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TBW Context in Fixed Wing Project

Goals Noise Emissions (LTO) Emissions (cruise) Energy Consumption
Metrics (N+3) Stage 4-52dB Cum CAEP6 — 80% 2005 best — 80% 2005 best — 60%
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Research Theme 2: Higher Aspect Ratio Optimal Wing
Future wings will be of higher aspect ratio, lighter, more flexible, and have varying degrees of laminar flow
to reduce drag and improve performance

Technical Challenge 2.1 Higher Aspect Ratio Wing
Enable a 1.5-2X increase in the wing aspect ratio with safe structures and flight control (TRL 3)
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April 2008
> Truss Braced Wing Concept refinement > Boeing

> FEM >> Update FEM > Boeing

> TBW model & TDT test > LaRC, Boeing
Aero Perf. Test, task
ends April 2016 Boeing

BR&T, BCA, GE, GT, VT, NextGen, MicroCraft 4




TBW Phase | Findings, Phase Il Objectives @/
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Wind-Tunnel Test Objectives

Determine Experimental Flutter
Boundaries

Investigate Active Flight Controls

- System ID

- Flutter Suppression

- Assess Effects of FS on Gust
Response




TBW Aeroelastic Wind-Tunnel Model

Full-Scale Design Point: —_————— R
Mach =0.82
Altitude = 15,915 ft
Span =170 ft
Weight = 143,164 Ib

10 s b e D S e E | S e e S e ]

6OO ....._.E.. g

T PR~

: : . B ! _ 3 ; ;
: : : LB 2 pas 3 : 3 :
OO rrrmrm et et 7 T e R LR

: : ; / : : : ok : :
B\ e oeouayasoas oo vy S ey i g e O U (13000

- . g R .
O EiSaias = e
E0| ks sacoibanannat: ' : iy | of :

Spar Pod Construction

Wing, Strut, Pylon Scaled

High Bandwidth Control Surfaces:
2 Trailing Edge

Designed for Side Wall Mount
Fuselage 13.4 ft (reduced from 18.7 ft) :

Span =12.75 ft (to Center”ne) 0 o1 02 03 05 06 07 08 os \1 11 12 1.3
Standoff = 2.25 in TEST SECTION MACH NUMBER, M L

Weight =500 Ib Predicted Flutter Boundary Model Design Point
Model Scale Factors: Gas =R134a

Length = 0.15 i-— Scaled Weight = 109.63 Ib
Frequency = 3.470 Mach =0.82

NEXTGEN AERONAUTICS Q=162 psf

DYNAMIC PRESSURE Q, PSF
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TBW Wind-Tunnel Model Wing Tip Accelerations
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TBW Wind-Tunnel Model Wing Tip Accelerations
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Structural Models

Beam-Rod v.19 and v.20 FEMs

* V.19 FEM was updated with before-test ground vibration test (GVT)
data.

* V.20 FEM was updated with after-test GVT data.
1. Correlation of mode 3 was improved by decreasing bending stiffness on the

strut attachment beam and on certain wing elements.
2. Correlation of mode 4 was improved by adjusting torsional stiffness on
inner wing elements.
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Structural Models @
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Structural Models

Mach, AOA, Steady Aerodynamic
« Cases at zero degrees Dynamic pressure Corrections

AOA use unloaded structural
modes. \ /

Nastran
« Cases at +1 and -1 degree SOL 144
AOA use structural modes -
derived from a nonlinear I |
Ioaded static solution. |..e., modes Nastran SOL 144
derived from a geometrically non- Param LGDISP
linear structure. l
Updated Stiffness

And Normal Modes
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Mode Shape Transfer Between Dissimilar

CSD/CFD Models
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Results — Linear Aerodynamics @

» Flutter simulations with
linear aerodynamics
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Results — Comparison of v.19 and v.20 FEM @
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Results — Comparison, AoA -1, 0 and +1 deg @
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Results — Comparison, AoA -1 and +1 deg
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Results — Comparison, AoA -1 and +1 deg

acceleration ~ gs
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Conclusions

e Conclusions that can be clearly made:

1.

2.

4.

Angle of attack and model sensitivity is predicted well with
linear aerodynamics and a static nonlinear structural model.
LCO is predicted with nonlinear aerodynamics (Navier-Stokes)
and linear dynamic structural model

Flutter and LCO onset are quite sensitive to the mass and/or
stiffness distribution of the wing.

Force/displacement transfer between fluid and structure
meshes requires algorithms that can accommodate complex
beam structures models and fine CFD mesh spacing.

e Somewhat tentative conclusions:

1.

A better refined CFD mesh may enable better correlation of
simulated LCO onset with experiment.
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