

Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission

Dr. Christopher J. Mertens Principal Investigator, RaD-X NASA Langley Research Center Hampton, Virginia USA

Research Motivation

- Aviation Radiation Health Effects
- Aviation Radiation Avionic Effects
- NAIRAS Model Development

Cosmic Ray Basics

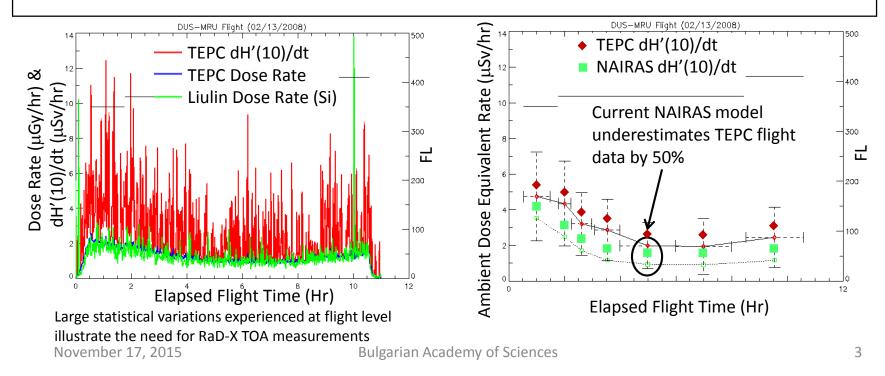
- Sources
- Energy and Composition
- Atmospheric Interactions
- Biological Interactions

Dosimetric Quantities

- Definitions
- Range of Values @ Flight Altitude

NAIRAS Model

- Representative Data Products
- Variation With Solar Cycle and Geomagnetic Cutoff Rigidity
- Solar and Geomagnetic Storm Effects

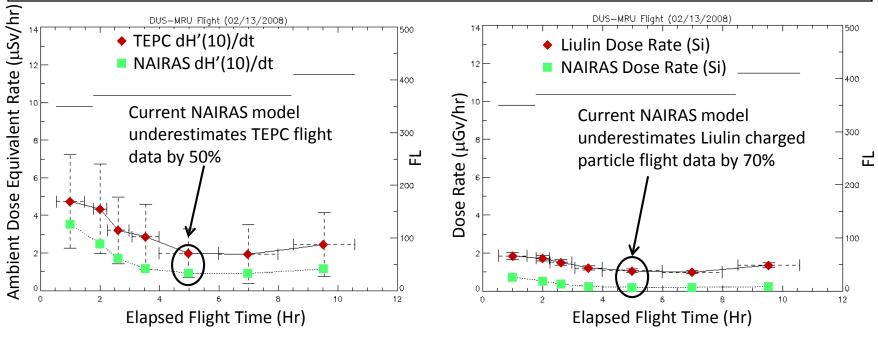

RaD-X Science

- Motivation (in more detail)
- Science Goals and Objectives
- Instrument Selection

NAIRAS Comparisons to Aircraft Dose

The NAIRAS model currently underestimates actual data. This performance is quantified by comparisons with recent DLR-TEPC/Liulin measurements from 2008 [*Mertens et al.*, 2013]

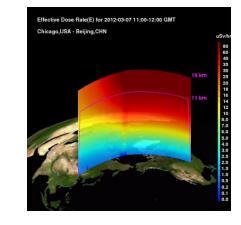
- These results are consistent with the large volume of data reported by Lindborg et al. [2004] and tabulated by the International Commission on Radiation Units and Measurements: ICRU Report 84 [2010]
- The NAIRAS/DLR/ICRU comparisons in publication [Mertens et al., 2013]



NAIRAS Comparisons to Existing Measurements

- NAIRAS comparisons with existing TEPC/Liulin measurements shows much larger discrepancies in silicon absorbed dose
 - Suggests larger uncertainty in NAIRAS charged-particle source/transport/interactions
 - TOA measurements characterize charged-particle source (i.e., cosmic ray primaries)

RaD-X : Radiation Dosimetry Experiment


Science Goals and Objectives

- Improve tools that predict energy deposition characteristics of penetrating cosmic radiation in Earth's atmosphere
 - Measure radiation dosimetry in upper atmos
 - Separate cosmic ray primary contributions
- Identify and characterize low-cost radiation measurement solutions
 - Characterize relationship between solid state radiation instruments and biological response

Mission and Instrument Parameters

- Platform: High-Altitude Balloon
- Launch Site: Fort Sumner, NM (34N, 104W)
- Mission Duration: 20+ hours of science data
- Temporal Sampling: 1-5 minutes
- Launch Date: September 25-26, 2015
- Instruments: (1) TEPC, (2) TID detector,
 (3) LET spectrometer, and (4) microdosimeter emulator
- •All instrument components at TRL 6 or higher

