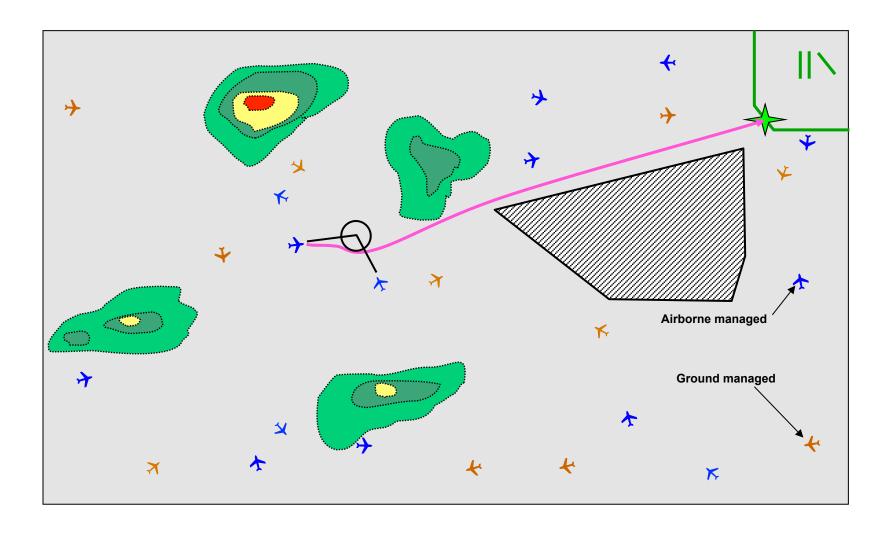


Criteria Approach to Separation Assurance

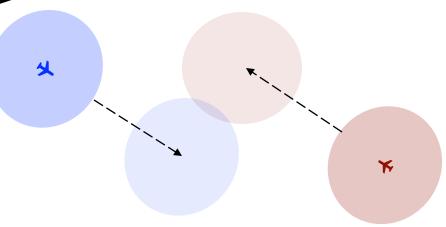

Jeffrey Maddalon,

Rick Butler, George Hagen, Cesar Muñoz, and Anthony Narkawicz

March 26th, 2015

Self Separation Concept

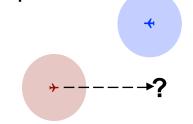
Separation and Automation


- Collision
 - Scrape paint

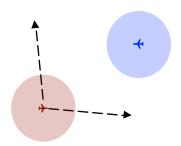
1

¥

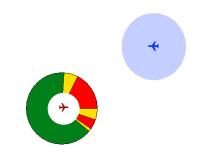
- Avoid through pilot, controller, and TCAS
- Loss of Separation
 - Separation standards are violated (5nmi, 1000ft)
 - Avoid through human and/or automation decisions
- Conflict
 - Predicted loss of separation



