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ABSTRACT 
Health and usage monitoring systems (HUMS) use vibration-based Condition Indicators (CI) to assess the health of 
helicopter powertrain components. A fault is detected when a CI exceeds its threshold value. The effectiveness of 
fault detection can be judged on the basis of assessing the condition of actual components from fleet aircraft. The 
Bell 412 HUMS-equipped helicopter is chosen for such an evaluation. A sample of 20 aircraft included 12 aircraft 
with confirmed transmission and gearbox faults (detected by CIs) and eight aircraft with no known faults. The 
associated CI data is classified into “healthy” and “faulted” populations based on actual condition and these 
populations are compared against their CI thresholds to quantify the probability of false alarm and the probability of 
missed detection. Receiver Operator Characteristic analysis is used to optimize thresholds. Based on the results of 
the analysis, shortcomings in the classification method are identified for slow-moving CI trends. Recommendations 
for improving classification using time-dependent receiver-operator characteristic methods are put forth. Finally, 
lessons learned regarding OEM-operator communication are presented. 

INTRODUCTION 
The integrity of a helicopter’s powertrain is vital to the 
helicopter’s mission and safety. Today’s helicopters have 
been equipped with HUMS (Health and Usage Monitoring 
Systems) to detect damage in dynamic components. These 
systems consist of a main computer for data processing as 
well as sensors for the acquisition of in-flight data as shown 
in Figure 1. Sensors are typically installed on the airframe, 
gear boxes, and drive train components to identify any 
changes in vibration patterns over the course of flight 
operation [1]. The health of components is determined from 
vibration signatures that form the basis of component 
Condition Indicators (CIs). The CIs identify the presence of 
fault patterns that correspond to specific damage types on a 
component [2].  

Condition Indicators 
Dozens of CIs are used in HUMS. Table 1 lists example CIs 
and cites references that detail the associated algorithms. 
Shafts and gears produce vibration signals that repeat with 
each revolution of the component. Time synchronous 
averaging, or cycle averaging, divides the vibration signal 
into single revolution segments to produce a single 
“average” cycle. The result emphasizes periodic vibration 
trends and averages out noise [3]. Many shaft and gear CIs 
use time synchronous average data. The DA1 CI, in Table 1, 
calculates the root mean square (RMS) of the time 
synchronous average signal [4]. Other CIs convert the time 
synchronous average data into the frequency domain and 
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extract signal amplitudes at particular frequencies of interest. 
These frequencies may be shaft speed (1/rev), gear mesh 
(GM) and its first harmonic (GM x 2), or sidebands adjacent 
to gear mesh tones (SI) [5,6]. Bearing vibration CIs often 
use asynchronous vibration data. Another example is the 
“High Frequency” bearing CI, which is the RMS of high-
pass filtered asynchronous data [7].  

HUMS calculate many CIs for each monitored 
component. The HUMS then uses CI thresholds to diagnose 
faults. Thresholds are based on past experience and 
engineering judgment. As shown in Figure 2, when a CI 
value exceeds the pre-defined threshold, damage is likely to 
be present and the HUMS will alert ground personnel to the 
detected fault.  

Table 1. Example Condition Indicators 
Name Description References 

DA1 Diagnostic Algorithm 1 (RMS) [4] 
1/Rev Amplitude at Shaft 1/revolution frequency [5] 
GM Amplitude at Gear Mesh Frequency [5] 
2 x GM Amplitude at 2 x Gear Mesh Frequency [5] 
SI Sideband Index [6] 
HighFreq “High Frequency” Bearing CI [5],[7] 

Figure 1. HUMS Generation of CI Values 
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Figure 2. Detected Component Condition over Time 

Based on CI 

Measuring CI Effectiveness 
The effectiveness of CIs in detecting damage must 
ultimately be judged by results from fleet operations. “Truth 
data” comes from tear down analysis (TDA) of removed 
components. As shown in Figure 3, a CI is effective is when 
its detected condition matches the TDA actual condition 
(either a true healthy detection or a true fault detection). A 
CI is ineffective when its detected condition contradicts the 
actual condition. This “ineffectivity” takes two forms—
either the CI detects a fault that cannot be confirmed by 
TDA (false alarm), or it does not detect a fault, yet a fault is 
confirmed by TDA (missed detection). These effectiveness 
measures may drive changes in CI thresholds or CI 
algorithms to improve HUMS performance. Reducing a CI 
threshold will reduce missed detections, but doing so may 
also increase false alarms. Previous investigations assessed 
drive train CI performance based on faulted components in 
military aircraft [6,8,9,10,11]. 

