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ABSTRACT 
Launch vehicle systems are designed and developed using 

both heritage and new hardware. Design modifications to 

the heritage hardware to fit new functional system 

requirements can impact the applicability of heritage 

reliability data. Risk estimates for newly designed 

systems must be developed from generic data sources 

such as commercially available reliability databases using 

reliability prediction methodologies, such as those 

addressed in MIL-HDBK-217F. Failure estimates must be 

converted from the generic environment to the specific 

operating environment of the system in which it is used. 

In addition, some qualification of applicability for the data 

source to the current system should be made. 

Characterizing data applicability under these 

circumstances is crucial to developing model estimations 

that support confident decisions on design changes and 

trade studies.  This paper will demonstrate a data-source 

applicability classification method for suggesting 

epistemic component uncertainty to a target vehicle based 

on the source and operating environment of the 

originating data. The source applicability is determined 

using heuristic guidelines while translation of operating 

environments is accomplished by applying statistical 

methods to MIL-HDK-217F tables.  

The paper will provide one example for assigning 

environmental factors uncertainty when translating 

between operating environments for the microelectronic 

part-type components. The heuristic guidelines will be 

followed by uncertainty-importance routines to assess the 

need for more applicable data to reduce model 

uncertainty.   

INTRODUCTION 

Today’s space launch vehicles are typically evolved from 

a combination of both heritage hardware and new 

technology. This developmental approach is often driven 

by cost, schedule, and reliability considerations. The 

Probabilistic Risk Assessment (PRA) team is developing 

PRA models for use in risk-informed decision making. 

PRA is a methodology for quantifying the risk of high-

consequence events such as loss of crew and loss of 

mission. The process involves developing fault-tree logic 

models based on the current design and then quantifying 

the basic events in the model.  Basic events in the model 

represent failure events, which can be functional (critical 

component failures), phenomenological (structural, 

fire/explosion, etc.), or human caused. This paper focuses 

on developing estimates for functional failure of 

components. Component failure rates are derived from a 

wide variety of data sources such as demonstrated 

reliability data for heritage hardware, reliability 

predictions developed by the prime contractors, and 

component failure databases, such as RIAC 

EPRD/NPRD, and NUCLARR. An important 

consideration in PRA modeling is an explicit treatment of 

uncertainty. Reliability prediction methodologies 

typically do not address uncertainty. Therefore, when 

using prediction data sources, methods need to be 

developed for consistently characterizing the uncertainty 

of component reliability predictions. Uncertainties in a 

PRA can be aleatory (random variation) or epistemic 

(lack of knowledge). Often epistemic uncertainties are the 

dominant contributors.  Therefore, characterizing 

epistemic uncertainty is crucial to risk-informed decision 

making to support design trade studies and flight 

readiness decisions. 

 

The team developed a two-part approach for quantifying 

epistemic uncertainty of component basic events in the 

PRA model. The first part reviews the data sources used 

in the component reliability prediction, evaluates the 

applicability of the data sources used in the prime 

contractor’s estimate, and assesses the uncertainty based 

on a heuristic approach. The second part of the approach 

accounts for epistemic uncertainty associated with 

translating failure rate estimates from the data-source 

environment to the launch vehicle’s operating 

environment.  

By reducing the fault tree logic to cutsets through Boolean 

logic reduction, basic event uncertainties are propagated 
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to the top event using Monte Carlo simulation methods. It 

then becomes important to identify those basic events that 

are important contributors to the uncertainty of the top 

event. Once identified, additional effort can focus on 

ways to reduce their uncertainty, such as by identifying 

additional data sources, reviewing and analyzing test data, 

and recommending additional testing. Therefore, the two 

step process is followed with a process to identify basic-

event contributions to the uncertainty of the top event in 

the logic model through the use of uncertainty-importance 

routines.    

BACKGROUND ON UNCERTAINTY 

 

Failure rates of components cannot be measured directly, 

and components used in space applications are highly 

reliable. Hence, system-specific failure data is rare. 

Consequently, estimates developed from generic sources 

must be used extensively, but are uncertain due to lack of 

knowledge and applicability. Typically in PRA 

applications, components are proof tested for flight and 

qualified for operation within their service life. Under 

these constraints, the exponential failure model is used, 

which has a constant hazard function equal to the mean 

failure rate (λ). The exponential distribution is a single 

parameter (λ) model. The uncertainty of the failure-rate 

parameter is represented as a Lognormal probability 

density function (p.d.f.). Unique to the Lognormal 

distribution is a measure of dispersion called the Error 

Factor (EF).  The EF is defined in terms of the 5th, 50th 

(median), and 95th percentiles of the probability 

distribution. Specifically, the EF is equal to the 95th 

divided by the 50th (median). The Lognormal failure rate 

uncertainty p.d.f. is illustrated in Figure 1.  

