

1

Recent Work Investigating Acoustics of small Unmanned Aerial Systems (sUAS)

Ferdinand W. Grosveld

Northrop Grumman

Randolph H. Cabell

Structural Acoustics Branch

Robert G. McSwain

Aeronautics Systems Engineering Branch

NASA Langley Research Center Hampton, VA 23681

Acoustics Technical Working Group

NASA Langley Research Center

21-22 April 2015

VLHA motivation

Vertical Lift Hybrid Autonomy (VLHA) goal:

Show feasibility of applying current conceptual design tools to small vertical lift unmanned aerial vehicles (UAVs)

Acoustics discipline objectives:

- Assess current noise prediction tools and improve as necessary
- Apply tools to develop noise control solutions and quiet designs
- Assess human response through prediction-based auralizations

Current experimental research purpose:

- Provide experimental data from test stand and flight tests in support of noise predictions
- Record small UAV noise under a variety of conditions to provide test stimuli in support of human response assessment

Experimental Research Approach

Anechoic Chamber of the Structural Acoustics Loads and Transmission (SALT) Facility

Test Stand:

 Combined Experimental and Computational Aeroacoustic Analysis of an Isolated UAV-scale Propeller – Nik Zawodny

Indoor Flight Testing (Phantom 2):

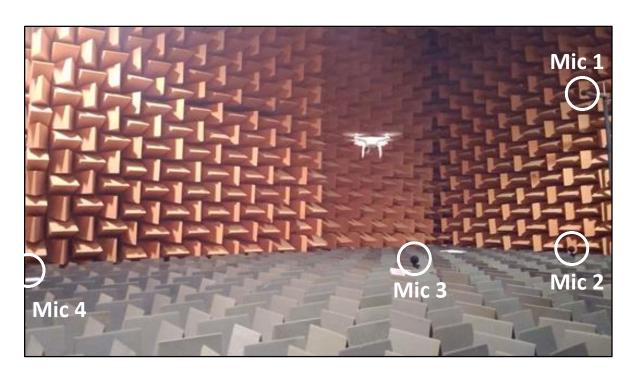
- Controlled environment
- No background noise
- No wind
- Necessary instrumentation and equipment readily available
- No GPS-based autopilot and flight data acquisition system (FDAS)

Field Acoustic Flight Tests

- GPS guidance and control
- GPS time synchronization
- Background noise
- Changing wind speed and directions
- FDAS payload
- Portable equipment, instrumentation and power requirements

sUAS – Phantom 2

DJI Phantom 2		
sUAS Type	Multi-Copter, 4 Engine, Brushless Motors	
Diagonal Length	13.8 in	
Maximum Weight	2.9 lbs	
Empty Weight	2.2 lbs	
Speed	0 - 33.5 mph	



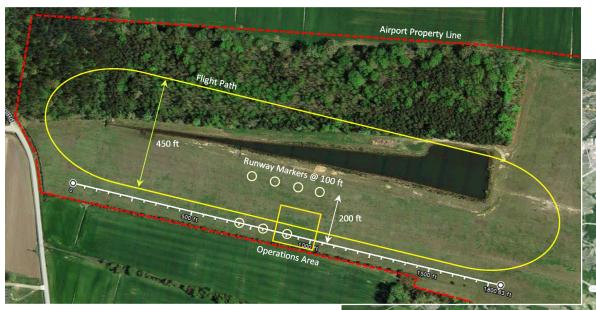
sUAS acoustic tests - Phantom2

Anechoic Chamber of the Structural Acoustics Loads and Transmission (SALT)

- 4 microphones
- Hover at 2, 4, 8 and 12 ft over 3 microphone locations
- 12 microphone flyovers along 2 chamber diagonals
- 8 circles around center microphone

Purpose:

- Eliminate wind and background noise factors
- Acoustic analysis in support of isolated rotor tests
- Prediction validation tests
- High-quality recordings for response tests


42VA - Virginia Beach Airport (Private)

