Virtual Project Management Challenge

November 17, 2015

Today on the VPMC

Why Don't They Just Give Us Money?

Project Cost Estimating and Cost Reporting

- Doug Comstock
 Director, NASA Cost Analysis Division
- Kristin Van Wychen
 Senior Analyst, United States Government Accountability Office
- Mary Beth Zimmerman
 Branch Chief, NASA OCFO Strategic Investments Division

Tuesday, November 17, 2015

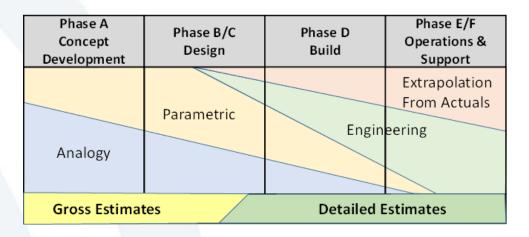
2:00 p.m. – 3:30 p.m. EST

Learn more: http://www.nasa.gov/offices/oce/pmchallenge

Project Cost Estimating

Doug Comstock
Director, NASA Cost Analysis Division

#askVPMC


What is Cost Estimating?

- A cost estimate is the summation of individual cost elements, using established methods and valid data, to estimate the future costs of a program, based on what is known today. (GAO)
- Cost estimating is a fundamental activity that is essential throughout the life cycle of a well managed project.

The Agency needs estimates for Project Office formulation and implementation phases, non-advocate cost estimates, source selections, what-if exercises, affordability studies, economic analyses, and Analysis of Alternatives (AoA), as well as to support numerous types of decisions related to projects.

(NASA CEH)

Project Life Cycle

Why is Cost Estimating important?

- Planning what the agency can do within available resources
 - ✓ Informing the budget planning process
- Shaping what can be undertaken towards achieving objectives for a particular project within available resources
 - ✓ Making tradeoffs on affordability for requirements and options
- Making commitments to our stakeholders for how much things will cost, and being held accountable
 - ✓ Ensuring commitments have an acceptable level of risk
- Taxpayers (and their elected representatives) care what things will cost
 - ✓ It's their money we're spending
- Delivering on commitments the Agency makes is critical to strengthen credibility with our stakeholders
 - ✓ We are entrusted with being responsible stewards

What are the Challenges?

 NASA is usually building one of a kind machines to do things that have never been done before!

If we want projects to meet cost and schedule commitments, we must understand their risks and fund them at a level commensurate with the amount of risk we are willing to accept.

Why not use a Point Estimate?

Is the "point" estimate equal to ...

The "most Likely" or "most probable" cost?

The 50th-percentile cost?

The expected cost?

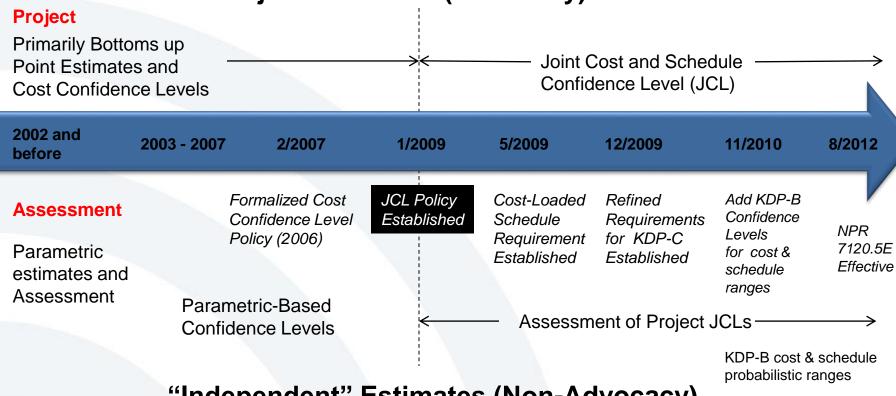
- No It is not likely to be equal to any of these and there are, in fact, a range of possible costs
 - o If the "point" estimate is the "most likely" cost, other cost levels can be assumed to be "less likely"
 - o If the "point" estimate is the "50th percentile" cost, then there are cost levels at other percentiles
 - o If the "point" estimate is the "expected" cost, then other cost levels are presumably "unexpected"
- Project managers need "Point Estimates" for ...