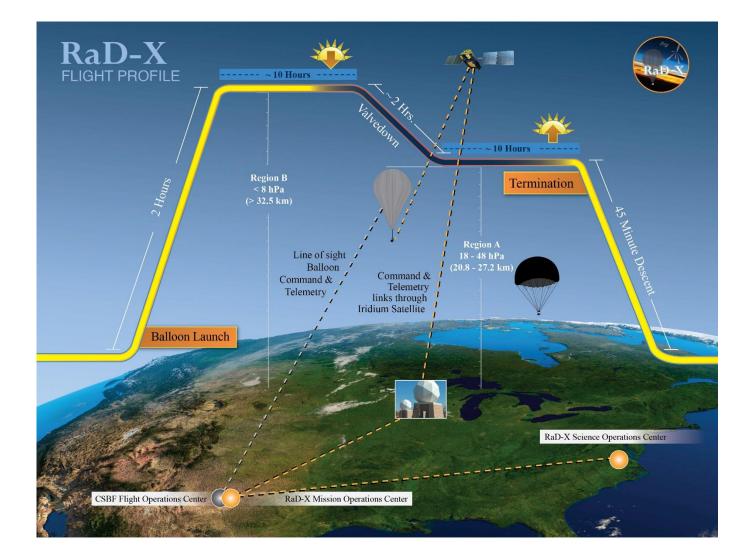
RaD-X Measures Radiobiological Dose and CR Primary Proton and HZE Contributions

Science Team and Partners NASA Langley NASA ARC NASA GSFC/WFF Prairie View A & M University (PVAMU) Center for Radiation Engineering and Science for Space Exploration (CRESSE) Oklahoma State University University of Virginia Space Environment Technologies, Inc.

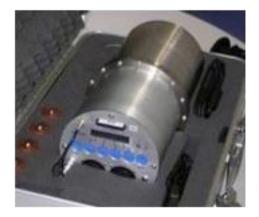

RaD-X Science Goals

High-altitude balloon flight (> 20 km) out of **Fort Sumner, NM** with dosimeter measurements utilized to improve cosmic radiation dose assessment and characterize the energy deposition from CR primaries

- NAIRAS underestimates effective body dose by 50% at lower latitudes (≤ 50°), the region of largest model error [*Mertens et al., Space Weather, 2013*]. Uncertainty must be ≤ 30% for latitudes ≥ 30° for reliable dose assessments [*ICRU Report 84, 2010*]
- Measurements > 20 km next step needed to understand source of uncertainty and guide model improvement

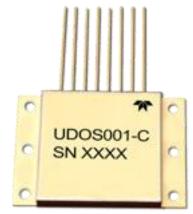

GOALS

- 1. Improve tools that predict energy deposition characteristics of penetrating CR in Earth's atmosphere
 - Combine different dosimeter measurements and two flight altitudes to assess model uncertainty in CR primaries
- 2. Identify and characterize low-cost radiation measurement solutions
 - Continuous, global measurements for realtime data assimilative modeling



ka 🗎

RaD-X Science Instruments


TEPC: Tissue Equivalent Proportional Counter Far West Technology, Inc.

Liulin LET Spectrometer Prof. Dachev SRTI-BAS

Total Ionizing Dose (TID) Detector Teledyne Microelectronic Technologies

RaySure Detector QinetiQ & Univ. of Surrey, UK

November 17, 2015

Bulgarian Academy of Sciences

RaD-X Payload @ LaRC Pre-Ship

Drs. John Grunsfeld & Paul Hertz

Preparing for Launch at Fort Sumner

Dr. Grunsfeld, NASA SMD Associate Administrator Dr. Hertz, NASA SMD Astrophysics Division Director