SCOPE 
The current study applies CI performance analysis to 

commercial aircraft HUMS data. Many commercial 
operators use HUMS data as the basis for taking 
maintenance actions [12]. CI algorithms and thresholds can 
therefore strongly impact maintenance cost, especially when 
operating rules and industry best practices [13] require 

 inspection or removal of drive system components based on 
HUMS data alone (in an effort to enhance safety).  

For over 10 years, Health & Usage Monitoring Systems 
(HUMS) have been fielded on Bell 412EP aircraft [14]. The 
412EP HUMS system is illustrated in Figure 4, with sensor 
locations shown around the airframe. A Honeywell 1209 
Modern Signal Processing Unit (MSPU) is used for data 
acquisition and processing of sensor data. This is the same 
unit used in previous military aircraft HUMS performance 
studies. With nearly 150 HUMS-equipped 412EP aircraft in 
service, a good opportunity exists to explore CI effectiveness 
in detecting faulted components on a commercial aircraft. 
While many drive train components are monitored by the 
HUMS, only the CIs related to transmissions/gearboxes are 
discussed in this paper. 

APPROACH 
To restate the objective of this exercise, an evaluation of 

CIs from 20 HUMS equipped commercial Bell 412EP 
helicopters is being performed. The goal is to determine the 
efficacy of the CIs and the associated CI thresholds in 
detecting a fault (as confirmed by a Tear Down Assessment 
of the identified faulty component). The approach used to 
assess the CI performance includes: 

• Identifying the CI(s) that triggered gearbox inspection 
or removal and gathering this CI data. 

• Determining the times during which the gearbox was 
actually healthy or faulted (based on TDA findings) 
and to categorize the CI data into healthy and faulted 
CI data populations based on those time periods. 

• Assessing how often the CI detected condition 
matched the actual condition (actually healthy or 
actually faulted) through statistical analysis of the 
healthy and faulted populations.  

 
Figure 3. Measuring CI Performance through Comparison against Truth Data  
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Figure 4. Bell 412 HUMS Sensor Locations 

 
As a secondary objective, this exercise uses the CI/TDA 

assessment to adjust CI thresholds to improve fault detection 
performance. Although CI thresholds are established for the 
412EP HUMS aircraft, the TDA data provide the 
opportunity to determine whether those CI thresholds are 
reasonable. An optimal CI threshold value will provide the 
operator with sufficient time to perform a maintenance 
action, but at the same time, avoid false alarms that would 
call for premature maintenance.  

Data Sample 
With over 150 HUMS equipped Bell 412EP helicopters in 
service (some for over 10 years), only 12 aircraft 
encountered a HUMS detected fault in their gear boxes. To 
conduct the evaluation of CIs these 12 fleet aircraft were 
assessed along with 8 fleet aircraft that had no detected 
faults. The population of 20 HUMS equipped 412EPs used 
in this assessment is illustrated in Figure 5. The eight aircraft 
shown in green had no detected faults and served as “control 
specimens.” These included aircraft with known good 
condition from TDAs as well as some randomly selected 
aircraft from the population of all aircraft with no known 
faults. CIs in 12 other aircraft (shown in red) indicated a 
HUMS-detected fault that was confirmed by TDA of the 
transmission or gearbox. The Tear Down Assessments 
confirmed the state of wear/damage on internal components. 
For the 12 aircraft with faults, CIs detected the faults and 
triggered gearbox inspections and removals. In one case, a 
gearbox chip indication was also present at the same time as 
the CI detection. 

