Development of a Space-qualifiable, Conductively-cooled 2-micron Coherent Lidar Transmitter for Global Wind Measurements

Upendra N. Singh, Mulugeta Petros, Jirong Yu, and Michael J. Kavaya

NASA Langley Research Center, Hampton, Virginia 23681 USA

Timothy Shuman and Floyd Hovis

Fibertek, Inc, Herndon, Virginia, USA (757).864.1570 <u>Upendra.N.Singh@nasa.gov</u>

Acknowledgements: The authors appreciate the support of George J. Komar, NASA Earth Science Technology Office and Ramesh K. Kakar Science Mission Directorate at NASA HQ

> Working Group on Space-based Lidar Winds Boulder, Colorado April 28-29, 2015,

Outline

- Background and motivation
- Technology Development
 - Compact 2µm wind lidar transceiver
 - Conductive cooled 2µm Oscillator/Amplifier development
- Ground and Airborne campaigns
- Fully Conductively-cooled Risk Reduction Laser
- Conclusions

Motivation for 2µm Laser/Lidar Development NRC Recommended "3-D Winds" Mission

"Knowledge derived from global tropospheric wind measurement is an important constituent of our overall understanding of climate behavior .[1]"

EARTH SCIENCE AND APPLICATIONS FROM SPACE

NATIONAL IMPERATIVES FOR THE NEXT DECADE AND BEYOND

Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future

Space Studies Board

Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

> THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu

and a second	Global Winds 9 Societal Benefits	
	Extreme Weather Warnings	1
EARTH SCIENCE AND APPLICATIONS FROM SPACE	Human Health	1
	Earthquake Early Warning	
	Improved Weather Prediction	√ #1
	Sea-Level Rise	
	Climate Prediction	
NATIONAL IMPERATIVES FOR THE NEXT DECADE AND BEYOND	Freshwater Availability	
REAL PROPERTY AND	Ecosystem Services	
ATT SALE	Air Quality	1

[1] Baker et al., Lidar measured Wind Profiles – The Missing Link in the Global Observing System, Bulletin American Meteorological Society. 95 (4), 515-519 (April 2014)

Early Mission Concept for Earth Winds Laser Atmospheric Wind Sounder (LAWS)

- 525 km orbit height
- Single, pulsed coherent Doppler lidar system
 covers troposphere
- Continuously rotating telescope/scanner
- Line of sight (LOS) wind profiles from each
 laser shot
- ~ 20 J pulse energy
- ~ 1.5 m rotating telescope
- Required: eye-safe laser

NASA

Space-Based Doppler Wind Lidar

0.355-µm Direct Detection Doppler Lidar

Global Winds Approach Using Hybrid Doppler Lidar

Basic Performance Goals for 2µm Doppler Lidar

Wavelength	2.053 -μm
Laser Pulse Energy	250 mJ
Repetition Rate	10 Hz
Pulse Width	>150 ns
Beam Quality	M ² < 1.2
Pulse Spectrum	Single frequency (seeded)
Cooling	Conductively cooled via heat pipes
Laser Size	23.9" x 14" x 7.7" (L x W x H) Including heat pipes and condenser

Process to 3-D Winds Space Mission at NASA Langley

Wind Lidar Technology Maturation

A fully conductively cooled 2-micron solid-state pulsed laser has been demonstrated for the first time.

Technology Enables: Measurement of global 3-D Winds

Analysis & Design

Quantum mechanical development of new laser materials Ho:Tm:LuLF

Quantum Mechanical

Modeling

 Fabrication

System Integration

Space Qualifiable Design

Testing and Model Verification

Mobile Ground based High Energy Wind Lidar Transceiver – LRRP/DAWN Funded

Table Top Transceiver (Transmitter + Receiver) 90 mJ/pulse, 5 pulses/sec. 3'x4' Optical Table (no telescope or scanner) Engineered Transceiver 250 mJ/pulse, 10 pulses/sec. 5.9" x 11.6" x 26.5", 75 lbs.; 15 x 29 x 67 cm, 34 kg (no telescope or scanner)

Ground-Based Hybrid Wind Lidar Demo

GSFC 355-nm Doppler lidar

LaRC 2-µm Doppler lidar

> The LaRC mobile lidar is deployed as part of NASA HQ funded Program

- ▶ Utilized NASA LaRC Compact DAWN Lidar Transceiver for 2-µm lidar
- Site at Howard University Research Campus in Beltsville, Maryland

Comparison of Coherent Lidar and Sonde

• Root-mean-square of difference between two sensors for all points shown is <u>1.06 m/s</u> for wind speed and <u>5.78 deg.</u> for wind direction

