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ABSTRACT 
NASA Probabilistic Risk Assessment (PRA) has the task 

of estimating the aleatory (randomness) and epistemic 

(lack of knowledge) uncertainty of launch vehicle loss of 

mission and crew risk, and communicating the results.  

Launch vehicles are complex engineered systems 

designed with sophisticated subsystems that are built to 

work together to accomplish mission success.  Some of 

these systems or subsystems are in the form of heritage 

equipment, while some have never been previously 

launched.  For these cases, characterizing the epistemic 

uncertainty is of foremost importance, and it is anticipated 

that the epistemic uncertainty of a modified launch 

vehicle design versus a design of well understood heritage 

equipment would be greater.  For reasons that will be 

discussed, standard uncertainty propagation methods 

using Monte Carlo simulation produce counter intuitive 

results, and significantly underestimate epistemic 

uncertainty for launch vehicle models.  Furthermore, 

standard PRA methods, such as Uncertainty-Importance 

analyses used to identify components that are significant 

contributors to uncertainty, are rendered obsolete, since 

sensitivity to uncertainty changes are not reflected in 

propagation of uncertainty using Monte Carlo methods.  

This paper provides a basis of the uncertainty 

underestimation for complex systems and especially, due 

to nuances of launch vehicle logic, for launch vehicles.  It 

then suggests several alternative methods for estimating 

uncertainty and provides examples of estimation results.  

Lastly, the paper describes how to implement an 

Uncertainty-Importance analysis using one alternative 

approach, describes the results, and suggests ways to 

reduce epistemic uncertainty by focusing on additional 

data or testing of selected components.  

1. INTRODUCTION 

Uncertainty is an important aspect of any PRA to reflect 

the level of confidence in the models and data used in the 

analysis, and to provide information used for engineering 

and management decisions. In launch vehicles, risks are 

typically considered high [1], compared to most industry 

applications. Uncertainty, especially the upper bounds, 

can aid in anticipated launch commit decisions for NASA.  

As technology advances and new system designs 

populated with first launch hardware are developed for 

more ambitious space applications, estimating uncertainty 

of these designs becomes paramount to mission success.  

Additionally, the ability to characterize the contribution 

of components to the overall uncertainty provides a means 

for supporting testing plans and system development.  

To perform a proper uncertainty analysis for new designs, 

the development of epistemic uncertainty (uncertainty 

due to lack of knowledge) represents a difficult task, both 

in assigning failure probability distribution bounds to new 

components, and in propagating this uncertainty through 

the PRA logic model.  

One would believe that standard Monte Carlo simulation 

provides an appropriate methodology to propagate 

uncertainty through subsequent logic models. However, 

upon further investigation, this method appears to be 

highly questionable, and becomes more of a concern in 

logic models with structures like those that reflect launch 

vehicle designs.  

2. UNCERTAINTY PROGAGATION 

Monte Carlo simulation provides a process to propagate 

uncertainty through a reduced Boolean equation created 

by PRA software to solve logic trees, such as built in the 

Systems Analysis Programs for Hands-on Integrated 

Reliability Evaluations (SAPHIRE) tool [2].  Probability 

distributions, representing the uncertainty of component 

failure rates, can be randomly sampled using Monte Carlo 

simulation and combined to estimate an uncertainty 

distribution for the top event in the PRA fault-tree model.  

Uncertainty propagation is affected by the logic of the tree 

and in general, AND gates tend to preserve or increase the 

bounds of two numerically similar combined basic events, 

while OR gates reduce this uncertainty. Sensitivity studies 

show the top event in a fault tree with many OR gates is 

insensitive to changes in the epistemic uncertainty of the 
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tree’s basic events. Although this phenomenon was 

known, we did not fully realize the resulting implications 

on PRA until fairly recently, which prompted this paper 

for peer discussion.  

Several simple tests were performed to understand the 

nature and extent of uncertainty changes due to 

propagating in this manner.  It was understood that when 

performing Monte Carlo routines on a Boolean 

expression, the mean results of the PRA mode top event 

could be determined by dominating basic events.  

Therefore in these test cases the basic event failure 

probabilities are all set to the same magnitude.  Moderate 

variances in the magnitude of basic events, such as found 

in typical complex systems, will not significantly affect 

the results of these test cases. This also applies to 

uncertainty, where dominance by any basic event or small 

set of basic events will result in the uncertainty also being 

dominated by those same basic events.  

To facilitate understanding of the nature and extent of this 

reduction, several sample sets were run in SAPHIRE.  

