

Spatial Sound Mapping via Constrained Spectral Conditioning and CLEAN-SC

Taylor B. Spalt

Spring 2015 Acoustics Technical Working Group Meeting

Wednesday, April 22, 2015 NASA LaRC, Hampton, VA

Problem Statement

• Spatially map sound with

qualitative/quantitative accuracy

- Microphone arrays allow for spatial separation of distinct sources
- Many existing processing methods

Downstream view of Hybrid Wing Body model inverted on test stand with phased microphone array overhead

Existing Spatial Sound Mapping Methods in Aeroacoustics

- Cross-spectral
	- o Beamforming
	- o CLEAN-PSF *[Högbom 1974]*
	- o Spectral Estimation Method *[Blacodon & Élias 2003]*
	- o DAMAS and DAMAS-C *[Brooks & Humphreys 2004, 2006]*
	- o CLEAN-SC *[Sijtsma 2007]*
	- o Functional Beamforming *[Dougherty 2014]*

Eigenspace

- o Generalized Inverse *[Suzuki 2008]*
- o Orthogonal Beamforming *[Sarradj 2010]*

• Wavespace

o Wavespace Deconvolution *[Bahr & Cattafesta 2012]*

Research Objectives

Use:

Single-channel filtering based on user-defined spatial constraints

As:

 \triangleright Building-block for existing spatial mapping techniques

For:

Qualitative/quantitative improvement in accuracy

Microphone Array Filtering

• Goal: Filter channel data for more accurate spatial sound estimation

Filter dashed-red to

Modified Wiener-Hopf Eq. for Spatial Filtering

- Combine: Optimal, least-squares filtering of Wiener-Hopf Eq. + Spatial filtering
- Only constraint = User-defined phase
- Modified weight vector \rightarrow Filters + Prevents targeted signal cancellation

Constrained Spectral Conditioning (CSC)

- Conditioned Spectral Analysis¹ with modified Wiener-Hopf Eq. (WB) becomes $CSC²$
- Optimal, spatially-constrained, least-squares filtering for Fourier Transforms of microphone outputs

Basic Spatial Sound Mapping

FDBF Beamwidth and Sidelobes: Simulated Point Source

• Point source "measured" with $SADA$ ¹: 60" from array face, $f = 10$ kHz, SNR = 20 dB

FDBF Beamwidth & Highest Sidelobe Level vs. Frequency

• CSC performance dependent on SNR & frequency

CSC Observations

- Constrained Spectral Conditioning (CSC)
	- Single-channel processing \rightarrow **Building-block for existing algorithms** as it processes the Fourier Transforms of microphone outputs
	- Uses only relative phase differences as constraints
- CSC success dependent on:
	- Frequency
	- Source field
	- Solid angle
	- Microphone layout
	- Signal-to-Noise Ratio (SNR)

CSC Observations, cont.

- CSC output datasets ("CSC-CSMs") are estimates
- FDBF using CSC-CSMs
	- Non-integrateable (due to inaccuracies)
	- Non-linear \rightarrow Cannot be deconvolved "easily"

Modified approach needed for accurate spatial sound mapping

Advanced Spatial Sound Mapping via CSM Decomposition

• CLEAN-PSF¹

Advanced Spatial Sound Mapping via CSM Decomposition, cont.

• CLEAN-CSC¹

- Pros
	- \circ Higher location/level accuracy than FDBF
	- o Sidelobe discrimination
	- o Does not use PSF magnitudes

• Cons

- o CSC-CSMs have inaccuracies
- o PSF phase still used
- o Cannot take advantage of "uncovered" information

Advanced Spatial Sound Mapping via CSM Decomposition, cont.

• CLEAN-SC¹

- Pros
	- o Adaptively defines CSM estimate magnitudes/phases
	- o Takes advantage of "uncovered" information
- Cons
	- o No sidelobe discrimination
	- o Multiple/distributed sources bias CSM estimate
	- o Stronger sources bias weaker sources
	- o Inaccurate for coherent sources

$CLEAN-CSC + CLEAN-SC \rightarrow CLEAN-CSC-SC¹$

- CSC \rightarrow FDBF and CSM at max locations
- CLEAN-SC \rightarrow Further decompose CSC-CSM \rightarrow CSC-SC-CSM
	- Improves CSC-CSM magnitude estimates
	- Corrects deviations in initial phase definitions
- CLEAN-SC only used once original CSM is sufficiently decomposed
	- Improves dynamic range

Simulation: Modified PSF, Incoherent Sources

 \bullet 467 point sources "measured" with JEDA¹: 72" from array face, $f = 15$ kHz, SNR = 20 dB

Simulation: Modified PSF, Incoherent Sources, cont.

Preliminary Jet Noise Results

JEDA (left) positioned at 90° with respect to the jet exit plane in the JNL.