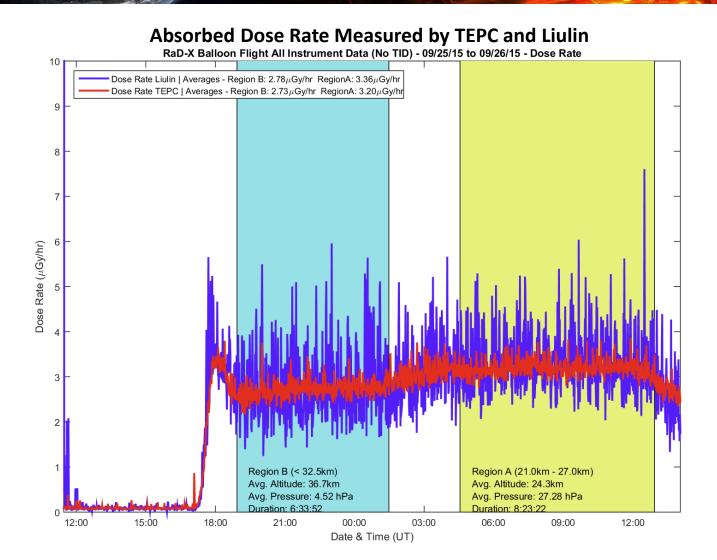
RaD-X PI at Fort Sumner

Waiting for Launch at Fort Sumner

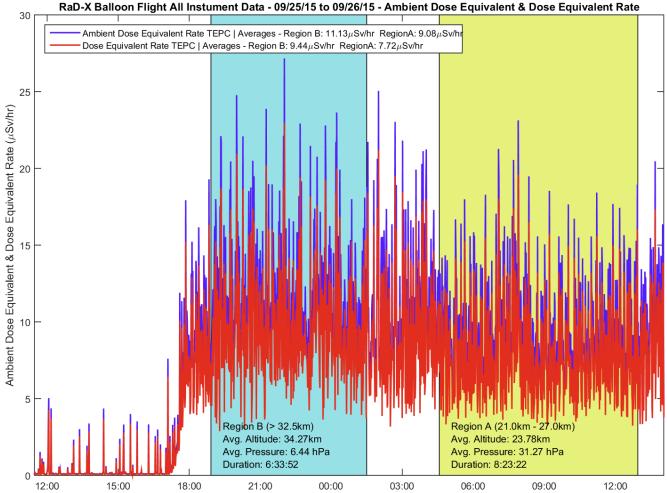
RaD-X Payload Ready for Launch

Payload integrated to balloon gondola

"Big Bill" transporting payload to launch site

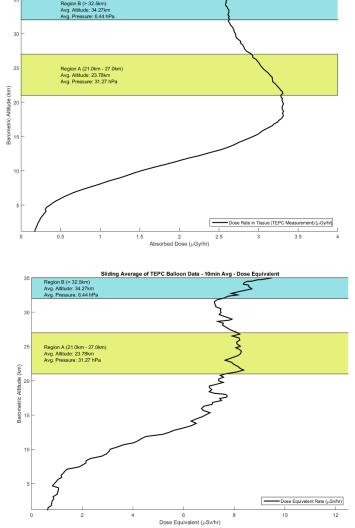


RaD-X Launches Sep 25, 2015


11/20/2015

RaD-X Radiobiological Dose Rate

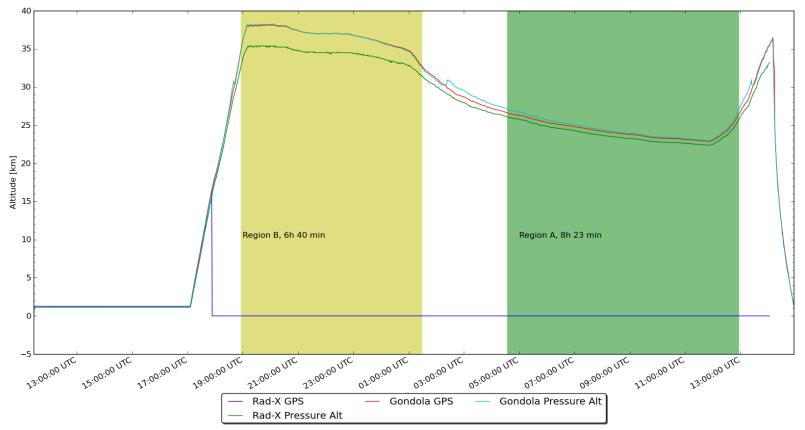
TEPC Measurements of Dose Equivalent and Ambient Dose Equivalent Rates


Date & Time (UT)

RaD-X TEPC Dose Rate Profiles

• TEPC Dose Rate Profiles

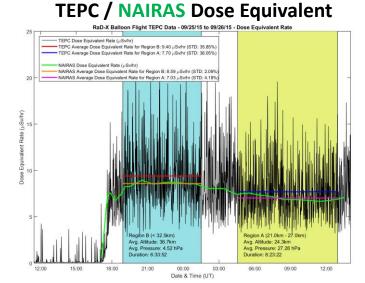
- Constructed from +/- 10 minute widow average of measured dose rates
- Absorbed Dose Rate (Dose) Profile (Top Right)
- Dose Equivalent (DoseE) Rate (Bottom Right)
- Dose Profile Features
 - Very broad Pfotzer maximum corresponding to the peak in the dose rate
- DoseE Profile Features
 - Key Finding: No Pfotzer maximum in DoseE
 - Lack of low-LET secondary particles above ionization peak is compensated by high-LET albedo neutrons and cosmic ray primary particles
 - Increase in DoseE in Region B due to HZE particles