Each sample set was selected to minimize the effect of 

other variables in the solution of the top event and 

emphasize the changes in uncertainty.  Initial test cases 

focused on determining the number of similar events with 

specific logic potentially causing this decrease in 

uncertainty.   

 

To set up the test cases, two small logic trees of ten similar 

events were developed.  Each independent basic event 

was given the same probability distribution.  One logic 

tree contained all OR gates and the other contained all 

AND gates. All basic-event probabilities for these test 

cases used a lognormal distribution with a mean of 1.0E-

5 and an Error Factor (EF) and were uncorrelated (The EF 

for the lognormal distribution is defined as the 95th 

percentile divided by the median.) The EF was varied for 

each test case as was the number of basic events in the 

fault tree logic. For each case, 99999 random SAPHIRE 

trials were run using a random seed, and in all of the cases 

the top event converged. In each case, the uncertainty 

distribution of the top event was a good fit to a lognormal 

distribution that we parameterized using moment 

matching. Tables 1 and 2 below show the test cases and 

top event uncertainty results for the OR gate tree and the 

AND gate tree, respectively. 

 

Table 1: EF Results from OR Logic Uncertainty Test 

Cases 

 
 

As can be seen from Table 1, the EF significantly 

decreases as the number of similar basic events increases 

under the top event. Even as the EF is increased to 100, a 

very large and potentially unreasonable EF, the reduction 

in uncertainty of uncorrelated events added together in the 

Boolean expression reduces significantly and is 

essentially diminished compared to the basic event 

uncertainty after ten such events.  Test runs were also 

conducted at a higher mean value (5.0E-5) showing 

similar results.  

 

Table 2: EF Results from AND Logic Uncertainty Test 

Cases 

 
 

Table 2 shows some of the AND logic test cases.  As the 

number of basic events increases, the ability to 

characterize the uncertainty becomes more difficult, since 

the result of combining the basic events using Monte 

Carlo becomes unbounded.  

3. CORRELATION AND PRACTICAL 

APPLICATIONS 

Correlation effects were as anticipated in the test cases.  

By correlating some of these events using 100 percent 

positive correlation, the effect was essentially to reduce 

the number of distributions, therefore; the number of basic 

events used by SAPHIRE to determine the uncertainty of 

the top event; Table 1 and Table 2 applies accordingly. In 

our launch vehicle design PRA models, the degree of 

correlation between similar component types (e.g., 

different cable and connector pairs) had some minor 

effects in increasing uncertainty. However, the increase 

was not enough to show sensitivity to increased epistemic 

uncertainty at the component level.   

 

Our belief is that due to the launch vehicle environments, 

for example in ascent, most components at least at the 

system level are partially correlated in some manner.  

Partially correlating all of these components would result 

Number of Basic Events 5 10 15 20 100

2 3.4 6.1 8.6 11.1 44.5

5 2.3 3.8 5.1 6.3 21.3

10 1.9 2.8 3.7 4.5 13.8

20 1.6 2.2 2.8 3.3 9.5

Error Factor

Number of Basic Events 5 10 15 20 100

2 9.6 26.5 47.1 70.9 700.3

3 17.5 NA NA NA NA

4 NA NA NA NA NA

20 NA NA NA NA NA

Error Factor



in greater uncertainty in the logic model. The possibility 

of adding partial correlation was investigated, considering 

the complexity and number of component basic events 

affected.  Even at a system level, this approach was both 

beyond the standard current tool set available and 

introduced additional model uncertainty in ascertaining 

the appropriate partial correlation factors. In addition, 

even if we developed alternative tools and addressed the 

added model uncertainty in assigning partial correlation 

factors, the method of applying partial correlation and 

creating an N-by-N basic event matrix would be daunting 

to develop and apply. Therefore, alternative methods were 

sought to capture epistemic uncertainty.  These methods 

are introduced below. 

4. LAUNCH VEHICLES AND COMPLEX 

SYSTEMS WITH MULTIPLE SAFETY 

BARRIERS DIFFERENCES 

One pertinent question arises concerning uncertainty 

bounds when comparing Monte Carlo simulations used in 

solving complex systems employing multiple safety 

systems and launch vehicle PRAs.  Namely, why is this 

uncertainty reduction effect not as apparent in these PRAs 

and is it an issue?  