 

Figure1. Lognormal Probability Density Function (PDF) 

As noted above, uncertainty has two sources typically 

inherent in every system, aleatory and epistemic. Aleatory 

uncertainty is due to random variation, which is an 

inherent characteristic of the system and as such cannot 

be reduced except through physical changes to the system, 

such as quality improvement. Epistemic uncertainty can 

be reduced through acquisition of additional knowledge, 

such as better data sources, additional testing, flight 

experience, etc. Epistemic uncertainties stem from the 

modeling context, such as component reliability data 

(failure rates), model assumptions, and model 

completeness (e.g., missing scope or scenarios). This 

paper focuses on epistemic uncertainty associated with 

component reliability data. This context was selected 

based on the fact that model completeness and model 

assumptions are specific to their launch vehicle design 

whereas component reliability is more general to any 

launch vehicle design and is extensible to other systems 

as well.   

1. APPROACH TO ASSESS PARAMETER 

EPISTEMIC UNCERTAINTY 

The approach described below aims to consistently assess 

epistemic uncertainty across launch vehicle subsystems 

(e.g., booster, core stage, upper stage, engine, thrust 

vector control, avionics) by providing heuristic guidelines 

for assessing uncertainty based on the data-source 

applicability and operating environment. The discussion 

of this approach will be divided into two parts, Data-

Source Applicability and Data-Source Operating 

Environment. 

1.1 Source-Data Applicability 

It is important to note that the guidelines in this part 

of the approach are tailored to new launch vehicle 

systems or subsystems that lack historical flight data. 

Failure rates in this case often come from generic 

sources, such as reliability databases, and are usually 

provided as point estimates (mean or median). This 

section uses the point estimate and the applicability 

guidelines to estimate the parameters of the 

Lognormal failure rate uncertainty distribution for 

use in basic events in the PRA logic model. Bayesian 

reliability requires a prior distribution to represent 

degree of belief about the value of a component 

failure rate before system specific data become 

available from testing or operations. Hence, the 

uncertainty distributions developed with this method 

are prior distributions that will be updated using 

Bayes theorem when system specific information 

becomes available through testing or flight 

experience. 

 

This section describes the heuristic uncertainty 

classification method for assessing uncertainty due to 

data-source applicability. Applicability refers to the 



relevance of the source-data, used in developing the 

point estimate of the component’s failure rate, to the 

specific launch vehicle system being modeled. Table 

1. Data Source Applicability & Error Factor 

Assignment, lists the typical reliability data sources 

for new components. It is used to assess data-source 

uncertainty and assign an error factor, which along 

with the provided mean or median, completely 

specifies the basic event distribution in the PRA fault 

tree model.  Notice that the error factors increase 

from the most applicable source (Category A) to the 

least applicable source (Category E) as one would 

expect.   

Table 1. Data Source Applicability & Error Factor Assignment 

 

Table 2 below provides an example of how to apply the 

guidelines based on Table 1. Consider a simple launch 

vehicle subsystem comprised of four components 

operating in the Airborne Uninhabited Fighter (AUF) 

environment. The failure rate and the assessed Error 

Factor for each component is listed in Table 2 based on 

Table 1 uncertainty guidelines.  

Table 2. Example for Assigning Failure Rates EFs of a LV 

System 

 

1.2 Environmental Factors & Uncertainty 

Reliability data for a particular component operating in a 

specific environment, such as Missile Launch (ML) or 

AUF, may not be available from the desired operating 

environment to the extent necessary to develop an 

adequate prior distribution.  MIL-HDBK-217F provides 

an environmental factor conversion method which allows 

for converting the failure rate from one environment to 

another. These conversion factors are presumably mean 

values based on data, but are also uncertain. The purpose 

of this section of the approach is to estimate this source of 

epistemic uncertainty and propagate it to the failure rate 

prediction. The process followed begins with a derivation 

of the equation for the environmental conversion factor, 

identifies the variables in this equation, generates an 

uncertainty distribution for each variable, and finally 

propagates uncertainty to the resulting failure rate through 

the environmental equation. To implement this process, it 

was necessary to derive the equation for the 

environmental factor from the general failure rate, 

Equation [1], for microelectronics as given in MIL-HBK-

217F: 

