems Engineering,
2000, Fifth IEEE International Symposim on. HASE 2000, pages 203–206. IEEE,
2000.

3. Stefan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL. In J. Cuel-
lar and Z. Liu, editors, Software Engineering and Formal Methods (SEFM 2004),
pages 230–239. IEEE Computer Society, 2004.

4. Sylvie Boldo. Deductive Formal Verification: How To Make Your Floating-Point
Programs Behave. Thèse d’habilitation, Université Paris-Sud, October 2014.

5. Sylvie Boldo and Claude Marché. Formal Verification of Numerical Programs: from
C Annotated Programs to Mechanical Proofs. Mathematics in Computer Science,
5:377–393, 2011.

6. Ricky Butler. Formalization of the integral calculus in the PVS theorem prover.
Journal of Formalized Reasoning, 2(1), 2009.

7. Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Păsăreanu,
Koushik Sen, Nikolai Tillmann, and Willem Visser. Symbolic execution for soft-
ware testing in practice: Preliminary assessment. In Proceedings of the 33rd In-
ternational Conference on Software Engineering, ICSE ’11, pages 1066–1071, New
York, NY, USA, 2011. ACM.

8. Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random test-
ing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’00, pages 268–279, New York, NY,
USA, 2000. ACM.

9. Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Dave Stringer-
Calvert. Evaluating, testing, and animating PVS specifications. Technical report,
Computer Science Laboratory, SRI International, Menlo Park, CA, March 2001.

10. George Hagen, Ricky Butler, and Jeffrey Maddalon. Stratway: A modular approach
to strategic conflict resolution. In Preceedings of 11th AIAA Aviation Technology,
Integration, and Operations (ATIO) Conference, Virgina Beach, VA, September
2011.

11. George E. Hagen and Ricky W Butler. Towards a formal semantics of flight plans
and trajectories. Technical Memorandum NASA/TM-2014-218862, NASA, Lang-
ley Research Center, Hampton VA 23681-2199, USA, Dec 2014.

12. Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson. A
practical tutorial on modified condition/decision coverage. Technical Memorandum
NASA/TM-2001-210876, NASA, Langley Research Center, Hampton VA 23681-
2199, USA, May 2001.

13. Leonard Lensink, Sjaak Smetsers, and Marko van Eekelen. Generating verifiable
Java code from verified PVS specifications. In Alwyn E. Goodloe and Suzette
Person, editors, NASA Formal Methods, volume 7226 of Lecture Notes in Computer
Science, pages 310–325. Springer Berlin Heidelberg, 2012.

14. Michael Leuschel and Michael Butler. Prob: A model checker for b. In FME 2003:
FORMAL METHODS, LNCS 2805, pages 855–874. Springer-Verlag, 2003.

15. Claude Marché. Verification of the functional behavior of a floating-point program:
an industrial case study. Science of Computer Programming, 96(3):279–296, March
2014.

16. Paolo Masci, Patrick Oladimeji, Paul Curzon, and Harold Thimbleby. Tool demo:
Using PVSio-web to demonstrate software issues in medical user interfaces. In 4th
International Symposium on Foundations of Healthcare Information Engineering
and Systems (FHIES2014), 2014.

17. Bertrand Meyer. Applying “Design by Contract”. Computer, 25(10):40–51, Octo-
ber 1992.

18. Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, and Emmanuel
Stapf. Programs that test themselves. Computer, 42(9):46–55, Sept 2009.

19. César Muñoz. Rapid prototyping in PVS. Contractor Report NASA/CR-2003-
212418, NASA, Langley Research Center, Hampton VA 23681-2199, USA, May
2003.

20. Anthony Narkawicz and César Muñoz. State-based implicit coordination and appli-
cations. Technical Publication NASA/TP-2011-217067, NASA, Langley Research
Center, Hampton VA 23681-2199, USA, March 2011.

21. Sam Owre, John Rushby, and Natarajan Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, Proceeding of the 11th International Conference
on Automated Deductioncade, volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752. Springer, June 1992.

22. Philippe Palanque, Jean-François Ladry, David Navarre, and Eric Barboni. High-
fidelity prototyping of interactive systems can be formal too. In Julie A. Jacko,
editor, Human-Computer Interaction. New Trends, volume 5610 of Lecture Notes
in Computer Science, pages 667–676. Springer Berlin Heidelberg, 2009.

23. Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine
for C. In Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005.
ACM.

24. Natarajan Shankar. Efficiently executing PVS. Technical report, Project report,
ComputerScience Laboratory, SRI International, Menlo Park, 1999.

25. Faqing Yang, Jean-Pierre Jacquot, and Jeanine Souquières. Jeb: Safe simulation of
event-b models in javascript. In Software Engineering Conference (APSEC), 2013
20th Asia-Pacific, volume 1, pages 571–576, Dec 2013.

26. Wada Yusuke and Kusakabe Shigeru. Performance evaluation of a testing frame-
work using quickcheck and hadoop. IPSJ Journal, 53(2):7p, feb 2012.

