Regional and Global

Bing Lin¹, Michael Obland¹, Amin Nehrir¹, Edward Browell², F. Wallace Harrison¹, Jeremy Dobler³, Joel Campbell¹, Susan Kooi⁴, Byron Meadows¹, Tai-Fang Fan⁴, Zhaoyan Liu⁴, and LaRC ASCENDS team

¹NASA Langley Research Center, Hampton, VA, USA ²NASA Langley/STARSS II Affiliate, Hampton, VA, USA ³Exelis Inc. (now part of Harris Corp.), Ft. Wayne, IN, USA ⁴Science System and Application, Inc, Hampton, VA, USA

18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques 13-17 September, 2015, La Jolla, California, USA

Outline

Introduction

- Lidar approach for CO₂ measurement
- CO₂ lidar instrumentation

Lidar Measurements

- CO₂ column measurements
- Ranging capability
- Accuracy and precision
- CO₂ column measurements with clouds
- Space application

CO₂ Measurement Architecture IM-CW Laser Absorption Lidar

 λ (nm)

- Precise CO₂ measurements using the Integrated Path Differential Absorption (IPDA) technique with a range-encoded intensitymodulated continuous-wave lidar.
- Simultaneously transmits l_{on} and l_{off} reducing noise from the atmosphere and eliminating surface reflectance variations.

Weighting Functions

Instrument Development (joint effort of LaRC and Exelis)

ASCENDS CarbonHawk Experiment Simulator (ACES developed at Langley with support from Exelis)

Multifunctional Fiber Laser Lidar (MFLL) (developed by Exelis in 2004 Exelis and Langley since 2005)

advancing key technologies for spaceborne measurements of CO₂ column mixing ratio

Development & Demonstration

21-25 May 2005, Ponca City, OK (DOE ARM) 5 Lear Flts: Land, Day & Night (D&N) 20-26 June 2006, Alpena, MI 6 Lear Flts: Land & Water (L&W), D&N 20-24 October 2006, Portsmouth, NH 4 Lear Flts: L&W. D&N 20-24 May 2007, Newport News, VA 8 Lear Flts: L&W, D&N 17-22 October 2007, Newport News, VA 9 Lear Fits: L&W, D&N, Clear & Cloudy 22 Sept. - 30 Oct. 2008, Newport News, VA 10 UC-12 Flts: L&W, D&N, Rural & Urban 10-16 July 2009, Newport News, VA 5 UC-12 Flts: L&W 31 July – 7 Aug. 2009, Ponca City, OK 5 UC-12 Flts: L&W, D&N 10-20 May 2010, Hampton, VA 6 UC-12 Flts: L&W, D&N 5-11 May 2011, Hampton, VA 5 UC-12 Fits: L&W, D&N, Clear and Cloudy 6-18 July 2010, Palmdale CA 6 DC-8 Flts: L&W, D 28 July - 11 Aug. 2011, Palmdale CA 8 DC-8 Flts: L&W, D February 19 – March 9, 2013, Palmdale CA 7 DC-8 Flts: L&W, D&N

August 13 – September 3, 2014, Palmdale CA 5 DC-8 Fits: L&W, D

ranging

enabled

capability

MFLL on

DC-8

various lab, ground range, and flight tests

Total of 14 MFLL flight campaigns since 2005 Total of 2 ACES test flight campaigns in Hampton, 2014-2015

Comparison of Range Determination Ascends from PN Altimeter and Off-line CO₂ Signal

Range estimates obtained from the off-line CO_2 return and time coincident returns from the onboard PN altimeter over the region of Four Corners, NM from the DC-8 flight on 7 August 2011.