Separation Algorithms


Conflict Detection

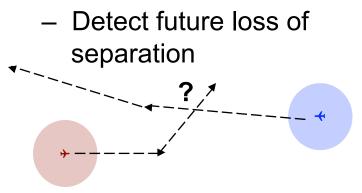
 Detect future loss of separation


Conflict Resolution

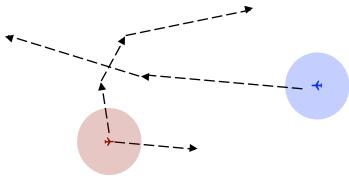
 Suggest maneuvers to avoid a conflict

Conflict Prevention

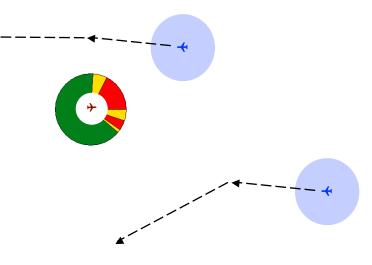
 Provide conflict-free maneuvers



+


Trajectory Algorithms

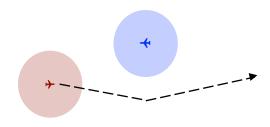
Conflict Detection


Conflict Resolution

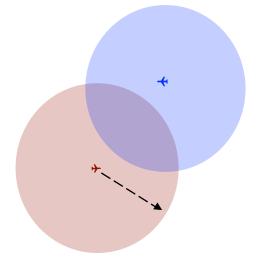
 Suggest maneuvers to avoid a conflict

Conflict Prevention

 Provide conflict-free maneuvers



Recovery Algorithms


Conflict Recovery

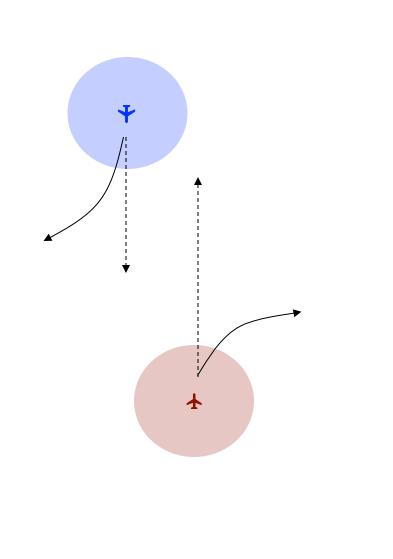
 Suggest maneuvers to regain desired path

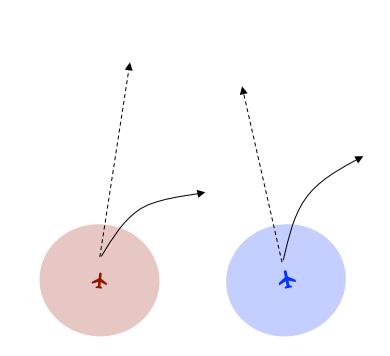
Loss of Separation Recovery

- For a variety of reasons separation may be lost
- Suggest a maneuver to regain separation

Develop a mathematical framework for the verification that such algorithms are correct (i.e., maintain safety properties)

- Introduction
- Example: Resolution
- Criteria Approach to Coordination
- Using Criteria
- Criteria Details
- Summary


Resolution



- Each aircraft determines its own set of maneuvers to avoid the other aircraft
 - Go right/left
 - Speed up/slow down
 - Go up/down
- Safety Properties
 - Independence: free of conflicts if one aircraft maneuvers
 - Coordination: free of conflicts if both aircraft maneuver
- Customer Desires
 - No specific communication between aircraft
 - No unfair rules: lower aircraft ID goes first, etc.

Coordination Examples

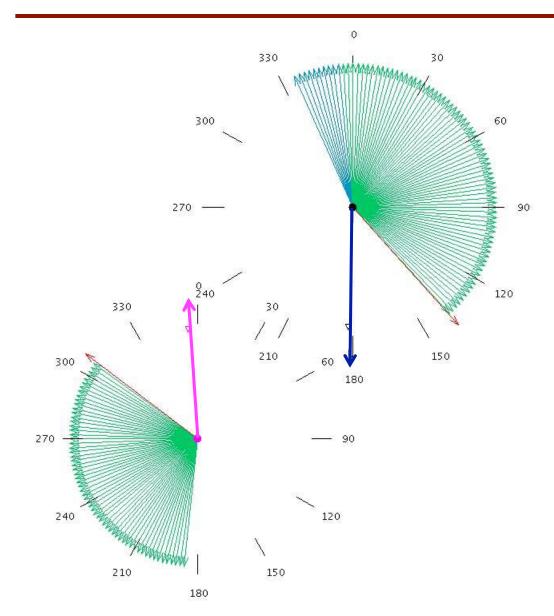
Uh, oh...