 
Figure 5. From the fleet of over 150 HUMS-Equipped 

Bell 412EP helicopters, only 12 aircraft encountered a 
gear box fault in the course of 10-years of fleet data 
collection. The Sample Population analyzed these 12 
aircraft and 8 others. 

For the 20 selected fleet aircraft, the HUMS data 
generated 20,000 to 35,000 observations per CI over the 
years of aircraft flying. Since not every CI is calculated for 
every vibration data sample, the number of observations 
varies between CIs.  

Reclassifying Data based on TDA 
HUMS use thresholds to classify CI data as healthy or 
faulted. To judge the effectiveness of a threshold, a 
comparison against an independent standard (truth data) is 
necessary. In this study, the TDA provides insight into the 
actual condition of the component. To assess the times 
during which a transmission is “actually healthy” or 
“actually faulted,” a timeline is established in Figure 6 that 
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represents the gearbox fleet history. Here, we identify three 
points in the life of the gearbox. Starting with the upward 
trend in the CI at some earlier time (recorded by the 
HUMS), a TDA occurs in the middle of Figure 6 soon after 
the CI threshold is exceeded. As denoted in Figure 6, the 
gearbox is removed and repaired/replaced. The TDA date 
and gearbox replacement date are known from the aircraft 
maintenance records.  

Using the three identified points in time, the actual 
condition of the transmission is assessed as shown in  
Figure 7. The time before the CI trend change (left hand side 
of Figure 7) is categorized as healthy. Also, the time after 
the transmission is repaired or replaced (right hand side of 
Figure 7) is categorized as healthy. During the intermediate 
time between CI trend change and gearbox removal (center 
of Figure 7), the component is in transition from healthy to 
faulted states. 

Since many mechanical faults develop over a period of 
time, a binary classification of “healthy” or “faulted” is an 
oversimplification that does not recognize the continuous 
nature of fault progression. A reasonable estimate of the 
“fault initiation” (the point of transition from healthy to 
faulted) is necessary to quantify the CI performance. The 
criterion that establishes “fault initiation” can significantly 
impact the results of the analysis that follows. Engineering 
judgment led to the classification method shown in Figure 8. 
For the period of time identified as “transition,” a number of 
CI observations (N) are made (as indicated in the lower 
center of Figure 8). Since HUMS observations are taken on a 
schedule during certain flight regimes, the number of 
observations is proportional to the aircraft operating time. 
Some of the time in the transition period is categorized as 
“healthy” (the first 2/3 of the N observations) and some as 
“faulted” (the last 1/3 of the N observations). This “2/3-1/3” 
method was applied in cases where the CI data exhibited an 
increasing trend over time (rather than a sudden step 
change). 

This method of classification is applied to each of the 20 
aircraft’s CI data. For the eight aircraft with no known 
faults, all CI data were assumed to be healthy as shown to 
the left of Figure 9. For 12 aircraft with TDA-confirmed 
faults (right side of the Figure 9), the classification of the 
actual condition allowed the CI data to be separated into 
both healthy and faulted populations. In this manner, CI data 
from all study aircraft were accumulated into separate 
healthy populations and faulted populations. 

 

 
Figure 6. Event Timeline and CI Data Time History 

 
Figure 7. Initial Classification of Actual Condition of 

Transmission Based on Known Events 

 
Figure 8. Final Classification of Actual Condition of 

Transmission 
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Figure 9. CI Data Separation into Healthy and Faulted Populations. 
Only faulted data are accumulated in the “Faulted CI” populations. 

 
Figure 10. Analysis of Healthy and Fault Populations to Determine CI Performance  

Further Separation and Analysis 
The next step of the analysis quantifies the CI measures of 
effectiveness. The general approach used to determine these 
measures is shown in Figure 10 (which applies the concepts 
from Figure 3). Starting from the upper portion of Figure 10, 
the healthy and faulted populations of CI data (left and right 
columns respectively) are each separated into two groups 
based on the detected condition (on the left hand side of 
Figure 10). In the middle row, CI data that are above the CI 
threshold (detected fault) in each population are identified. 
CI data that are below the CI threshold (detected healthy) are 
in the bottom row. For the healthy population, any CI data 
that falls above the threshold is a false alarm (upper left 
quadrant of the matrix). For the faulted population, any CI 
data that falls below the threshold is a missed fault detection 
(lower right quadrant). The other two cases (upper right and 
lower left quadrants) represent correct classification.  

