Modeling delamination migration: quasi-static and fatigue loading

N. V. De Carvalho

nelson.carvalho@nasa.gov National Institute of Aerospace

B.Y. Chen

Imperial College London National University of Singapore

J.G. Ratcliffe NASA Langley

S. T. Pinho, P. Baiz Imperial College London

T. E. Tay National University Singapore

Motivation

<u>Migration</u>: The process by which a propagating delamination relocates to a new ply interface via matrix cracking

Impact

M. McElroy et al. <u>A numerical and</u> <u>experimental study of damage growth in</u> <u>a composite laminate</u>. in proceedings of the ASC 29th Technical Conference, San Diego, CA, USA, 2014.

Skin-stringer pull off

R. Krueger et al. <u>Fatigue Life</u> <u>Methodology for Bonded Composite</u> <u>Skin/Stringer Configurations.</u> NASA/TM-2001-210842, 2001.

Contents

Contents

2 Modeling approach

Validation

Migration Delamination ("positive" shear stress) ("negative" shear stress) 90° 0° *adapted from Greenhalgh, 2009

*E.S. Greenhalgh, C. Rogers, P. Robinson. <u>Fractographic observations on delamination growth and the subsequent migration</u> through the laminate. Composites Science and Technology, 69:2345-2351, 2009.

Experiments: delamination migration test Test setup

Experiments: delamination migration test Test setup - overview

Experiments: delamination migration test Test setup - overview

Experiments: delamination migration test Test setup – validation data

Damage morphology

Load - displacement

Migration location

Contents

Experiments: delamination migration test

Modeling approach: Floating Node Method (FNM) and Virtual Crack Closure Technique (VCCT)

Floating Node Method

B.Y. Chen, S.T. Pinho, N.V. De Carvalho, P.M. Baiz, T.E. Tay, <u>A floating node method for the modelling of discontinuities in</u> <u>composites</u>, Engineering Fracture Mechanics, Vol. 127:104-134, 2014.

Floating Node Method (FNM)

Floating Node Method (FNM)

Floating Node Method (FNM)

Intersecting cracks

Key Characteristics:

- Floating Nodes are topologically related to each element with no initial position assigned
- The position of the floating nodes is assigned only after the crack path is determined
- The floating nodes are used to form sub-elements within the original element and accommodate crack networks
- Ideally suited to represent multiple cracks and their intersection
- Can be coupled with Virtual Crack Closure Technique (VCCT) and <u>cohesive zone</u> crack formulations to model crack propagation

Floating Node Method & Virtual Crack Closure Technique

Virtual Crack Closure Technique (VCCT):

Laminate

[0°/90°₂/0°]

N.V. De Carvalho et al, <u>Modeling delamination migration in cross-ply</u> <u>tape laminates</u>, Composites Part A: Applied Science and Manufacturing, 71, 192-203, 2015.

1 FNM Element (multiple plies)

F

Laminate

[0°/90°₂/0°]

Quasi-static

• Fracture Criterion: G_T

$$f\left(G_{I},G_{II}\right) = \frac{G_{T}}{G_{c}^{Int}} - 1 = 0$$

Mixed Mode exponential law:

$$G_c^{Int} = G_{Ic} + (G_{IIc} - G_{Ic}) \left(\frac{G_{II}}{G_T}\right)^{\eta}$$

Fatigue

$$\frac{\mathrm{d}a}{\mathrm{d}N} = A \left(G_{Tmax}\right)^n$$
$$n = n_I + \left(n_{II} - n_I\right) \left(\frac{G_{IImax}}{G_T}\right)$$
$$A = A_I + \left(A_{II} - A_I\right) \left(\frac{G_{IImax}}{G_T}\right)$$

Delamination

FNM & VCCT applied to cross-ply laminates: Migration onset

Quasi-static

$$\frac{G_T}{G_c^i(F_t)} > \frac{G_T}{G_c^{Inter}} \ge 1$$
$$G_c^i = \begin{cases} G_c^A, & F_t < 0\\ G_c^B, & F_t > 0 \end{cases}$$

Fatigue

$$\begin{pmatrix} \frac{\mathrm{d}a}{\mathrm{d}N} \left(F_t\right) \end{pmatrix}_i > \begin{pmatrix} \frac{\mathrm{d}a}{\mathrm{d}N} \end{pmatrix}_{Inter}$$
$$\begin{pmatrix} \frac{\mathrm{d}a}{\mathrm{d}N} \end{pmatrix}_i = \begin{cases} \left(\frac{\mathrm{d}a}{\mathrm{d}N}\right)_A, & F_t < 0\\ \left(\frac{\mathrm{d}a}{\mathrm{d}N}\right)_B, & F_t > 0 \end{cases}$$