Cost/performance tradeoff studies

Cost/benefit analyses

Budget Planning

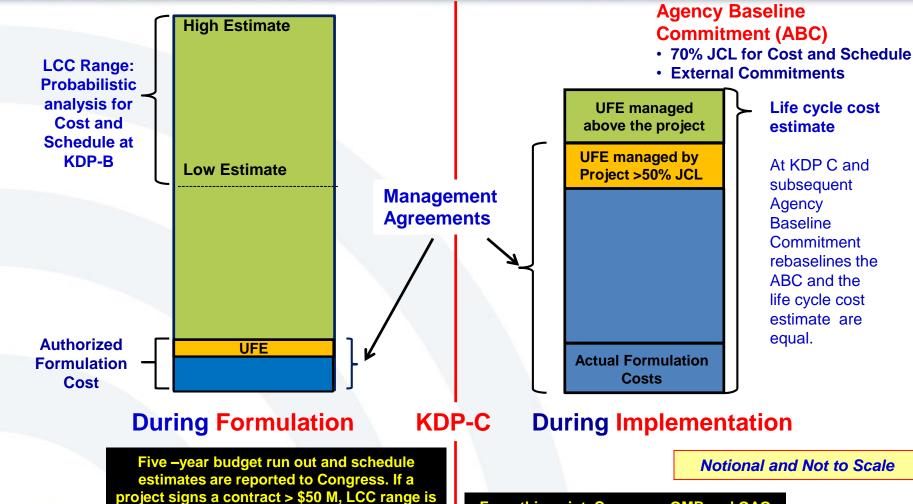
But a project "point" estimate is often nebulous due to ...


Immature technology – TRL assumed higher then it is	Programmatic and organizational considerations
Uncertain product design	Schedule slips due to integration difficulties and test failures
Software-associated issues	Changes in budget environment
Requirements volatility	Unforeseen events

- While "point" estimates are not "correct", "actual" Project cost will typically fall within some range (with some degree of confidence)
 - The best we can hope to do is to understand the amount of uncertainty
 - Understanding the uncertainty will help us make provision for it

Evolution of NASA Cost Policy

Project Estimates (Advocacy)



NASA's Cost Policy has evolved to address the challenges associated with a point estimate and now requires a probabilistic, integrated assessment of cost, schedule and risk.

NPR 7120.5E Cost Framework

From this point, Congress, OMB and GAO get detailed cost and schedule information. All changes are tracked back to the ABC.

reported to OMB. For selected projects, LCC

and schedule ranges are reported to GAO.

So how do I estimate my costs?

- NASA has experts in cost estimating across the agency to help you develop a cost estimate.
- Contact them for assistance:

ARC: Tommy Paine

AFRC: Steve Sterk

GRC: Bob Sefcik

GSFC: Steve Shinn or Anthony McNair

JPL: Fred Doumani

JSC: Vickie Gutierrez

KSC: Sandeep Wilkhu or Glenn Butts

LaRC: Debra Schroeder

MSFC: Andy Prince

You can always contact CAD and we can help.

What does a Cost Estimator do?

Part 1: Project Definition Tasks

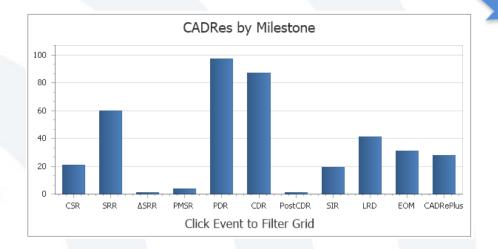
- Receive Customer
 Request and
 Understand the Project
- Build or Obtain a Work Breakdown Structure (WBS)
- Define or Obtain the Project Technical Description

Part 2: Cost Methodology Tasks

- Develop Ground
 Rules and
 Assumptions
- Select Cost
 Estimating
 Methodology
- Select/Build Cost Model/Tool
- Gather and Normalize Data

Part 3: Cost Estimate Tasks

- 8 Develop the Cost Estimate
- Develop and Incorporate the Cost Risk Assessment
- Document the Cost Estimate
- Present the Cost Estimate Results
- 12 Update the Cost Estimate as Required



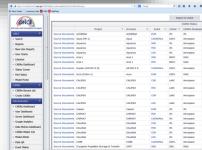
NOTE: While laid out in linear sequence, the process in practice is very iterative. Source: NASA Cost Estimating Handbook v4.0

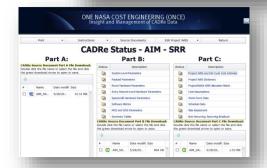
What is the source of Data?