λ𝑃 = (𝐶1𝜋T + 𝐶2𝜋𝐸)𝜋𝑄𝜋𝐿  [1] 

Where 

λ𝑝 is the component failure rate in million hours 

C1 is the circuit complexity 

C2 is the packaging complexity 

πE is the environmental factor 

πT is the component joint temperature factor  

πQ is the component quality factor 

πL is the learning factor (assumed 1 by the handbook) 

Solving for πE , the equation becomes 

π𝐸 =
(

λ𝑝
π𝑄

)−𝐶1𝜋T

𝐶2
      [2] 

The challenge with the MIL-HDBK-217F tables was that 

values for λp, C1, C2, πQ, and πT were provided as mean 

estimates only. Information about the standard deviations 

of the variables was necessary in order to develop 

uncertainty distributions for each of the variables in the 

equation. The next subsections explain how this was 

accomplished.   

1.2.1  Estimating C1, C2, πQ, and 𝛑𝐓 Uncertainty 

Distributions 

A literature research was conducted using the references 

cited in the MIL-HDBK-217F but yielded no insight into 

Source Category Source Descrption Source Application

Source 

Application   

Error Factor

Adjusted 

Environment 

Same component 3

Like component 4

Same component 5

Like component 6

Same component 6

Like component 7

Same component 8

Like component 9

Documented Process 10

Undocumented Process 15

Note: This table is intended to be used for point estimates that lack distribution data. Do not use if the distribution is already known

Other Industry Data

New 

Hardware

D MIL-HDBK-217F Methods

E
Non-expert Engineering Judgment                                                                  

(Least Applicable)

Legacy 

Hardware

A
Other Launch Vehicle Data                         

(Most Applicable)

Increases the 

Error Factor

B Aerospace Data

C

Component Data Source 
Mean                     

(Point Estimtae)

Error 

Factor

1
Engineering Judgement                           

(Documentent Process)
3.00E-06 10

2
MIL-KBK-217F                                           

Piece Part Method
6.01E-06 8

3
Aerospace Historical Data                      

(Same Component)
1.00E-06 5

4
Engineering Judgement                           

(Undocumentent Process)
3.50E-07 15



the standard deviations of the variables C1, C2, πT and πQ. 

This forced the team to make engineering assumptions 

about the distribution of the means to estimate 

uncertainty. There is no basis for assuming skewed 

distributions, and physical parameters tend towards 

Normality [Reference 3, Page 144], therefore, it was 

deemed appropriate to assumed normality.  

The coefficient of variation (CV), which is defined as the 

ratio of the standard deviation to the mean and is often 

expressed as a percentage, was used to estimate a 

reasonable relationship between the mean and the 

standard deviation 

(𝐶𝑉 =
σ

µ
)  

A value of 20% was assumed.  Standard deviation was 

then calculated by multiplying the assumed CV by the 

provided mean. Microcircuits Example 1, Section 5.13, 

Page 5-20 of the MIL-HBK-217F was used to illustrate 

the approach to generating uncertainty distributions for 

the variables in the equation for πE. See Table 2 for 

distribution results.   

Table 2. Uncertainty Distribution for C1, C2, πQ, and 𝜋𝑻 

Variable Mean SD(σ) 

C1 2.00E-02 4.00E-03 

C2 1.10E-02 2.20E-03 

πT 2.90E-01 5.80E-02 

πQ P.V. 80.00 16.00 

 

1.2.2 Estimating The Environmental Factor (𝝅𝑬) 

Failure Rate (λp) Uncertainty Distribution 

Reference [3] Revision of Environmental Factors for 

MIL-HDBK-217B for Microelectronics provides revised 

data for estimation of the environmental factors for the 

microelectronics part type. The report summarizes the 

data analysis methodology in Section 5.0 and reports the 

data on Tables 5.5-1 and 5.5-2. The report used 

demonstrated failure rate data to determine 𝜆𝑝 for five 

environments with ample historical data, namely Ground 

Benign (GB), Space Flight (SF), Ground Fixed (GF), 

Ground Fixed Non-Operating (GF-Non), and Naval 

Submarine (NSB). The average of the constant failure rate 

and the adjusted failure rate was assumed in this analysis 

to be Normally distributed and the standard deviation was 

calculated based on this assumption. Equation [2] was 

then modeled to a statistical software scripted in R 

language called Programmable Uncertainty Parameter 

Propagation into Equation Software (PUPPIES) to use a 

Monte Carlo routine to solve for the environmental factor 

using a random seed and 20000 simulations. The results 

of the Monte Carlo simulations for the five environments 

utilizing PUPPIES are depicted in Figure 2. The 

distribution results for the five environments do not 

appear to be normally distributed, since the median and 

mean are not identical. It is evident from the figure that 

the distributions are skewed and it was assumed that the 

data fit a Lognormal distribution.  