Natural Variability (lidar and in-situ measurements) (Mid-West Flight: Iowa Box; 02 Sept 2014)

10

386

41.8

41.6

Tatitude, deg N 41.2 41.2 41.0

41.0

40.8

40.6 L---92.F

-90.0

-90.5

-91.0

Longitude, deg E

Altitude, km

(a few ppm) found from lidar observations 388 ≥ 387 and when comparing spiral with nonspiral in-situ observational data

SCENDS

Derived XCO₂ Column Measurements to Ascends the Surface Under Clear and Cloudy Conditions

Lin et al., Optics Express, 2015

Range and Column CO₂ to Surface and Thick Cloud Tops (West Bank, Iowa; 10 Aug 2011)

10 Hz data

10000 0.5 0.4 8000 Range (m) 0.3 0.3 0000 0.2 6000 4000 0.1 2000 leg 4 surface eloud surface leg 4 0 0 22.290 22.295 22.300 22.305 22,290 22.295 Range (m) 22,300 22.305 10000 0.8 8000 0.6 **AO** Range (m) J914 1 . . . 6000 DAOD 0.4 4000 0.2 2000 surface • cloud leg 5 surface • cloud leg 5 0 0 22.45 22.46 22.47 22.48 22.46 22.47 22.48 22.45 1 15000 0.8 10000 Range (m) 0.6 0000 0.4 5000 0.2 surface leg 7 🔵 surface 🛛 😑 cloud leg 7 0 0 22.995 23.000 23.005 23.010 23.015 23.020 23.025 22.995 23.000 23.005 23.010 23.015 23.020 23.025 Time (UT, hr) Time (UT, hr)

Time

Lin et al., Optics Express, 2015

Atmospheric Carbon & Transport (ACT) – America

The ACT-America suborbital mission addresses the three primary sources of uncertainty in atmospheric carbon inversions: transport error, prior flux uncertainty and limited data density.

Penn State NASA LaRC, WFF, GSFC, JPL Exelis, Colorado State NOAA ESRL/U Colorado DOE Oak Ridge, U Oklahoma Carnegie Inst. Stanford

ASCENDS Mission Development

Today: MFLL and ACES instruments in DC-8 racks Size = 100" x 43" x 24" Size = 44" x 34" x 24" Mass = 787.2 lb. Mass = 317.1 lb

Global Hawk

Future

TBD: ISS Tech Demo?

TBD: ASCENDS mission

Space CO₂ Lidar Modeling and ASCENDS **Measurement**

Same instrument architecture: increased power and telescope

- **Cloud height: 9 km**
- 0.1-s integration time
- High SNR & small bias (< 0.1%)
- **Cloud OD < ~0.4**
- Dawn/dusk orbit, 42W power
- Other LEO orbits are also applicable

Summary

- IM-CW lidar at 1.57µm with ranging-encoded IM has demonstrated the capability of precise CO₂ measurements through many airborne flight campaigns under variety of environment conditions, including CO₂ column measurements through thin cirrus clouds and to thick clouds.
- Over land, clear-sky lidar CO₂ measurements with 1-s integration reach a precision as high as within 1 ppm; these measurements are also consistent with coincident in situ measurements with mean bias much smaller.
- * Ranging uncertainties are shown to be at sub-meter level.
- Analysis shows that current IM-CW lidar approach will meet space CO₂ observation requirements and provide precise CO₂ measurements for carbon transport, sink and source studies.

Column CO₂ Measurements to Surface and Thick Cloud Tops

	Leg 4	Leg 5	Leg 7
Lidar DAOD _{surface}	0.4271 ± 0.0056	0.5196 ± 0.0093	0.6902 ± 0.0155
Lidar DAOD _{cloud}	0.3480 ± 0.0143	0.4368 ± 0.0243	0.6007 ± 0.0339
Lidar DAOD _{bndrylyr}	0.0791 ± 0.0154	0.0828 ± 0.0260	0.0895 ± 0.0373
In-situ DAOD _{surface}	0.4243	0.5160	0.6939
In-situ DAOD _{cloud}	0.3417	0.4334	0.6075
In-situ DAOD _{bndrylyr}	0.0826	0.0826	0.0826

10 Hz data