

Towed Glider Air Launch System

Gerald D. (Jerry) Budd, Project Manager NASA Armstrong Flight Research Center, Edwards, CA 661-276-3377 (office) 661-607-1483 (cell) jerry.budd@nasa.gov

DESIGN

BUILD

Darryl W. Webb, Senior Project Leader Economic Market & Analysis Center The Aerospace Corporation, El Segundo, CA 310-336-2456 (office) darryl.w.webb@aero.org

NASA Space Technology Mission Directorate 2016

5/24/2016

TOWED GLIDER LAUNCH PLATFORM ANIMATION

A remotely-piloted glider, towed by a modified cargo/passenger jet, releasing a launch vehicle with payload at 48K', M=0.75, up to a 70^o flight path angle, safely & effectively.

TGALS – Towed Glider Air Launch System

NASA Space Technology Mission Directorate 2016

TOWED GLIDER LAUNCH PLATFORM CONOPS

NASA

Sustainer Rocket Motor

Location: Mounted on top of the glider

Purpose: Provides variable thrust on demand to change the Glider and LV orientation from horizontal to nearly vertical

Features:

- Restartable
- Throttleable from \sim 15% to 100%
- Controllable
- Increases Glider fly-back range

Profile: Start horizontal, idle sustainer motor, begin pull-up towards 70^o climb, use sustainer motor variable thrust to maintain constant airspeed during climb, stabilize at 70^o then release LV

The sustainer motor provides the energy to go from horizontal to nearly vertical so the LV is optimally oriented for launch

TGALS – Towed Glider Air Launch System

NASA Space Technology Mission Directorate 2016

Glider Design Creates Trade Space

Next Generation: Towed Glider

Towed Glider flexibility ensures design success

TGALS – Towed Glider Air Launch System

NASA Space Technology Mission Directorate 2016

5/24/2016

Why Towed Glider?

- Performance:
 - Pull-up maneuver provides a 30% increase in payload performance to orbit over current airlaunch approaches, up to 70% increase over ground launch
- Geometry:
 - Can lift significantly larger payloads to altitude vs modifying a same size, direct carry, "conventional" aircraft for external carriage
- Cost: Less expensive to build, operate, and maintain than a one-of-a-kind, custom carry aircraft
 - Simple glider, devoid of expensive, complex systems
 - No hydraulics, fuel system, engines, life support, egress systems
 - Leverages the advantages of air-launching
 - No dependence on critical ground based launch facilities/assets
- Safety: Unmanned glider eliminates aircrew concerns for carrying LV
 - LV doesn't have to be human-rated (blast proximity), nor does the glider
- Technology: No new technologies required, just an integration of existing, proven technologies

TGALS – Towed Glider Air Launch System

Independent Concept Validation Studies

- NASA contracted with three separate entities in 2012 to study and assess the viability of the Towed Glider Air Launch System Concept
 - Georgia Tech University
 - SAS/Rutan Designs
 - Morgan Aircraft Co.
- All three studies concluded that:
 - The concept is viable;

Design Carry Efficiency: 1.85

 It offers significant improvements in efficiency, performance, and cost, over current state of the art air launch methods.

The studies showed the concept is do-able...next step is the Proof of Concept

TGALS – Towed Glider Air Launch System

NASA Space Technology Mission Directorate 2016

Aerospace Corp. Business Case Analysis

- Aerospace Corp. is currently performing a study of TGALS to:
 - Estimate the costs associated with the development, integration, and test of major TGALS components:
 - Glider
 - Glider sustainer motor
 - Tow plane modifications
 - Launch Vehicle modifications
 - System operations costs
 - Develop projections for potential TGALS launch rates under several different scenarios
 - Forecast TGALS financial performance within these scenarios, using both a traditional government acquisition scheme as well as a private-public partnership mechanism proposed by AFRC, including the following metrics:
 - Cash flow projections
 - Return on Investment (ROI)
 - Payback period
 - Net Present Value
 - Operating Margins