 

The answer probably lies in the nature of functionality and 

safety design in these complex systems.  If multiple safety 

barriers can be called on to mitigate accident transients, 

then this redundancy is at the system level and results in 

AND logic (safety redundancy) at the top of the fault tree 

logic.  Launch vehicle design, due to weight reduction, 

optimized aerodynamics/volume, and cost considerations, 

usually features single fault tolerance (redundancy) at the 

subsystem level.  Loss of the avionics system, for 

example, will result in loss of the launch vehicle. In other 

words, launch vehicle redundancy is built-in typically at 

the subsystem level rather than the system or element 

level.  This will be reflected in redundancy, or AND gates 

at a lower level in the logic tree, while the upper portion 

of the tree will have multiple OR gate logic, depicting that  

any loss at the system or element level results in loss of 

the vehicle. After the discussion in Section 2, one can see 

where the differences in the tree logic structure between 

complex systems with multiple safety barriers and launch 

vehicles result in differences in epistemic uncertainty 

propagation. Furthermore, dividing the logic trees into 

phases to ascertain functional and environmental 

differences, as is experienced with launch vehicle 

missions, can only perpetuate the uncertainty reduction 

problem. 

 

Although these complex systems typically preserve or 

increase some uncertainty due to the logic structure of 

these designs using Monte Carlo simulation, it was 

suspected that the uncertainty and uncertainty-importance 

results are as sensitive as needed to be for analytical 

purposes.  In any case, the reduction in epistemic 

uncertainty for systems that have redundancy at a lower 

level using Monte Carlo uncertainty propagation 

techniques in PRA, may be occurring to some extent. 

PRA analysts should be aware of this potential. It is very 

apparent that this reduction is occurring in PRA models 

of launch vehicle designs.  

5. IMPLICATIONS TO LAUNCH VEHICLE 

PRA UNCERTAINTY AND RELATED 

ANALYSES 

One of the main implications of this reduced uncertainty 

effect is the reduced ability  to determine which basic 

events, and thus components, in the model represent a 

significant contributor to  uncertainty due to lack of 

knowledge about that component. This is an artifact of the 

propagation of the logic tree for launch vehicles and basic 

events become insensitive to changes in the uncertainty.  

Often in cases where new equipment is used and 

demonstrated historical data is unavailable, PRA 

component reliability information may reflect like 

equipment or the use of a component in a different 

environment by assigning an increase in the component 

epistemic uncertainty.  This increase would reflect use of 

the component in a different environment, a different 

purpose, or a modified function. The magnitude of the 

increased uncertainty should provide insight into how 

much the “like” component differs from the design 

component and how much lack of knowledge exists 

related to that piece of the design. 

 

Uncertainty-Importance analyses can often identify and 

prioritize components, especially in a design setting, 

where reduced component uncertainty could substantially 

reduce the system-level uncertainty and, therefore; 

improve the credibility bounds of the model.  This can be 

accomplished by further investigation and using more 

applicable failure rate sources for the component, or 

invoking focused component testing. It can be time 

consuming and expensive to research every component in 

a complex system to reduce the level of uncertainty.  

Minimizing the number of components that require 

further investigation could prove to be a time and cost 

saving method, which would avoid performing this for 

every component.  



6. ALTERNATIVE APPROACHES TO 

ESTIMATE EPISTEMIC UNCERTAINTY 

Alternative approaches [3] were explored to estimate and 

maintain uncertainty and express sensitivity to changes in 

component or components groups’ epistemic uncertainty.   

6.1 Partial Correlation Based On Environmental 

Factors 

One such method explored was to apply a partial 

correlation factor across physical or interactive systems. 

The concept is based on environmental factors coupling 

failure rates of unlike components together either due to a 

similar location or similar environmental stress factors. 

Thus partially correlating failure rates would have the 

effect of increasing uncertainty by not treating the events 

as completely independent..  A launch vehicle will often 

have co-located systems due to limited space and volume 

requirements.  For example, the engine compartment may 

include the engine, portions of the main propulsion 

system, and some avionics electronics hardware.  All 

these systems may have some correlated failures 

associated with being co-located in a launch vehicle.   

 

The challenge with this approach is assigning a generic 

partial correlation factor and then implementing the 

correlation.  Implementing a generic correlation factor in 

a custom code to build matrices for a reduced Boolean 

expression was explored. This was a more straight 

forward approach then applying multiple partial 

correlation factors. However, it was found that there was 

a lack of defensible engineering basis to establish generic 

correlation factors for specific systems at this time. 