Coordination

- Correctness
 - When both aircraft maneuver, is the combined maneuver safe?
 - Relies on "knowing" what the other aircraft is going to do
- How to achieve this knowledge?
 - Single algorithm
 - Multiple algorithms

- Single algorithm needs a single verification that the algorithm is coordinated with itself
 – For example, TCAS
- But this algorithm must
 - Accommodate aircraft with widely different performance envelopes
 - Have the entire fleet upgraded at one time
 - When new versions come out
 - Be used by everyone...
 - Competing airlines
 - Military traffic
 - International traffic

- Avoid the difficulties with a single algorithm
 Multiple versions of TCAS are an example
- But multiple algorithms require
 - Each algorithm to be verified with every other algorithm
 - Costly NxN verification
 - This cost grows as new algorithms are added
 - and possibly exclude correct new algorithms


- Avoid the difficulties with a single algorithm
 Multiple versions of TCAS are an example
- But multiple algorithms require
 - Each algorithm to be verified with every other algorithm
 - Costly NxN verification
 - This cost grows as new algorithms are added
 - and possibly exclude correct new algorithms

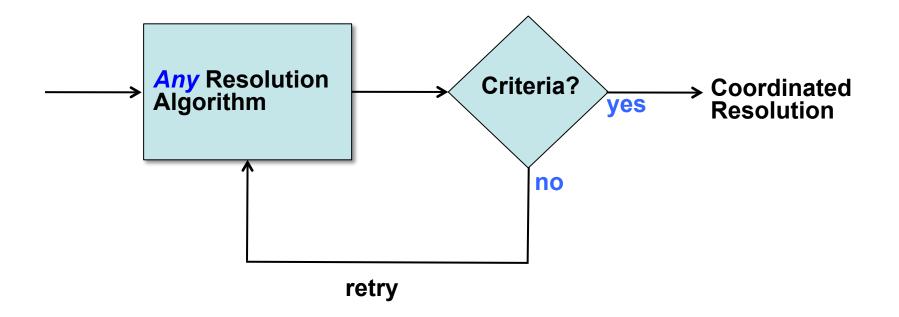
We have developed an approach that allows multiple algorithms with a verification cost close to a single algorithm

- Introduction
- Example: Resolution
- Criteria Approach to Coordination
- Using Criteria
- Criteria Details
- Summary

What is Criteria?

- Criteria is a range of resolutions
 - Each aircraft chooses any resolution within the criteria
 - The joint maneuver is coordinated
- Criteria is simple so algorithms can be checked in a straight-forward way 16

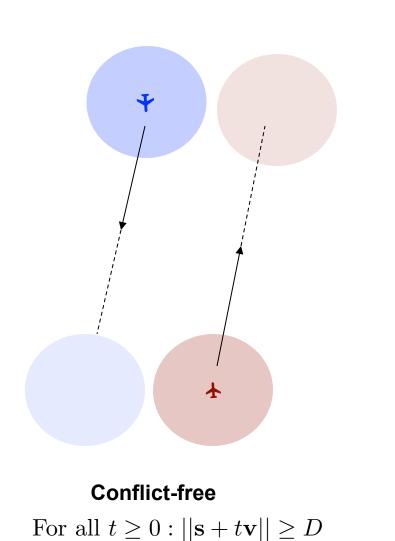
Multiple Algorithms



- Introduction
- Example: Resolution
- Criteria Approach to Coordination
- Using Criteria
- Criteria Details
- Summary

Criteria "Filtering"

Theunissen and Uijt de Haag, "Towards a seamless integration of awareness support and alerting systems: Why and how" 30th Digital Avionics Systems Conference (DASC), 2011


- Alternately, one can check if an algorithm inherently satisfies the criteria
 - Perform a mathematical/software verification that resolutions always satisfy the criteria
 - We have done this for several algorithms
 - Anthony Narkawicz and César Muñoz. <u>State-Based Implicit Coordination and Applications</u>, NASA TP-2011-217067, March 2011.

- Introduction
- Example: Resolution
- Criteria Approach to Coordination
- Using Criteria
- Criteria Details
- Summary

What is Safe?