Migration onset (delamination to matrix crack)

FNM & VCCT applied to cross-ply laminates: Migration onset – quasi-static

$$\frac{G_T}{G_c^i\left(F_t\right)} > \frac{G_T}{G_c^{Inter}} \ge 1$$

$$G_c^i = \begin{cases} G_c^A, & F_t < 0\\ G_c^B, & F_t > 0 \end{cases}$$

FNM & VCCT applied to cross-ply laminates: Migration onset – quasi-static

$$\frac{G_T}{G_c^i\left(F_t\right)} > \frac{G_T}{G_c^{Inter}} \ge 1$$

$$G_c^i = \begin{cases} G_c^A, & F_t < 0\\ G_c^B, & F_t > 0 \end{cases}$$

FNM & VCCT - application to composites: Migration onset - fatigue

$$\left(\frac{\mathrm{d}a}{\mathrm{d}N} \left(F_t \right) \right)_i > \left(\frac{\mathrm{d}a}{\mathrm{d}N} \right)_{Inter}$$
$$\left(\frac{\mathrm{d}a}{\mathrm{d}N} \right)_i = \begin{cases} \left(\frac{\mathrm{d}a}{\mathrm{d}N} \right)_A, & F_t < 0 \\ \left(\frac{\mathrm{d}a}{\mathrm{d}N} \right)_B, & F_t > 0 \end{cases}$$

Quasi-static

$$f\left(G_{I},G_{II}\right) = \frac{G_{T}}{G_{Ic}} - 1 = 0$$

Fatigue

$$\frac{\mathrm{d}a}{\mathrm{d}N} = A_I \left(G_{Tmax}\right)^{n_I}$$

Maximum tangential stress criterion:

$$\theta = 2 \tan^{-1} \left(\frac{1}{4} \left[\left(\frac{G_I}{G_{II}} \right) \pm \sqrt{\left(\frac{G_I}{G_{II}} \right)^2 + 8} \right] \right]$$

Matrix Crack

FNM & VCCT - application to composites: migration matrix crack to delamination interaction

- Topological criterion
 - local delamination is onset when matrix crack reaches interface

Migration (matrix crack to delamination)

Fatigue algorithm

Verification – Static: DCB

* R. Krueger. <u>An Approach to Assess Delamination Propagation Simulation Capabilities in Commercial Finite Element Codes</u>. NASA/TM-2008-215123, 2008

Verification – Fatigue: DCB benchmark

* R. Krueger. Development of a Benchmark Example for Delamination Fatigue Growth Prediction. NASA/CR-2010-216723

Contents

Experiments: delamination migration test

Modeling approach: Floating Node Method (FNM) and Virtual Crack Closure Technique (VCCT)

3 Validation: modeling delamination migration

Validation: Delamination migration test Numerical model

 All material properties obtained using standard/recommended test methods

Dimensions (mm)

B^*	2h	С	S	a_0	
12.7	5.25	12.7	115	49	

*B is the width of the specimen (out-of-the page);

 90° - specimen width direction; 0° - specimen span direction

Validation: delamination migration test Results - migration process

Observations

- Correct sequence of events: delamination followed by migration
- Failure morphology well captured including crack path through-thickness

Validation: delamination migration test Results – Migration location

Constant amplitude, R = 0.1 and f = 5 Hz:

Contents

Modeling approach: Floating Node Method (FNM) and Virtual Crack Closure Technique (VCCT)

Validation: modeling delamination migration

- Developed a finite element model based on the Floating Node Method combined with the Virtual Crack Closure Technique to capture the interaction between delamination and matrix-cracking
- Identified and applied migration criteria for both quasistatic and fatigue loading
- Compared simulations and experiments.
 - Good agreement observed for load-displacement, migration location and path
- Validation of the fatigue simulations are in progress

Modeling delamination migration: quasi-static and fatigue loading

N. V. De Carvalho

nelson.carvalho@nasa.gov National Institute of Aerospace

B.Y. Chen

Imperial College London National University of Singapore

J.G. Ratcliffe NASA Langley

S. T. Pinho, P. Baiz Imperial College London **T. E. Tay** National University Singapore

Backup Slides: cohesive zone elements

Backup Slides: element integration

Backup Slides: Topological migration criterion, experimental evidence

Backup Slides: FNM vs PNM, convergence: $K_{\rm I}$

Backup Slides: FNM vs PNM, accuracy: $K_{\rm I}$, $K_{\rm II}$

Backup slides: MMB benchmark

*R. Krueger. <u>Development of and application of benchmark examples for mixed-mode I/II quasistatic delamination propagation predictions</u>. NASA-CR-2012-217562, 2012.