Although this approach was not finalized, it still remains 

a potential option for improving accuracy of uncertainty 

estimates. The true test of this approach will be 

determined when modifications to the assigned epistemic 

uncertainty are propagated through the logic model and 

exhibit sensitivity to these changes.  

6.2 Interval Approach 

Another approach that we discovered when investigating 

epistemic uncertainty sensitivity was the Interval 

Analysis technique [4].  Interval Analysis claims to 

characterize epistemic uncertainty, as distinguished from 

variability or randomness that is propagated through 

Monte Carlo routines.  Although we do not necessarily 

adhere to this aspect of the concept, we have found the 

Interval Analysis method in our case to be useful in 

characterizing uncertainty and in showing responsiveness 

to assigned changes in epistemic uncertainty of our logic 

models.  

 

Interval Analysis uses a reduced Boolean expression to 

solve a logic model for the top event.  It does this by 

calculating the uncertainty ranges as an upper and lower 

bound (5th and 95th) for each basic event, and then using 

these bounding values to estimate an upper and lower 

bound for the top event [5].  

 

Results from an example complex launch vehicle system 

showed an uncertainty EF (The EF is specific to the 

lognormal distribution and is only used as an 

approximation of the uncertainty) of about 1.5.  

Furthermore, applying a large EF to all basic events in this 

system, such as an EF of 10, showed minimal effects on 

the propagated uncertainty (i.e., EF~2). This effect was 

apparent in all major systems models of the launch 

vehicle.  

 

Epistemic uncertainty for basic events ranged from EFs 

of 4 to 15 with many basic events having an uncertainty 

of around 6.  Using the Interval Analysis technique, the 

uncertainty results showed an uncertainty value of 5.1.   

Uncertainty-Importance measurements [6] were run to 

identify dominant basic event contributors to uncertainty.  

These were grouped according to similarity to each other 

(e.g., Electrical Power, Navigation, and Flight Computer 

Software) and the EF modified for sensitivity to epistemic 

uncertainty.   

 

The Interval Analysis approach responded to changes in 

the initial epistemic uncertainty in a reasonable manner. 

As one important group of basic events were increased 

from an EF of 5 to 10, the EF of the Interval approach 

went from 5.1 to 7.5.  When this same group’s EF was 

decreased to 3, the resulting EF was 3.5.  Less important 

groups, as determined by the Uncertainty-Importance 

routines, had much smaller effects on the uncertainty as 

anticipated.  

7. SUMMARY AND CONCLUSIONS 

Uncertainty Analysis plays an important role in any PRA 

by describing the confidence around risk estimates.  Much 

of the uncertainty in the design of launch vehicles is due 

to epistemic uncertainty or “lack of knowledge” either 

due to new equipment or technology, or from use of 

heritage equipment in a new environment. In either case, 

the ability to estimate uncertainty at the basic event level 

and establish a method for targeting this uncertainty 

requires an approach that is sensitive to changes in 

uncertainty levels.   

 



Unfortunately, standard methods of uncertainty 

propagation using Monte Carlo techniques do not provide 

this sensitivity for typical launch vehicle design PRA 

models, due to the inherent logic structure that represents 

launch vehicle risks. While this is not a new phenomenon, 

it becomes very apparent when attempting to apply 

sensitivity studies to better understand the uncertainty.  

 

Alternative options were suggested to support 

implementing sensitivity strategies. We found partial 

correlation between unlike components could potentially 

solve this issue and result in an increase in uncertainty 

while maintaining the standard Monte Carlo uncertainty 

propagation methods. However, after further 

investigation, this option was hindered due to the lack of 

engineering data and derivation to estimate partial 

correlation and the lack of tools to accomplish this task.  

 

The Interval Analysis option was also introduced as an 

alternative that may aid in epistemic uncertainty 

approximation and support sensitivity studies on the 

uncertainty to help focus component failure rate data 

investigation, testing, and collection.  This analysis 

methodology was shown to have reasonable uncertainty 

results on a test system PRA model, and be sensitive to 

modifications of the epistemic uncertainty at the basic 

event level.  

 

It is recognized the preferred uncertainty propagation 

approach is to implement partial correlation and use 

Monte Carlo routines. However, implementation of this 

approach will likely require integration of physics-based 

risk models within PRA and advancement of PRA 

techniques to accommodate these models.  Although 

further testing is warranted, the Interval Analysis option 

is a good alternative to provide uncertainty bounds for 

launch vehicle design PRA models and appropriate for 

uncertainty sensitivity studies.  
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