TGALS – Towed Glider Air Launch System

NASA Space Technology Mission Directorate 2016

5/24/2016

Business Case Analysis (BCA) – Modeling Approach

BCA modeling predicts technology, industrial capability, development and acquisition cost, market size, capture rates, financials, uncertainty, and utility functions resulting in decision frameworks

Cost and Revenue Estimate Major Components and Features

- Modeling of all major system components to reflect the acquisition and operations cost accurately
- Technology forecasting (methods, processes, computer aided design and manufacturing, etc.)
- Integration complexity
- Costs and reliability versus flight test program quality
- Operations model that depreciates system components, maintains, refurbishes and replaces within reasonable periods
- Organization complexity model reflecting system component
 and organizational layering
- Financial model reflects competitive pricing and investor returns
- Dashboard that compiles success metrics for technical and business factors, a control dashboard and system composite metrics

Organization Complexity Model

Business Case Analysis (BCA) Major Assumptions

• General

- Program development is initiated in calendar year 2017
- All cost estimates in FY 2016 \$m
- Market assessments and financial returns include operations to 2040
- Profit margins charged are reflective of marketplace competitiveness
- A reserve of 20% is included in provider launch and fixed costs
- Flight Providers
 - New launch providers = 11
 - Survival rate for new providers = 70 %
 - Total providers = 9 (competitive by payload class with multiple manifesting)
 - Tax rate = 35%
- Flight Vehicle Operations
 - No disruption due to catastrophic failures is included

Fixed Cost (annual)
TOW AC annual depreciation
Glider annual depreciation
Hanger, Office and Facilities
Management and Procurement
Administrative
Engineering
Engineering Support
Marketing and Advertising
Ground crew
Tow Flight crew
Software Maintenance
Flight Ops
Tow AC Operations
Liq Rkt Consumables
Liq Rkt Refurb per flight
Liq Rkt Replacements
Glider Maintenance
Launch Vehicle
Payload Integration
Grd Station TT&C & Space Net
C-17 Ferries
Airport Fees
Liability Insurance

Cost and Revenue Summary – Annual and Cumulative

Sensitivity Analysis

- With an investment partnership, the price per flight allows reasonable profit margins
- However Return On Investment (ROI) requires a profit margin per launch of 50-70% and annual launch rates above 12-15 to achieve a reasonable ROI of 10-22%
- A reserve of 20% is included in provider launch and fixed costs

Study Observations, Conclusions, and Recommendations

Observations

- Detailed modeling is important to differentiate design approaches
- Multiple payload capacity capability for a single provider is difficult to characterize in the market model due to self competing

Market Analysis

- Experienced and skilled market forecasting can miss actual launch rates by a large margin
- Multiple manifesting and constellations complicate launch vehicle market forecasting
- Competition price point determination is important in determining profit margin

Results

- The model is aiding in determining profitable approach, design, and heritage constraints
- As usual flight rate is a large driver
- Projected costs for the towed concept have the potential to be competitive
- In an increasing market a reasonable ROI is possible

Questions?

TGALS – Towed Glider Air Launch System

NASA Space Technology Mission Directorate 2016

5/24/2016

Towed Glider Technology is Scalable

NASA

Achievable with conventional aircraft for Tow Plane 3750 250 Launch Vehicle Size (klb_m) Payload to Orbit¹ (lb_m) 450 km polar, circular orbit¹ ~250' Span Glider 1275 747 Class ~185' Span 85 **Tow Plane** Glider 757 Class 300 **Tow Plane** 20 ~100' Span Glider **G-3 Tow Plane** Glider and Launch Vehicle Size/Weight

TGALS – Towed Glider Air Launch System

NASA Space Technology Mission Directorate 2016

Its all about Weight Distribution...

TGALS – Towed Glider Air Launch System

NASA Space Technology Mission Directorate 2016

5/24/2016

ASA

Background: F-106 Tow Experiment (1997)

TGALS – Towed Glider Air Launch System

NASA Space Technology Mission Directorate 2016