- Cost Analysis Requirements Document (CADRe)
 is a 'Flight Data Recorder' that captures the project
 status at each milestone (SRR, PDR, CDR, SIR,
 Launch, etc)
 - PART A Describes a NASA project and significant changes that have occurred since the last milestone
 - PART B Capture key technical parameters including margins (Mass, Power, Data Rates, etc.)
 - PART C Captures the project's Cost Estimate and actuals to date by Work Breakdown Structure (WBS)

SYSTEM SUMMARY TABLE					KEY TECHNICAL PARAMETER	es		
	CDC Marco	COCMAS	cor n	viContingent				
Pation Mass	59.4 kg	100.4 kg	75.9 W	aroomingtor	VDS Name	Component Human Fixed	Value	
Instrument (I-PE)	45.53a	100.4 Eg			System	Planting Plated	Comet Tempel 1	
Instrument 1(PPT)	34.6 kg	20.134				Destination Type of Craft	Cornet Tempel 1 Fishe/Impactor	
Instrument 2 (PPR)	3114	20.163				Launch Date	Pagog/Impactor 99/2004	
Impactor SEC Dre Mass	475.8 kg	183.4 kg	103.6 V			Average Pagoad Power (V)	990904 64.8	
Structures & Mechanisms	392,0 kg	394,2 kg				Average Pagload Pover (V) GNSC Method	54.5 3-axis Stabilization	
Thermal	2310	2310					3-aus stabelization 17 arrisen	
Electrical Power Substattem	285kg	25.914				Pointing Accuracy Pointing Knowledge	17 arrsen	
Guidance Navigation & Control	72kg	7.314				Pointing Knowledge Data Storage	1.7 arcsec 16.4 Glosbates	
Propulsion Dry Mass	30.6 kg	7.3 kg				Namber of Instruments	56.4 Gegadyes	
Telecommunications	5.8 kg	54 kg				Downlink Mode	Xilland	
Command and Data Handling	9544	3514						
Flabs SIC Drs Mass	323.3 kg	359.4 kg	278.5 V			Downlink Data Rate Unlink Mode	129 - 96,600 bps X-Rand	
Smotore & Mechanisms	174.4 kg	355.4 Eg				Shirt Day Bare	2.69and 8.2000 hos	
Thermal	50ks	10.514				Light Data Hate Launch Vehicle		
Destrical Power Substantem	505kg	\$7.0 kg			Streetman & Machanisms	Load Carreins Shell/Truss Manerial	Dekall (7925H)	
Guidance Nevication & Control	20.180	29.2 kg				Insulation Time		
Propulsion Dry Mass	24.514	25.5 to					MU Disks/Ne	
Teleportementations	21210	20.0 kg			Electrical Power & Distribution	Solar Cell Type Batters Type	NH2(SPY)	
Command and Data Handling	24,610	28.184	22.0 W			Batters Prover Outrad	16-PC (SPV)	
Propellant & Pressurant		53.4 kg	22.0 V					
Impediate & Pressurant Impedior Propellant & Pressurant	70.1 kg 8,2 kg	11.8 kg			Propulsion Subsystem	Monopropellare Thrusters Thrust	2.2 N [16 FICS], 35 N [4]	
						Propellant Type	N2H4 X-Rand	
Flyby SIC Propellant 6 Presourant	619kg	81.6 kg			Telecommunications Subsystem			
						Flybylimpactor SAC Crosslink Band	(HF	
Total (Org)	818.5 kg	949.2 kg	459.0 V			Antena Type	LGA, MGA, HGA	
Total (Vet)	958.6 kg	1042.6 kg			CADH Subsystem	Solid State Recorder Memory Size	SE4 Glipabytes	
LVCapability	1164 kg	T84 kg						
Launch Mass Margin	16.2×	8,9%	1					