The specific approach used to determine the measure of 
CI effectiveness is shown in Figure 11. First, a distribution 
fit is made for each of the CI data populations as shown in 
the top of Figure 11. Moving down Figure 11, the 
distribution properties are used to determine the probability 
of a missed detection and the probability of a false alarm 
based on the current (normalized) CI threshold of 1.0. 

To evaluate the impact of changing a CI threshold, a 
receiver-operator characteristic (ROC) curve [11] was 
developed for some of the helicopter components. Statistical 
distributions of the healthy and faulted CI data are used to 
generate ROC curves. ROC curves represent a “sweep” 
through a wide range of potential threshold values and show 
missed detection and false alarm probabilities at each value. 
Youden’s J statistic [15, 16] was used to determine the 
optimum threshold value to maximize the true positive rate 
and minimize the false positive rate. This statistic will be 
discussed further in the Application section of the paper. 
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Figure 11. Analysis of Healthy and Faulted 
Populations to Determine CI Performance 

 
 
 

 
Figure 12. Bell 412 Transmission and Gearbox Locations 

and Faults Found in Sample Population 

 
 

RESULTS 
The transmission and gearboxes from the 412EP study 

are identified with their associated fault types in Figure 12. 
For the 12 aircraft with faults, the TDAs found 9 fault types. 
Of these 9 fault types, one type (the intermediate gearbox 
output bearing fault) occurred in four aircraft. This fault is 
identified as item 3 in Figure 9. All of the remaining 8 fault 
types were found in separate aircraft. Of the 9 fault types, 
three were associated with bearings, three were associated 
with gears, and three were associated with couplings and 
case structure (labeled “other” in Figure 12). While all gear 
boxes have metallic “chip” detectors, there was only one 
instance where an elevated CI was associated with an actual 
chip detection. This occurred in the 90 degree (tail rotor) 
gearbox (item 4) which had a chip indication (and elevated 
CI value) at the time of removal. All other faults were 
discovered through CI detection alone.  
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The statistical analysis results for each fault type are 
listed in Table 2. The data are organized by gearbox and 
then by faulted component within the gearbox—including 
the number of occurrences of the fault. The CI algorithm that 
led to detection of the fault is also listed. For one fault type 
(the main transmission tail rotor output gear), two CIs are 
listed since both CIs showed a significant increase at the 
time prior to component removal. The distribution fits for 
healthy and faulted data are listed along with the number of 
CI observations used to establish the fit. Finally, the 
measures of effectiveness—probability of missed detection 

and false alarm—are enumerated for the current CI threshold 
value (1.0). 

The process for calculating the CI effectiveness (POMD 
and POFA) in Table 2 is provided by taking the example of 
the intermediate gearbox output quill bearing fault (Fault 8 in 
Table 2). Figure 13(a) and (b) show, respectively, the actual 
classified healthy and faulted data populations as well as the 
statistical distributions used to assess the CI performance. 
These distributions are compared to the CI threshold in  
Figure 13(c) to illustrate the performance metrics. 

 
 
 

Table 2. CI Performance Summary (for Existing Thresholds). 

