National Aeronautics and Space Administration

Unsteady Heat-Flux Measurements of Second-Mode Instability Waves

Michael A. Kegerise & Shann J. Rufer

NASA Langley Research Center

NATO Working Group on Hypersonic Transition, 26-27 March 2015, Tucson, AZ

www.nasa.gov 1

Introduction

- Atomic Layer Thermopile (ALTP) sensors
 - Developed by Tim Roediger (2010 Doctoral Thesis, University of Stuttgart, Germany)
 - Provides a time-resolved heat-flux measurement
 - Good spatial resolution: ~1 mm²
 - Frequency response on the order of 1 MHz
 - Linear static response over several orders of magnitude (from mW/cm² to kW/cm²)
- Well suited for measurements of unsteady heat transfer in a wide range of flow problems
 - Heat transfer in turbomachinery
 - Stagnation point heating
 - Shock-boundary layer interactions
 - Measurements in short duration supersonic and hypersonic facilities
 - Laminar-to-turbulent transition

Objectives

- Gain experience with the ALTP sensors for measurements in transitional hypersonic boundary layers
 - Previous work by Roediger *et al* (2009), Roediger (2010), and Heitmann *et al* (2010) demonstrated this application in short-duration hypersonic wind tunnels
 - Demonstrate application in our conventional hypersonic blow-down tunnels
- Develop the capability to dynamically calibrate the ALTP sensors
 - Measurements of the sensor frequency response function
 - Critical for cross-correlations and cross-spectral analysis with multiple sensors
- Measure second-mode instability waves on a flat plate model in a Mach 6 freestream flow

Atomic Layer Thermopile (ALTP) Sensors

- Sensor area of 1 mm²
- Nominal bandwidth of ~1 MHz
- Nominal static sensitivity of 48.0 μV/W/cm²
- Signal from ALTP sensor is amplified with a miniature amplifier placed inside the model
 - AC coupled signal has a fixed gain of 5000 and bandwidth from 17 Hz to 1 MHz
 - DC coupled signal has adjustable gain from 100 to 800 and a bandwidth of 100 kHz

Perspective and top views at 30X optical mag.

7.6 mm

4.8 mm

Close-up view of sensor active area at 150X optical mag.

Experimental Setup for Dynamic Calibration of the ALTP Sensors

Frequency Response Measurement Details

- Amplitude modulate radiant heat-flux input with a sine wave
- Collect time-series data for a range of sine-wave frequencies
- Calculate the frequency-response function between the reference input measured by the photo diode and the output of the ALTP sensor amplifier

$$H(f) = rac{G_{xy}(f)}{G_{xx}(f)}$$
 $|H(f)|$ Magnitude
 $\angle H(f)$ Relative Phase

Acquisition and Processing Parameters

$$F_s = 2 \text{ MHz}$$

 $N_{samp} = 4 \times 10^6$
 $N_{fft} = 50000$ $N_{blk} = 160$
Hanning Window, 50% overlap
 $\Delta f = 40 \text{ Hz}$

Sample Time Series Data for Dynamic Calibration

Red Curve: Reference Photodiode Blue Curve: ALTP Sensor

Frequency Response of ALTP Sensors

Black Symbols: Pre-Test Measurements Blue Symbols: Post-Test Measurements

Experimental Setup

- Facility
 - Langley Aerothermodynamics Laboratory 20-Inch Mach 6 Tunnel
 - Conventional blow-down tunnel
 - Test Gas: Air
 - Re Range: 1.6 to 28.5x10⁶/m
 - Total Temperature: 465 to 520 K
- Flat plate model
 - 71.12 cm long by 27.94 cm wide
 - Sharp leading edge
 - AOA of zero and -5 degrees
 - ALTP sensors were mounted in a streamwise array along model centerline
 - 16 sensor locations were available from
 x = 21 cm to 63 cm with 2.8 cm spacing
 - For a given run, 4 ALTP sensors were installed

Heat Flux Power Spectral Densities

Heat Flux Power Spectral Densities at x = 26.54 cm for a range of freestream unit Reynolds numbers and an AOA of zero degrees

Streamwise evolution of heat flux power spectral density at a unit Reynolds number of 5 million/m and an AOA of zero degrees

Sample Heat Flux Time Series

- Heat flux time series at several streamwise positions acquired simultaneously during a run
- Time series were band-pass filtered about the most unstable second mode frequency (70 to 200 kHz)
- Unit Reynolds number of 8 million/m

Second-Mode Wave Parameters

Note: The boundary layer thickness, δ , was based on the laminar similarity solution with a Sutherland viscosity model

Run-to-Run and Sensor-to-Sensor Repeatability

Issues with static calibration? Accuracy of static sensitivity? How flush is sensor plug with model surface?

Summary

- Dynamic calibration via laser-based radiative heating
 - Frequency response of our ALTP sensors was 650 kHz
 - Sensor-to-sensor frequency response functions were nearly the same
 - Pre- and post-test measurements of frequency response functions were essentially the same
- Measurements of second-mode instability waves on a flat plate model in a Mach 6 freestream
 - Results are in-line with what we expect from theory and previous measurements
 - Most-amplified second-mode frequency varies inversely with boundary-layer thickness
 - Phase speed is roughly 90% of the freestream velocity
 - Instability wavelength is roughly twice the boundary-layer thickness
- ALTP sensor measurement repeatability
 - Run-to-run repeatability for a given sensor is acceptable
 - Sensor-to-sensor measurements at a given port location show some variability
 - How accurate is the static calibration?
 - How stable is the static calibration over time?
 - How flush is the sensor with the model surface?

National Aeronautics and Space Administration

Backup Slides

Heat-Flux Statistics

Mean Heat Flux

Broadband R.M.S. Heat Flux