In Loss of Separation

 $||\mathbf{s} + \tau \mathbf{v}'|| > ||\mathbf{s} + \tau \mathbf{v}||$, where τ is the time of closest approach

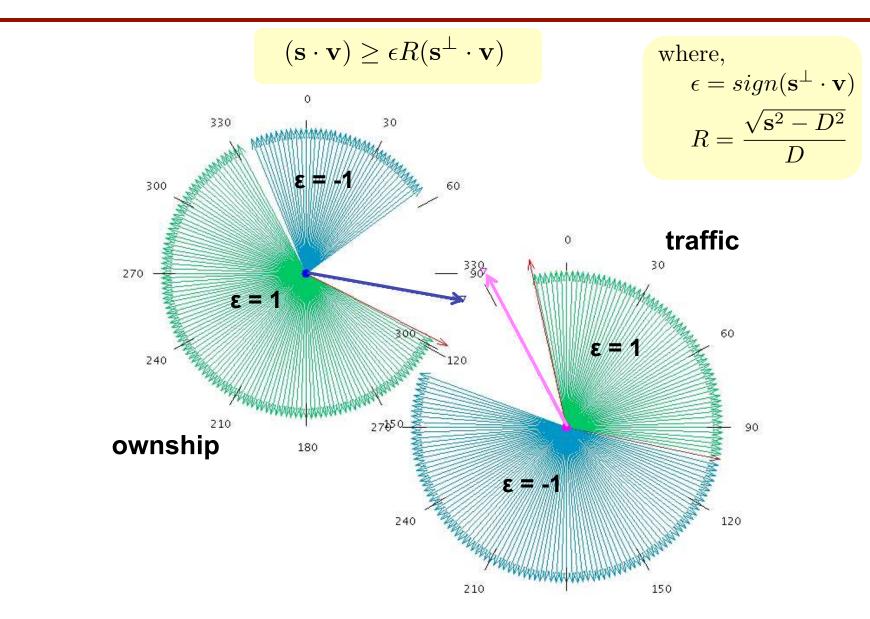
Criteria

horizontal

 $(\mathbf{s} \cdot \mathbf{v}') \ge \epsilon R(\mathbf{s}^{\perp} \cdot \mathbf{v}')$

in Conflict

in Loss of Separation


 $(\mathbf{s} \cdot \mathbf{v}') > \mathbf{s} \cdot \mathbf{v} \text{ AND}$ $(\mathbf{s} \cdot \mathbf{v}') \ge ||\mathbf{s}|| \frac{(D-||\mathbf{s}||)}{T_{h}}$

vertical

$$\begin{split} \Delta &> 0 \text{ AND } t > 0 \text{ AND } \\ \delta &= 1 \text{ AND } s_z v_z \geq 0 \\ \text{OR} \\ &|s_z + t v_z| \geq H \text{ AND } \\ \delta &|s_z + t v_z| v_z \leq 0 \end{split}$$

 $v'_{z} \neq 0 \text{ AND } s_{z}v'_{z} \geq 0 \text{ AND } s_{z}v_{z} \geq 0$ IMPLIES IF $v_{z} = 0$ THEN break_sym(s)(v'_{z}) > 0 ELSE $sign(v_{z})v'_{z} \geq 0$

Horizontal Criterion

- Introduction
- Example: Resolution
- Criteria Approach to Coordination
- Using Criteria
- Criteria Details
- Summary

Summary

- Multiple algorithms and one criteria solves practical problems
 - Specialized algorithms for different aircraft performance envelopes
 - Algorithms can evolve
 - » don't have to upgrade the fleet at one time
 - Different algorithms from different vendors
 - » Different avionics suppliers
 - » Customize algorithms for different airlines
 - » International vendors
 - No costly NxN verification
- All coordinated solutions are really proposing a criteria
 - Complexity of criteria: "use my algorithm" vs. equations