 
* Note: Due to rounding, values less than 0.05% are listed as 0.0%. 
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(a) Healthy Population Distribution Fit (b) Faulted Population Distribution Fit 

 
(c) Statistical Performance of CI for Current Threshold (1.0) 

Figure 13. Intermediate Gearbox Output Bearing – High Frequency CI Characterization 

 
The results of Table 2 were mixed. With the 

methodology described, the likelihood of a missed detection 
appears far greater than the likelihood of a false alarm. In 
fact, all CIs appear to have a very good (low likelihood) 
false alarm characteristics. For the same methodology, the 
probability of missed detection was not as good. Four of the 
fault types were diagnosed with excellent results for POMD. 
Satisfactory POMD/POFD results are highlighted in green in 
Table 2. There was no distinct pattern among CI algorithms 
or type of component which could explain the difference in 
performance; each algorithm and component type (gear, 
bearing, other) had both good and bad performers. Even in 
the cases where the CI performance appears poor, all faults 
were in-fact discovered by the HUMS CI data. Since the 
statistical results appear anomalous and contradictory to the 
fleet HUMS data, additional investigation is necessary. 

A second look at the low correlation CIs revealed that 
each fault developed steadily over a long period of time (in 
some cases, several months). A slow-moving trend put these 
faults at a disadvantage in the analysis. Referring back to the 
CI data categorization from Figure 8, the “2/3-1/3” 

categorization method is applied to a slow-moving CI trend in 
Figure 14. The CI threshold is shown by the horizontal orange 
line. The right side of the CI history shows that the customer 
removed the transmission shortly after the CI exceeded its 
threshold. From the point of the CI trend change, Figure 14 
shows the application of the previously discussed “2/3-1/3” 
categorization method. All of the CI data above the red “fault” 
is categorized as faulted. The distribution of the faulted 
population data are shown to the right of the CI plot (Figure 
14). Since the CI was “slow-moving,” a large portion of the 
observations were classified as faulted even though the 
observations lie below the CI threshold; this portion of the 
distribution is highlighted in blue. The portion of the total 
faulted population that falls in the blue region represents the 
probability of missed detections. In this case, this probability 
is much more than 50% (poor performance). Therefore, while 
the fault in this example was detected using the existing 
threshold, the categorization method used in this study yielded 
poor statistical performance. The Lessons Learned section 
will discuss potential alternative categorization methods 
which may more accurately assess performance for these 
slow-moving cases.  
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Figure 14. Slow Moving CI Trends Perform Poorly Using Proposed Classification Method 

APPLICATION 
The goal of CI performance analysis is to balance the 

likelihood of failing to catch a pending failure against a false 
detection, while not prematurely removing faulted 
components. The simplest adjustment is a change in the CI 
threshold. In the case of a faster-moving CI trend (which 
showed good performance using the approach in this study), 
it may be possible to optimize the threshold to improve the 
probability of detection of faults while maintaining a 
reasonably low probability of failure. To evaluate changes in 
threshold, a receiver operator characteristic (ROC) curve for 
the intermediate gearbox output quill bearing fault is shown 
in Figure 15. Here, the false positive rate is plotted against 
the true positive rate (which is the complement to missed 
detection). A change in threshold affects both true positive 
and false positive rates. A high threshold will decrease false 
positives, but it will also reduce true positive rate (and thus 
increase missed detections). Conversely, a low threshold will 
maximize the true positive rate (and minimize missed 
detections), but it will also lead to a higher false positive 
rate. The dashed line in Figure 15 represents “random 
chance”—equal false positive and true positive rates 
(equivalent to a coin toss; the worst case). A perfect 
classifier would be a point in the upper left corner with 1.0 
true positive rate and no false positives. In reality, every CI 
will have an ROC curve between the two extremes. To 
quantify performance, Youden [15] proposed the J 
statistic—a measure of the vertical distance between the 
ROC curve and the “random chance” line. This 
measurement can be used to find the point on the ROC curve 
that is furthest from random chance. This is the point with 
the highest diagnostic effectiveness.  

Figure 16 selects the region of interest from the ROC 
curve in Figure 15. The highlighted (circled) point on the left 
of Figure 16 shows the performance for the current 
normalized CI threshold of 1.0 (which was listed as Fault 8 
in Table 2). As shown in Figure 16, the probability of missed  
 

 
Figure 15. Receiver-Operator Characteristic (ROC) 

Curve for Intermediate Gearbox Fault (Fault 8 in Table 2) 

detection is 4.3% and the probability of False alarm is 0.9% 
for the current CI threshold. The highlighted (circled) point 
on the right represents the CI performance at a lowered 
threshold of 0.85 (instead of 1.0). This point has the highest 
diagnostic effectiveness based on Youden’s J statistic and 
yields a balanced 1.9% probability of missed detection and 
the same probability of false alarm (1.9%).  