Virginia Beach

Ocean Front

Oceana Nava Air Station

- Active runway 11/29 4845 x 190 ft
- Surface: turf; Elevation 10/9 ft
- Targeted flight path ~ 2000 x 450 ft
- Runway markers both sides @ 100 ft
- Prevailing winds NNE at 10 ft/s

Acoustics TWG April 2015 NORTHROP GRUMMAN

42VA Operations Area and Equipment

Acoustics Data Acquisition System

- Three ground-based and one tripod-mounted (4 ft) G.R.A.S. ½-inch microphones
- National Instruments NI USB-4431 24-bit 4-channel dynamic signal acquisition module
- Two laptop computers with Matlab data acquisition, analysis and post-processing software

Flight Data Acquisition System (FDAS)

- Real Time Kinematics (RTK) GPS system with centimeter accuracy
- FDAS collects vehicle in-flight parameters

Other

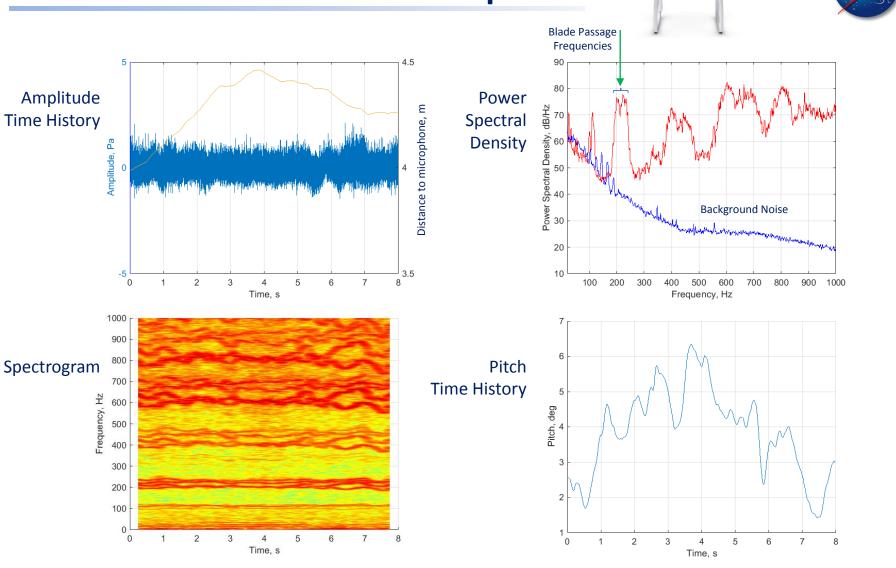
- Weatherstation
- Ultrasonic wind sensor
- Portable Synchronized
 Time Code Generator
- Video cameras/tablets
- Battery pack power management system
- Volpe photo-scaling system

All time metrics were converted to Coordinated Universal Time (UTC)

sUAS – Test Vehicles

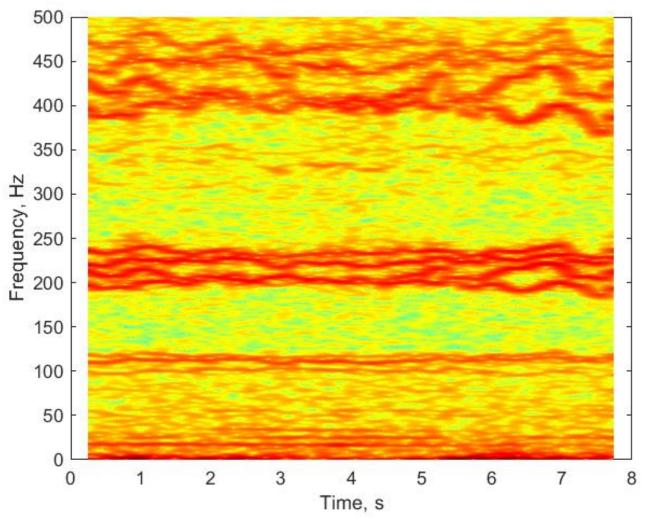
DJI Phantom 2		
sUAS Type	Multi-Copter, 4 Engine, Brushless Motor	
Diagonal Length	13.8 in	
Maximum Weight	2.9 lbs	
Empty Weight	2.2 lbs	
Speed	0 - 33.5 mph	