	17072111				
	***	***	CDE	Bellare,	
TRYSTORY SECHENT	Harrist	Beeff	79-85	14.40	
TECRATED SCIENCE INSTRUMENT H		0-1-86	30,00	745-11	
IIIkCan IIIbCan	Her-13	Parist FreeE	Hagelf	Harris	
HIRI Option Squire	Healt	Proff	Deads	744-11	
763 - 6-14	Apr-14	Hagell	Har-17		
763 - Tanable Filler	Qualit	Marit	Her II	Heeff	
ISIN PILAL SACION PRINT	HapH	Paket	Apr 41	Hep-18	
ISIM Streeterr	Haritt	74045	Aug 11	Jee 11	
ISIM Elvatracias Compartarel	700 85	Sug 87	744-11	7.011	
ISIH Thread Control	Harit	Acett	7ee-11	7.041	
ICBE	Hea-13	Jul 45	04/42	Harri	
1858	Privile.	0.146	2441	Hey 11	
ISIM Thread Transition Brains		Marell	164	_ Jee 13	
TICAL YELESCOPE ELEMENT	Har-H	Bas-87	7449	- Jan 12	
Primary History Segment Santuckly Heliotegisis "kalakes" of Luisteen codd	0 co H	ми	Apr-85 Sry-85 Aug-87	Harti Jarii Aurii Aurii Sarii Oalii	
Afl +, liss Assrable	9.6-14	Section	Reg-87	Hee-18	
Sreedery Hirrer Beerakly	Reg-14	64-65	Hea-87	Hearth	
Primary Hirror Bankylaur Support Sys		Jan 45	Jan-13 Bar-11	Fri-III	
Sranders Hirrar Sapport System	Septe		Sea-11		
Preliquest Tours Bureakly Through Hangement Salagates	014	HereII Califit	Septili Septili	Hearts	
ISIN Redialer Assembly	0.0.85	74141	Dec-11	Hand	
Elvelousius (400)	7878	Hardi	F-1-43	Jan 11	
Etretresias (CHB/C/9)		Jan 15	5++-97	Den II	
ACECUATE ELEMENT	0.647	. Preff.	Apr.41	-2:3	
Space and I Ban	940.84	7/4/11	744-9	/*****	
Electrical Paper Labority	Herit	Fee 11	Zeeff	_	
Elestrosias		Audi	Her-13	Zec 11	
Pallers	_	Secti	Dec-11	Zerti	
Array		0.141	Play-12	Aprill	
Allifede Control Sebagaten	Har-IZ	Septi	Sep-11	Jan 11	
Connect and Data Bandling	0.014	4.,11	fing-13		
Conneal Televiles Processor	Har-ES	Bar-87	Hea-88	Jan-11	
Salid State Brander Commissions Salanates	Jack	facili	Heards Heards	Jac-11 Jac-11	
Praytanias Sabagatra	Bu-P	Section 1	Hea-93	Sec-11	
Strader Intente	He-R	Hartt	Her-13	8pr-11	
Throad Coded Schooles	HerE	Total I	Hea-82	Sec. II	
Wire Larares					
Spanneraft	074-11	Pre-HI	Dre-85	Jan-11	
+116	Dre-H	Hagell	Jan-83	Harris	
Seekirld	9.6-14	F+4-01	Jan-85	P+4-11	
Heaterse	92-14	Za-H	Rer-85	9-0-11	
Sandirld Straders	0.616	7-1-11	7-a-85	Here III	
Charrenters FSM Dallet	0.034	7-1-11	7449	Jul-11	
Charrenters FDF ball?		7-1-13			
BI Conting System (Consister)	Sep-12	775-11	Her-11	Jan 11	





How is the Data Accessed?

- One NASA Cost Engineering (ONCE) Database
 - ✓ Located at <u>www.ONCEDATA.com</u> ONCE is a government website managed by HQ CAD that provides access to technical, cost, and other programmatic information about NASA Projects.
- The data comes from CADRe documents
- The website provides a user interface to search and retrieve data from the CADRe's
 - ✓ Enables analysts and estimators to quickly build analogy datasets, perform historical analysis, develop cost estimating relationships, etc.
- Users can output the data retrieved from ONCE to MS Excel for their own specific analysis needs
 - ✓ Project estimation, independent estimation, research, proposal development, etc.
- ONCE also has a model portal that makes key cost estimating tools available to the community.

Cost Estimating Done Well

What will good cost estimating do for your project?

- ✓ Gives you a better understanding of how design trades and risks impact project cost.
- ✓ Identifies drivers that may have the most impact on cost or schedule, which can help focus management attention and prioritize risk mitigation efforts.
- ✓ Systematically integrates cost with schedule and risk products and processes to provide a cohesive and holistic picture of the projects ability to achieve cost and schedule goals.
- ✓ Establishes a realistic estimate and commitment that can be executed with appropriate cost and schedule margins to handle risk and uncertainty.

Lack of Effective Estimating

- If your project does not have good estimates, you increase the risk of overruns and delays.
 - ✓ Cost overruns may lead to descopes, cancellation or rebaselining of your project.
 - ✓ Status is reported to stakeholders, and overruns can damage trust in the Agency's ability to deliver on commitments and invite more external scrutiny.
 - ✓ Cost overruns may require reallocation of resources from other projects, degrading the health of the broader portfolio and reducing efficiency and throughput.