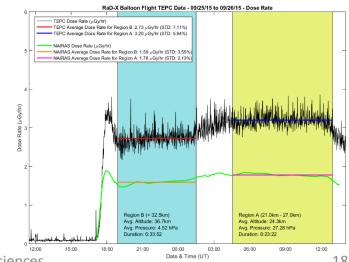

November 17, 2015

Sliding Average of TEPC Balloon Data - 10min Avg - Dose

RaD-X Payload versus CSBF Altitudes During Balloon Flight

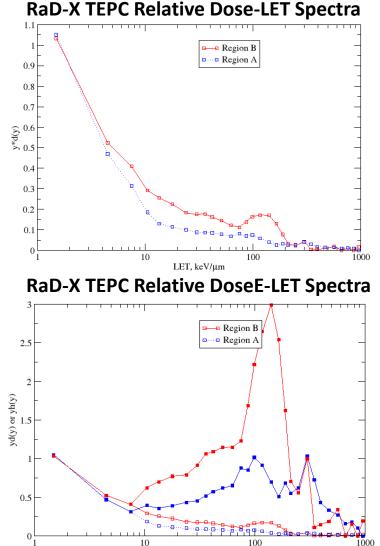
Note: RaD-X/NAIRAS comparisons preliminary until barometric pressure differences resolved


RaD-X / NAIRAS Comparisons


- Dose Equivalent Rate (DoseE):
 - DoseE includes radiobiological weighting of neutrons and other high-LET particles
 - NAIRAS underestimate by less than 10%
- Absorbed Dose Rate (Dose):
 - Dose insensitive to neutrons \cap
 - NAIRAS underestimate by > 50% Ο
- **Trend in NAIRAS Comparisons to the Other Measurements** (RaD-X Liulin, ER-2 TEPC, King Air C90 TEPC/Liulin) ٠
 - NAIRAS underestimate measurement data
 - Differences largest near Pfotzer maximum (peak in absorbed dose rate)

Preliminary Inferences •

- NAIRAS underestimates pion-initiated electromagnetic (π -EM) cascade processes
 - Underestimate charged particle (low-LET) contributions to Dose/DoseE
 - Overestimate neutron (high-LET) contributions to DoseE 0
- π-EM backscatter appears to be important (Region A in particular)
- NAIRAS may underestimate cosmic ray primary protons


TEPC / NAIRAS Absorbed Dose

Bulgarian Academy of Sciences

RaD-X TEPC Dose-LET Spectra

- The TEPC Dose-LET spectra show the different particle content in Regions A and B
 - Compare relative contributions from High-LET events
 - High-LET event > 10 keV/um
- **Region B**: evidence of **HZE particles**
 - Larger contributions from high-LET events in Region B
- **Region A**: Cosmic ray primary protons and albedo neutrons
 - High-LET events but much smaller contributions to dose in Region A compared to Region B
- Peak in Region B Dose-LET spectrum interesting and needs further investigation
- RaD-X ConOps design of the two float altitudes (Regions A and B) succeeded in isolating HZE cosmic ray primary particle contributions to dose

LET, keV/µm

19

Bulgarian Academy of Sciences

Average Dose: RaD-X + Aircraft

Altitude	Pressure	Platform	Liulin	TEPC	TEPC	TEPC
	hPa		Dose Rate	Dose Rate	Dose Equiv	H*(10)
km			uGy/hr	uGy/hr	uSy/hr	uSy/hr
8	444.9	King Air C90	0.94 ± 0.02	0.90 ± 0.01	2.44 ± 0.11	N/A
17	92.0	ER-2	N/A	4.63 ± 0.02	8.95 ± 0.22	N/A
20	85.6	ER-2	N/A	5.00 ± 0.03	10.26 ± 0.34	N/A
24.3	27.3	RaD-X	3.34 ± 0.03	3.20 ± 0.01	7.70 ± 0.13	9.05 ± 0.15
36.7	4.5	RaD-X	2.77 ± 0.04	2.73 ± 0.01	9.40 ± 0.17	11.09 ± 0.20

RaD-X Science Summary (Prelim)

- All instrument flight data recovered and suitable for scientific investigation
- TEPC absorbed dose rate profile shows very broad Pfotzer maximum,
- TEPC dose equivalent profile shows no Pfotzer maximum at all
 - Indicative of high-LET albedo neutrons and cosmic ray primaries
- Assessment of NAIRAS
 - Qualitatively captures the essential features of the atmospheric ionizing radiation field
 - Adequately defined the science objectives and Flight ConOps to achieve science goals
 - Quantitatively, its underestimation of the measurements point to the following deficiencies
 - $\circ~$ Inadequate production of $\pi\text{-}EM$ particles (i.e., the complex region), highlighting the role of backscatter contributions
 - Possibly underestimation of cosmic ray primary protons