It is tempting to apply the same (reduced threshold) 
methodology to the other CIs with poor POMA/POFA 
balance to yield better statistical results. However, doing so 
may not ultimately improve CI performance. Due to rules in 
place for commercial operators, changing the CI threshold 
value will necessarily change the point at which a 
component is removed. Considering the case previously 
discussed in Figure 14, it would appear (on the surface) that 
a simple threshold reduction indicated in Figure 17 by 
moving from the solid horizontal line down to the dashed 
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horizontal line, would significantly improve CI performance 
by moving the majority of the faulted population above the 
threshold. While doing so would greatly reduce the 
probability of a missed detection, a commercial operator 
would likely face earlier maintenance actions and higher 
DOC. As shown in Figure 18, the likely outcome of a lower 
CI threshold is simply earlier part removal. The results of 
applying the lower threshold produce a new classification of 

healthy/faulted that looks very similar to the baseline case 
before the threshold was changed. While the amount of data 
between fault initiation and component removal has been 
reduced, a similarly large percentage of the “faulted” 
population is still below the new threshold. This would again 
lead to a high probability of missed detection—which 
amounts to poor balance between POFA and POMA.  

 

 
Figure 16. Region of Interest from Figure 15 Showing Significant Improvement in 

Missed Detections by optimizing the CI fault detection threshold  

 
Figure 17. Idealized Performance Improvement due to Threshold Change 
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Figure 18. Actual Threshold Change Impact Yielding Little Change in Performance 

 
 

LESSONS LEARNED 
The primary lesson learned in this study is that the 
classification method (2/3-1/3 healthy/faulty ratio identifier 
and CI threshold setting) for creating the healthy and faulted 
populations has mixed results. While all of the CIs were 
successful in detecting the faults at the point the components 
were removed, faults that trended slowly towards their CI 
threshold performed poorly in the statistical performance of 
POFA/POMA. This observation leads to the conclusion that 
a new classification method for taking account of CI changes 
with time may be necessary to better represent slow growing 
faults. Time-dependent receiver operator characteristic 
analysis [17] may be a means to achieve this end and is 
recommended for future work.  

Not all of the lessons learned in this study were 
technical. The process of gathering the data for this study 
also yielded several lessons learned for data-sharing and 
communication between the helicopter OEM and helicopter 
operators. In all of the faults considered in this study, the 
tear-down assessments were performed either by the aircraft 
operator or by a third-party MRO provider – not by the 
OEM. Most operators understand the value of uploading 
their HUMS data to the OEM so that Product Support 
Engineers (PSE) can review the data and provide 
recommendations. The value of providing detailed tear-
down assessments to the OEM is less apparent to the 
customer. Yet, the results have longer-term benefits to the 
customer because the TDA information can be used to 
establish improved HUMS indications and better component 
replacement strategies. Additional education for the operator 
community as to the value of communicating the actual part 
condition is recommended to promote HUMS improvement. 

CONCLUSIONS 
A statistical analysis of fleet data was used to quantify 
diagnostic effectiveness of HUMS condition indicators. In 

the case of the Bell 412EP study group, several fault types 
and their associated CIs had good diagnostic performance 
and the data could be used to determine CI threshold 
changes that may improve the statistical ability to avoid false 
alarms or missed fault detections. For slow-growth fault 
types, the selected improvement methodology did not lead to 
improved diagnostic performance due to the classification 
method. Additional work in a methodology that recognizes 
slow growth faults is needed to better represent the 
performance of such CIs. Further outreach to HUMS 
equipped aircraft operators must be emphasized. The 
importance of sharing operator maintenance data (including 
tear-down assessments) with the OEM is strongly 
recommended to improve future HUMS data analysis.  
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