- Single-stream, convergent nozzle
- Exit diameter 2.67"
- Supersonic, cold jet at Mach 1.48
- Wind tunnel co-flow at Mach 0.1
- Array ("JEDA") 6 ft from jet centerline

Preliminary Jet Noise Results, cont.

• **No CSM Diagonal Removal, No CSM Weighting**

8 kHz 1/3 oct, Mean Array Single Mic level = 113.1 dB 32 kHz 1/3 oct, Mean Array Single Mic level = 108.3 dB

CSC Conclusions

- Building block for existing algorithms
- Improves result accuracy under incoherent source conditions
- Not "plug-and-play" for advanced spatial mapping algorithms

CLEAN-CSC-SC Conclusions

- More qualitatively/quantitatively accurate than CLEAN-SC for incoherent sources
- More analysis needed when source coherence exists

Acknowledgements

- This work was funded under:
	- NASA Project # NNL08AA00B
	- NASA Pathways Program
- This work would not have been possible without the support of: oDr. Chris Fuller
	- oDr. Tom Brooks
	- oDr. Charlotte Whitfield
	- oLaRC Aeroacoustics Branch
	- oNational Institute of Aerospace

Backup Slides

CLEAN-CSC-SC¹

• Spatial sound mapping via decomposition of the initial CSM using CSC² and CLEAN-SC³

¹Spalt et al. 2015 ²Spalt 2014 3Sijtsma 2007

$Y_s^i = \left(\frac{1}{M^2}\right) e_s^T \hat{G}^i e_s, \quad \vec{s} \in \vec{S}$	1. Beamform to locate max grid location
$Y_{\tilde{\tau}_{max}csc} = \left(\frac{1}{M^2}\right) e_{\tilde{\tau}_{max}}^T \hat{G}_{\tilde{\tau}_{max}csc} e_{\tilde{\tau}_{max}}$	2. Calculate CSC beamform estimate at max location using a CSC-CSM
$h_{\tilde{\tau}_{max}csc} = \left(\frac{1}{\sqrt{1 + w_{\tilde{\tau}_{max}}^T H w_{\tilde{\tau}_{max}}^*}\right) \frac{\hat{G}_{\tilde{\tau}_{max}csc} e_{\tilde{\tau}_{max}csc}}{Y_{\tilde{\tau}_{max}csc}}$	3. Form normalized steering vectors from CSC beamform and CSC-CSM using CLEAN-SC beamform and CSC-CSM using CLEAN-SC
$\hat{\sigma}_{\tilde{\tau}_{max}csc} = Y_{\tilde{\tau}_{max}csc}(\hat{h}_{\tilde{\tau}_{max}csc} - sc)(h_{\tilde{\tau}_{max}csc}^T - sc)$	4. Calculate CSC-SC-CSM at max location using normalized steering vectors
$\hat{\sigma}^{i+1} = \hat{\sigma}^i - \varphi \hat{G}_{\tilde{\tau}_{max}csc} = \epsilon$	5. Lower CSM energy is deemed more accurate
$\hat{\sigma}^{i+1} = \hat{\sigma}^i - \varphi Y_{\tilde{\tau}_{max}}^i[(h_{\tilde{\tau}_{max}c}^T)(h_{\tilde{\tau}_{max}csc}^T)]$	6. Update decomposed CSM accordingly
$\hat{\sigma}^{i+1} = \hat{\sigma}^i - \varphi Y_{\tilde{\tau}_{max}}^i[(h_{\tilde{\tau}_{max}c}^T)(h_{\tilde{\tau}_{max}csc}^T)]$	7. Stop if CSM energy increases or remains unchanged

Outline

- 1. Introduction
- 2. Research Methodology
- 3. Simulated Data Analysis
- 4. Experimental Data Results
- 5. Contributions
- 6. Future Work

CSC Extension to Full Array

- *Optimum reference channel for use in arrays*:
	- 1. Maximize undesired signal cancellation
	- 2. Prevent amplification of noise

$$
m'_0(m, \vec{s}) = \frac{max|WB| \le 1}{m' = 1 \to M}
$$

$$
m' \ne m
$$

CSC Iterative Processing Algorithm

- *Stop if*:
	- 1. Processed channel's magnitude > channel's initial magnitude
	- 2. Coherent signal between channels \leq noise floor between channels

Undesired Signal Cancellation via Spatial Filtering

- Generalized Sidelobe Canceller $(GSC)^{1,2}$
	- Filtering method designed to attenuate all signal except that from a user-defined point in space/direction
	- Filtering performed on the synthesized array data

Undesired Signal Cancellation via Spatial Filtering, cont.

• Modified GSC¹

"Background Subtraction" for CSC

$$
\hat{G}_{mm, background\;sub} = \hat{G}_{mm,source+flow} - \hat{G}_{mm,flow}
$$
\n
$$
m = 1 \rightarrow M
$$

$$
CH_m \rightarrow CH_m \sqrt{\frac{\hat{G}_{mm,background sub}}{\hat{G}_{mm,source+flow}}}
$$