Edge 540 NO.22		
sUAS Type	Fixed-Wing, 1 Engine, Piston	
Wingspan	68.1 in	
Length	71 in	
Empty Weight	10.6 lbs	
Speed	0 - 60 mph	

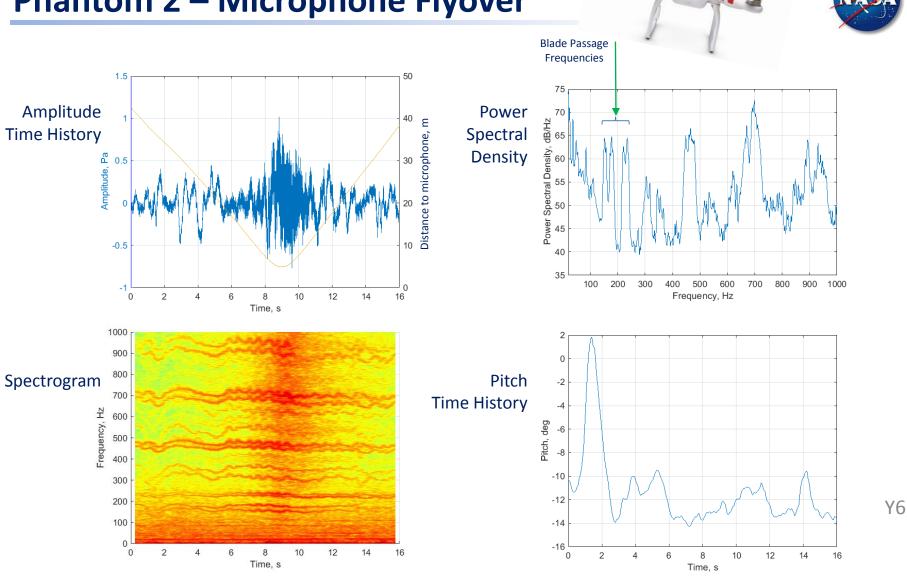


3DR Y6 RTF		
sUAS Type	Multi-Copter, 6 Engine, Brushless Motor	
Diagonal Length	20 in	
Maximum Weight	5.5 lbs	
Empty Weight	4.2 lbs	
Speed	0 - 33.5 mph	

FQM-117B MigLH		
sUAS Type	Fixed-Wing, 1 Engine, Brushless Motor	
Wingspan	68 in	
Length	70 in	
Empty Weight	15.1 lbs	
Speed	0 - 60 mph	


Phantom 2 – Hover over Microphone

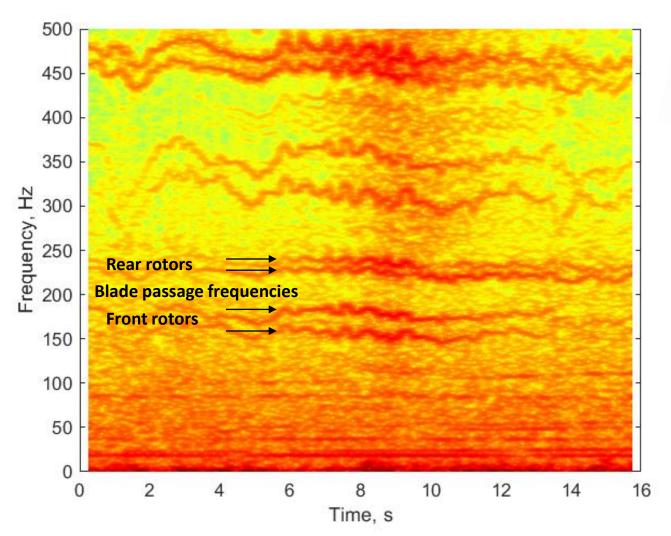
Phantom 2 – Hover over Microphone



Wind fluctuations and associated pitch changes yield variations in blade passage frequencies