DC-8 Wind Lidar During GRIP (2010)

- Harden the transmitter for airborne application
- Add telescope and scanner within the enclosure
- Airborne wind measurement during GRIP campaign

Laser Development for NASA 3-D Wind Mission

Laser Risk Reduction Program (ESTO) - 2001-'10

➤LaRC has demonstrated fully conductively cooled oscillator/amplifier to 400 mJ, 5 Hz (08/07)

Partnership with Fibertek:

Innovative Partnership Program (LRRP/ESD/Fibertek)

➢ 3-m cavity, 792 nm pumped, conductively cooled 200 mJ, single frequency output at 5 Hz − first generation

Advanced Component Technology (LaRC/ESTO/Fibertek)

Compact, 1.5 meter cavity, 808 nm pumped, fully conductively cooled laser transmitter delivering wind quality 250 mJ 10 Hz output for 3-D Wind mission

Innovative Partnership Program (LRRP/ESD/Fibertek) 2007-2010

(PI: Singh, Co-I: Yu, Kavaya LaRC; Co-I: Hovis, Fibertek)

Single frequency 2-micron Laser (200 mJ/5Hz) built and delivered by Fibertek to NASA LaRC

2-micron Risk Reduction Laser Transmitter

Design and Fabrication of a Breadboard, Fully Conductively Cooled, 2-Micron, Pulsed Laser for the 3-D Winds Decadal Survey Mission

PI: Upendra Singh, NASA LaRC

- Design and fabricate a space-qualifiable, fully conductively-cooled, 2-micron pulsed laser breadboard meeting the projected 3-D Winds mission requirements
 - Utilize improvements in key technologies including high-power, long-life space-proven 804 nm pump diodes; derated diode operation, and heat pipe conductive cooling
- Perform a long-duration life test on the laser system to evaluate mission readiness.

2-Micron Space Qualifiable Pulsed Laser for 3-D Winds

 Complete laser mechanical design update and improved laser thermal modeling 	01/13
Assemble and test heat pipe cooled module	04/13
 Fabricate and test ring laser with heat pipe cooled module 	12/13
 Install and test amplifiers 	03/14
 Integrate with canister and test 	04/14
 Vacuum-test laser 	10/14
Complete acceptance testing	07/15
Complete analysis and performance testing	12/15

TRL_{in} = 3 TRL_{out} = 5

- Leverage LaRC 2-micron laser development from earlier efforts
- Utilize Fibertek CALIPSO mission flight laser design and development knowledge
- Upgrade previous Fibertek two-micron laser design for flight-like laser based on space heritage
- Utilize space-ready, sealed cylindrical package
- Perform vacuum test while operating at the output requirements of the 3-D Winds mission

Co-Is/Partners: Jirong Yu, Michael Kavaya, LaRC; Floyd Hovis, Tim Shuman, Fibertek, Inc.

04/12

ACT Program Summary

Technical Objective(s)–

- Deliver a ruggedized 2.053 μm MOPA laser with the following parameters:
 - 250 mJ pulse energy
 - 10 Hz repetition rate
 - Beam quality $(M^2) < 1.2$
 - >100 ns pulse width
 - Conductively cooled via heat pipes
- Reach Technical Readiness Level (TRL) 5 by surviving a thermal-vac test.
- Period of Performance 38 months
- Deliverable Items 2 μm laser meeting the performance requirements after surviving a thermal vac test, monthly technical and financial reports, quarterly and yearly financial reports, thermal vac test definition and results report, oscillator test procedure and results report, final technical report
 - 2 μm laser transmitter meeting the performance requirements and surviving a thermal-vac test
 - Thermal vac test procedure and results report
 - Oscillator and amplifier performance report

Linear Cavity Data

Current Ring Laser Results – Long Pulse

Expect 80 mJ of Q-switched output for 3.6 J of pump energy

Phase II achieved 3X amplification – on track for 240 mJ after amplifier pair

ASA

Conductively Cooled Laser Design

Box dims: 19"x11"x7.1" (LxWxH) **ICESat-2**: 16"x11"x4.4" (LxWxH) Mounting feet for illustration only Housing itself: 19"L x 11"W x 6.1"H Complete assembly : 23.9"L x 14"W x 7.7"H

NASA

Summary and Conclusion

Today

400 km

2 cross-track positions

Multiple shot accumulation

4 stationary 0.5 m telescopes

Dual- coherent & direct hybrid Doppler lidar

Solid-state eyesafe laser

1200 mJ 2-µm solid state energy

Space required energy = 0.25 J

Energy surplus = 5

 $2\mu m$ lidar is aircraft validated

Questions?

