Sonic Boom Calculations for the N+2 Configuration

Mark D. Sanetrik

NASA Langley Research Center

Presented at ASE Summit NASA Ames Research Center April 14, 2015

111111111 11111111

1111

Outline

- Introduction
- Requirements for Sonic Boom Calculations
- Challenges of Sonic Boom Calculations
- Sample Solutions
- Sonic Boom Results
 - Effect of Grid Resolution
 - Effect of Domain Extent
 - Effect of Near-Field Pressure Extraction Location
 - Effect of Static Aeroelastic Deflections
 - Effect of Engines
- Concluding Remarks and Future Work

- Low sonic boom flight a major requirement for N+2 Program
- Extensive work done to optimize sonic boom signature
- Optimization done on a rigid structure
- Structure will deflect aeroelastically under aerodynamic loads
- How will static aeroelastic deflections change the sonic boom signature?

Requirements for Sonic Boom Calculations

- Conventional Static Aeroelastic domain is rectangular
- Body is defined at 0° angle of attack
- Same grid can be used for multiple flow conditions
- Sonic Boom domain must be shock aligned
- Conical-shaped domain with angle of cone dictated by Mach angle
- Body must be rotated to proper angle of attack
- Separate grid for each flow condition

CAE Computational Domain

Sonic Boom Computational Domain

Sonic Boom Computational Domain

Challenges of Sonic Boom Calculations

- Separate grid for every flow condition
- Extremely fine near-field grid required
- Where to extract pressure signature?
 - Too close and the pressure signature not fully developed
 - Too far away and the pressure signature is dissipated
 - Current practice is 3 body lengths
- Use of external program to propagate shock to ground level (sBOOM)
- Interpretation of ground signatures

Conventional CAE Solution Inviscid, No Engines, Mach = 1.70, α = 2.25°

11.8 MGP, $C_L = 0.14343$, $C_D = 0.09220$

Conventional CAE Solution with Grid Inviscid, No Engines, Mach = 1.70, α = 2.25°

Sonic Boom Coarse Solution Inviscid, No Engines, Mach = 1.70, α = 2.25°

15.9 MGP, $C_L = 0.14342$, $C_D = 0.09252$

Sonic Boom Coarse Solution with Grid Inviscid, No Engines, Mach = 1.70, α = 2.25°

115.9 MGP, $C_L = 0.14342$, $C_D = 0.09252$

Sonic Boom Medium Solution Inviscid, No Engines, Mach = 1.70, α = 2.25°

46.5 MGP, C_L = 0.14343, C_D = 0.09251

Sonic Boom Medium Solution with Grid Inviscid, No Engines, Mach = 1.70, $\alpha = 2.25^{\circ}$

46.5 MGP, $C_L = 0.14343$, $C_D = 0.09251$

Sonic Boom Fine Solution Inviscid, No Engines, Mach = 1.70, α = 2.25°

89.9 MGP, $C_L = 0.14342$, $C_D = 0.09256$

Sonic Boom Fine Solution with Grid Inviscid, No Engines, Mach = 1.70, α = 2.25°

89.9 MGP, $C_L = 0.14342$, $C_D = 0.09256$

Near-field Pressure Signature No Engines, Meduim Grid, Undeformed, Mach = 1.7, Alpha = 2.25 1.00 Body Length 0.02 1.38 Body Lengths 2.00 Body Lengths 3.00 Body Lengths 0.01 0 d/dp -0.01 -0.02 -0.03 -0.04 2000 4000 6000 8000 10000 x (in)

Concluding Remarks

- Sonic boom signatures have been computed for the N+2 configuration
- Still a work in progress; much learning to be done
- Major questions to be answered
 - Exactly what is the configuration are we analyzing?
 - What is the best procedure for static aeroelastic computations?
- Future Work
 - Additional computations with engines
 - More realistic engines?
 - Viscous Calculations
- A good start has been made in the investigation of the aeroelastic effects on the sonic boom signature

Mark.D.Sanetrik@nasa.gov