GB environment was used in Reference [2] as the 

reference environment for 𝜋𝐸. Since the results shown in 

Figure 2 appear to fit lognormal distribution, the error 

factor (a measure of uncertainty for lognormal 

distribution) for the GB  𝜋𝐸 equation was calculated to be 

3.00 using the formula (95th/median).  

 

Figure 2. Environmental Factor Epistemic Uncertainty for Five 

Environments  

2. Process to Reduce Uncertainty 

The purpose of this section is to demonstrate the process 

the team used to reduce model’s epistemic uncertainty by 

focusing on data-source applicability of the key 

contributors to the uncertainty. This process conforms to 

the flow chart in Figure 3.  

The collected failure rate data for each component basic 

event of the model was compared to the different 

categories found in Table 1 and was assigned a 

Lognormal distribution by selecting the appropriate EF. 

After solving the models fault tree, an uncertainty analysis 

was conducted using Monte Carlo simulations. This step 

created an uncertainty distribution for the entire model (as 

opposed to the uncertainty distribution for a single basic 

event). In cases where the Monte Carlo analyses yielded 

a high model uncertainty, uncertainty-importance 

analyses routines were used to identify the basic events 



that drive the uncertainty bounds. This step assessed the 

degree of need for more applicable data to reduce 

uncertainty by showing where additional resources need 

to be placed to the PRA model. Finally, the iterative loop 

should end when the model uncertainty results are 

satisfactory.  

 

Figure3. Process Flow Chart for Reducing Epistemic 

Uncertainty 

2.1 Case Study 

The purpose of this section is to provide an example for 

applying the uncertainty-importance process shown in 

Figure 4. Consider the simple LV system example given 

in Section 1.1. Table 2 in the same section shows 

components failure rates.  Assume the fault tree logic is 

implemented using a PRA software. 

Applying Monte Carlo simulation to the fault tree yields 

a median estimate of 1.59E-07 and 95th percentile of 

1.63E-06. A quantification of the model error factor 

(95th/median) equates to 10.25. This is considered a high 

model uncertainty. According to the flow chart in Figure 

3, uncertainty-importance analyses identifies 

Component1 to be responsible for driving this high 

uncertainty. A more advanced data search is conducted 

and finds a failure rate from a historical aerospace data of 

3.00E-06. Based on the new source applicability, this new 

failure rate is assigned an error factor of 5. Another trial 

of Monte Carlo simulation, with the same number of 

samples and seed, is simulated and the model error factor 

is now reduced to 5.15 (2.15E-06/4.23E-07). This is 

considered satisfactory uncertainty and the process of the 

flow chart ends here.  

3. Conclusion 

Parameter epistemic uncertainty applied in PRA 

represents the lack of knowledge of the component failure 

rate used in the logic model. As evident in Figure 1, the 

wider the distribution the larger the uncertainty. The 

heuristic guidelines developed for use in launch vehicle 

design risks and discussed in this paper provide a standard 

approach for better traceability of the epistemic 

uncertainty associated with the environmental factors and 

parameter failure rate data source. Once parameter 

uncertainty is categorized the proposed process flow chart 

in Figure 3 can be followed to prioritize the need to collect 

additional parameter data in order to reduce uncertainty if 

needed.  

The uncertainty about the environmental factor 

conversion, Equation2, was statistically estimated with an 

error factor of about 3. There were assumptions made 

about the variables uncertainty distributions due to the 

fact that very little data was provided about the mean 

values and nature of their distributions. Possible future 

work includes reaching out to the authors of MIL-HBK-

217F to confirm the uncertainties about the variables 

mean estimates that were not supplied in the handbook. 

This part of the approach only assessed the 

microelectronics part type, and future work will assess 

other part types pertinent to launch vehicles control 

systems to ultimately develop an environmental 

conversion uncertainty matrix for use in PRA.  
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