Things to Know

- Experts stand ready to help
- Cost estimating is done throughout the life cycle of a project and can help inform your decisions
- Good estimating integrates cost, schedule and risk
- A Basis of Estimate is not "what's in the budget wedge"
- A point estimate is necessary but not sufficient
- A good and standard Work Breakdown Structure is critical
- CADRe/ONCE captures data for all projects and is a critical resource for Data Driven analysis
- JCL is not a four letter word
- Schedule and cost are interdependent
- Risk and Uncertainty are real and must not be ignored
- The future is difficult to predict with precision, but a knowledgeable analyst equipped with good data and tools can develop a good understanding of probable outcomes

Learn More about JCL

Charles Hunt Analyst for NASA Headquarters, Cost Analyst Division

Session 4: JCL Journey: A Look into NASA's Joint Cost and Schedule Confidence Level Policy

August 15, 2013

NASA has been implementing Joint Cost and Schedule Confidence Level (JCL) since 2009. JCL policy, as written in NPR 7120.5E, states that projects are required to perform a JCL with the intent that they demonstrate a 70% probability that cost will be equal to or less than the targeted cost and schedule will be equal to or less than the targeted schedule date. View more

Download Slides

Watch Now


Feedback

http://www.nasa.gov/offices/oce/pmchallenge/sessions/2013_Session_4_abstract.html

Additional Key Resources

http://www.gao.gov/new.item s/d093sp.pdf

https://www.nasa.gov/offices/ ooe/CAD/nasa-costestimating-handbook-ceh

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150000400.pdf

Kristin Van Wychen

Senior Analyst, US Government Accountability Office

Project Cost Reporting

Mary Beth Zimmerman
Branch Chief, NASA OCFO
Strategic Investments Division

#askVPMC

Cost Reporting: What is it and why is it important?

	Base	JCL	Development Cost Estimate (\$M)		Cost Change Key		Key Milestone		Schedule Change
Project	Year	(%)	Base	2015	(%)	Milestone	Base	2015	(months)
EGS- GSDO*	2015	80	1,843.5	1,843.5	0	Launch Readiness for EM-1	Nov 2018	2018	0
GRACE FO	2015	70	264.0	262.8	0	LRD	Feb 2018	Feb 2018	0
ICESat-2**	2015	70	763.7	763.7	0	LRD	Jun 2018	Jun 2018	0
ICON	2015	70	196.0	196.0	0	LRD	Oct 2017	Oct 2017	0
InSight	201	70	541.8	541.8	0	LRD	Mar 2016	Mar 2016	0
Webb	2012	66	6,197.9	6,190.4	0	LRD	Oct 2018	Oct 2018	0
MMS	2010	70	857.3	884.5	3	LRD	Mar 2015	Apr 2015	1
OSIRIS-REx	2014	70	778.6	709.7	-9	LRD	Oct 2016	Oct 2016	0
SGSS	2013	70	368.1	Under Review	N/A	FAR	Jun 2017	Under Review	N/A
SLS	2015	70	7,021.4	7,021.4	0	Launch Readiness for EM-1	Nov 2018	Nov 2018	0
SMAP	2013	>70	485.7	479.0	-1	LRD	Mar 2015	Mar 2015	0
SOC	2014	N/A	376.9	320.0	-15	LRD	Oct 2018	Oct 2018	0
SPP	2015	70	1,055.7	1,055.7	0	LRD	Aug 2018	Aug 2018	0
TESS	2015	70	323.2	296.4	-8	LRD	Jun 2018	Jun 2018	0

How is risk informed cost estimating related to budget?

What are the challenges of effective cost reporting?

How can project managers provide expected cost reporting?

What is baselining all about?

When it's done well, what does cost reporting do for a project?

When it's not done well, how does project cost reporting look?

Kristin Van Wychen

Senior Analyst, US Government Accountability Office

Putting It All Together

#askVPMC

Project Management Truisms

#askVPMC

"Manage as you budget and budget as you manage."

"Baselining is forever."

"Things are more likely to go wrong than not."

"Budget for what you can't see."

"Time is money."

Q&A Session

#askVPMC

Today on the VPMC

Why Don't They Just Give Us Money?

Project Cost Estimating and Cost Reporting

- Doug Comstock
 Director, NASA Cost Analysis Division
- Kristin Van Wychen
 Senior Analyst, United States Government Accountability Office
- Mary Beth Zimmerman
 Branch Chief, NASA OCFO Strategic Investments Division

Tuesday, November 17, 2015

2:00 p.m. - 3:30 p.m. EST

Learn more: http://www.nasa.gov/offices/oce/pmchallenge

