Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites Part II: Finite Element Model

 H. Alicia Kim¹, Robert Hardie², Vesselin Yamakov³, Cheol Park⁴
¹Associate Professor, UC San Diego, CA, USA
²University of Bath, UK
³National Institute of Aerospace, VA, USA
⁴NASA Langley Research Center, VA, USA

Background: Boron Nitride Nanotube (BNNT)

- Our interest is in piezoelectric properties.
- Nitrogen atoms are more electronegative than boron atoms.
- Polarisation is cancelled out due to chiral symmetry.
- Strain induces polarisation field.
- Polarisation creates electric charge across a nanotube.
- Inherently multiscale

Research Aim

To investigate a suitable fidelity of a Representative Volume Element (RVE) Finite Element Model (FEM) of multiple Boron Nitride NanoTubes (BNNTs) in a matrix

2D FE Model

- Uniform distribution
- Random distribution
- Volume fraction

Amount of stiff material (BNNT) Unit cell

- 2D area, 3D solid cylinder, 3D hollow tubes
- Reference Analytical solution for finite length cylindrical inclusions at many orientations by Tandon and Weng (1976)

UC San Diego Jacobs School of Engineering

Material Properties

Property	BNNT	Matrix Polymer
Young's modulus, E (GPa)	900	1.8
Poison's ratio	0.3	0.39
Axial piezoelectric constant, e (C/m ²)	0.2	-
Dielectric constant, <i>b</i> (pF/m)	159.3	79.6

Jafari et al. J Compos Mater 2013;47(16):1987-2003

Elasticity Constant for 2D Models

Elasticity Constant for 2D Models

3D FE Model

 Coupled field tetrahedral elements UC San Diego

Jacobs School of Engineering

- BNNTs modelled as:
 - 1) Solid cylinders
 - 2) Hollow tubes

$$\left\{ \begin{array}{c} \sigma_{1} \\ \sigma_{2} \\ \sigma_{12} \\ D_{1} \\ D_{2} \end{array} \right\} = \left[\begin{array}{cccc} C_{11}^{*} & C_{12}^{*} & 0 & -e_{11}^{*} & -e_{11}^{*} \\ C_{21}^{*} & C_{22}^{*} & 0 & -e_{11}^{*} & -e_{11}^{*} \\ 0 & 0 & C_{66}^{*} & -e_{11}^{*} & -e_{11}^{*} \\ & & b_{11}^{*} & 0 \\ & & 0 & b_{22}^{*} \end{array} \right] \left\{ \begin{array}{c} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{12} \\ \varepsilon_{12} \\ E_{1} \\ E_{2} \end{array} \right\}$$

Young's Modulus

Elasticity Constant, C₁₁

Elasticity Constant, C₁₂

Elasticity Constant, C₂₂

Elasticity Constant, C₆₆

Piezoelectric Constant

Conclusion

- 2D uniform distribution model can offer a first order understanding of the effective elastic and piezoelectric properties
- Volume fraction based on filled solids was most appropriate for 2D model
- Differences between 3D models with solid cylinders and with hollow tubes insignificant
- C_{11} and e_{11} most sensitive to the volume fraction