Phantom 2 – Microphone Flyover

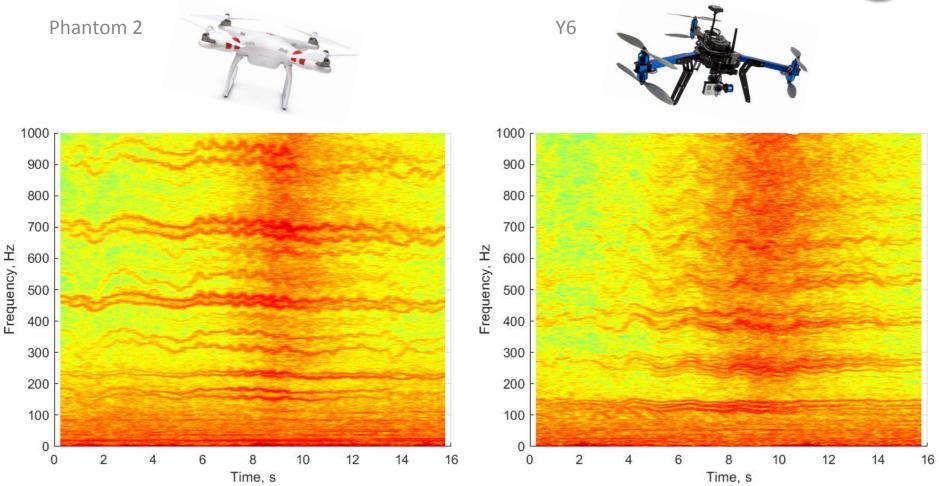
Acoustics TWG April 2015



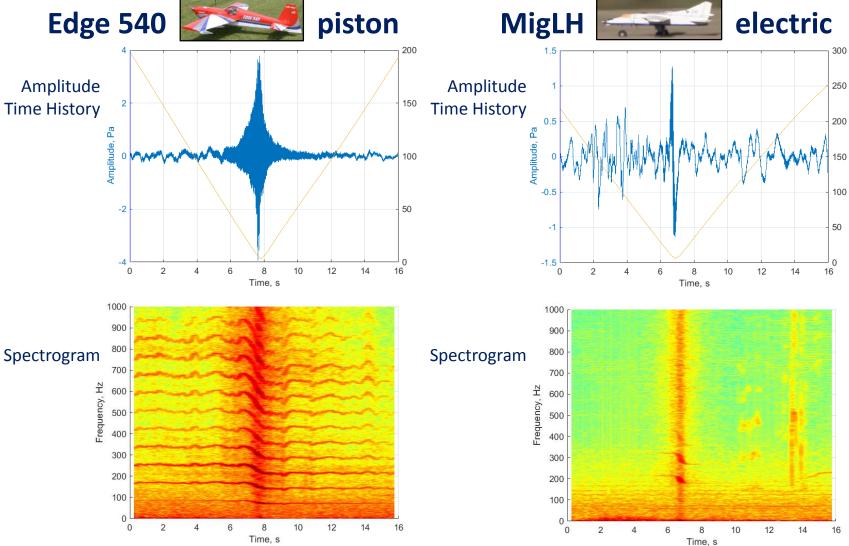
NORTHROP GRUMMAN

11

Phantom 2 – Microphone Flyover



When aerodynamic center and center of gravity are not collocated, maintaining forward speed and associated vehicle pitch produces significant changes in the rotor blade passage frequencies


Phantom 2 & Y6 – Microphone Flyover

Microphone Flyovers

Conclusions

- Test stand isolated rotor => flight test anechoic chamber => field acoustic flight test approach is useful to separate and investigate relevant acoustic, flight and environmental parameters
- RTK GPS system has proven centimeter accuracy to determine the distance between the base and rover receivers (microphone and noise source), but has still reliability issues that are being investigated
- When attaching a payload to a multicopter (like the FDAS), the center
 of gravity moves away from the aerodynamic center. When the vehicle
 travels, the dissimilar speeds of the rear and front rotors (to maintain
 the pitch angle) yield different rotor blade passage frequencies
- sUAS vehicles require frequent adjustments in rotor rpm with associated changes in the noise signature
- Doppler effect becomes a factor at higher speeds and closer range

Acknowledgments

