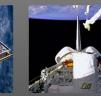
https://ntrs.nasa.gov/search.jsp?R=20160006474 2019-08-31T03:12:36+00:00Z

Modular Open System **Architecture for Reducing Contamination Risk in the Space and Missile Defense Supply Chain**

August 11, 2015

Elaine Seasly

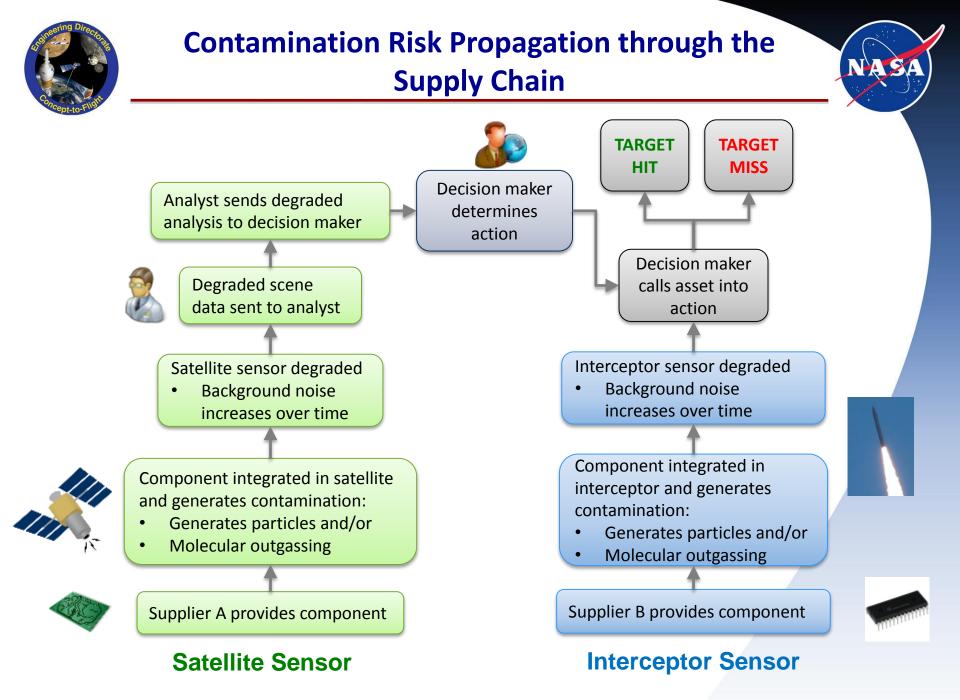

Contamination Control & Planetary Protection Lead NASA Langley Research Center

757.864.2173 office 520,609,0889 cell elaine.e.seasly@nasa.gov

http://engineering.larc.nasa.gov/

Contamination: A Contributor to Lifetime Hardware Degradation

- NASA
- Physical assets are made up of components sourced through a supply chain
- Components can degrade over time because of contamination
 - Particles generated from material aging, wear, flaking, etc.
 - Molecular species outgassing from organic materials and depositing films on surfaces
- Contamination degrades sensor performance, both for satellites and missile interceptors



Credit: NASA/Goddard/Chris Gunn Particulate Contamination on a Focal Plane Array

Credit: NASA/Langley/Elaine Seasly Molecular Contamination Film

Because these systems are interconnected, the contamination issue is further compounded for the decision maker that relies on both systems

- "You don't buy enough units to justify me meeting your stringent cleanliness requirements"
- "We chose materials from the NASA outgassing website and built the hardware in a cleanroom, so we are fine"
- "We thermal vacuum baked the hardware for over 1000 hours just to reduce the outgassing"
- "We have a blind cavity in the hardware that we can't clean"
- "There are no low-outgassing materials that we can use, so just write a waiver"
 - "The only qualified supplier for this material just quit making it"

- Improvement in cost or performance may be based upon new materials and processes with unknown contamination effects
- Suppliers within the supply chain need to understand the total potential system impact of their design and manufacturing choices on the overall integrated system
 - Everything from material selection to manufacturing processes must be considered
 - Parts get integrated into a system that can't be cleaned at the system level
 - The higher the level of the assembly, the higher the risk of contamination on performance

"Build a clean system, rather than clean a built system"

Goal is to find contamination and mitigate it earlier in the supply chain

Component or subassembly is a module that has been designed, processed, and packaged to reduce risk

- Can we bake it and seal it early?
- Can we make it easier to inspect and clean?
- Can we choose different materials and assembly techniques?

Ideal: Parts are received from suppliers cleaned and sealed

- Open interfaces enable the next higher assembly to receive it clean and assemble it clean
- Rather than a burden, controlling contamination is viewed as a capability that carries over into other industries
 - Space & Missile Defense = 2 customers
 - Other potential customers: healthcare, pharmaceuticals, electronics, etc.

- Collaborative predictive tools for quantifying the degradation effects of contamination
 - Can be calibrated from NASA data of long-term orbiting assets
 - Can be extrapolated to missile defense predictive models
 - MOSA allows for sensitive data to be de-coupled and protected while benefitting from open source data of calibrated models
- New modeling tools will allow for the designer to perform material and manufacturing process trades
 - Determine how to treat and condition materials
 - How much baking is too much?
 - Study the interactions of different contaminants
 - Particles and molecular films have always been considered separately
 - Life cycle costs of alternative designs
- New measurement and verification techniques will change how requirements are specified
 - Contamination sampling via tape lift and solvent rinse still the norm
 - Better methods are needed!
 - $\circ~$ In-situ monitoring, real-time data collection, etc.

Credit: NASA/Langley/Elaine Seasly Contamination Sampling via Solvent Rinse

Government: Leverage multi-agency technology investments

- Adopting new ways to specify and verify requirements
- Industry: Insight into risk management challenges and the effectiveness of resulting options
 - Consider lifetime performance and lifecycle cost on par with initial system performance through MOSA
 - Communication of system impacts through the supply chain
- Small Businesses: Development of new predictive tools, measurement techniques, and hardware modules
 - Consider multi-agency and multi-industry applications for new technologies
- Universities: Characterization of new materials and manufacturing processes
 - Compliments and helps enable technology transition

Each member of the supply chain becomes an informed and active participant in managing risk early in the system lifecycle