

## Statistical Engineering in Air Traffic Management Research

Sara R. Wilson

National Aeronautics and Space Administration Langley Research Center

> Spring Research Conference May 21, 2015

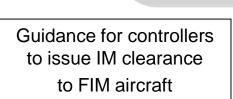
### NextGen



- FAA is predicting a substantial increase in the number of revenue passenger miles flown over the next 20 years
- If left unmodified, the current air transportation system cannot indefinitely sustain this projected growth without inducing delays, inefficiencies, and environmental impacts
- FAA's NextGen concept envisions a comprehensive transformation of the National Airspace System to support this continued growth in a safe, reliable and efficient manner
- NASA is collaborating with the FAA and industry partners to develop advanced technologies necessary for NextGen

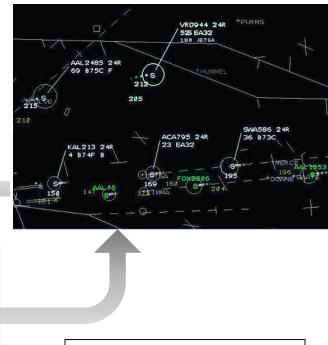
### ATM Technology Demonstration – 1




- Conditions in busy terminal areas today often result in inefficient arrivals
- More efficient arrivals are available, but current technology limits their use to periods of light to moderate traffic conditions
- New concepts and technologies are needed to make efficient arrival procedures feasible during heavy traffic
- NASA's ATD-1 will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies
- This integrated arrival solution is being verified and validated in laboratories and transitioned to a field prototype

### **ATD-1 Integrated System**



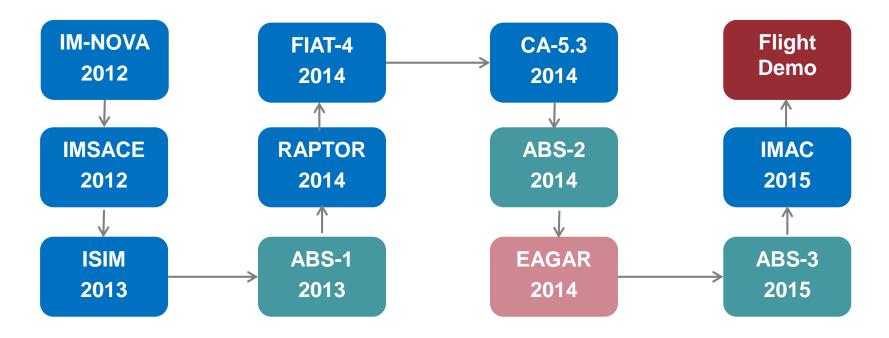

#### Flight Deck-based Interval Management (FIM) Equipped Aircraft





Traffic Management Advisor with Terminal Metering (TMA-TM)

# Controller Managed Spacing (CMS) in Terminal Airspace




Guidance for controllers to issue speed commands to non-FIM aircraft

### Sequential Experiments



- Multi-year iterative experimentation process
- Batch computer simulations and Human-in-the-Loop (HITL) experiments in preparation for a flight demonstration
- Collaborative effort between NASA Langley and Ames Research Centers



### Flight Simulation Facilities



#### Integration Flight Deck (IFD)

- High fidelity replication of B737-800 flight deck
- Full mission functionality; operating in fixed or motion base
- Two-crew cockpit with columns and rudders





#### **Development and Test Simulator (DTS)**

- B-777 / MD-11 / A-320 functionality
- Full mission functionality; operating on fixed base
- Two-crew cockpit with side stick controllers

## Air Traffic Operations Laboratory



- The Air Traffic Operations Laboratory (ATOL) is a multi-fidelity, parttask, aircraft and air traffic operations simulation facility
- Integrates airborne vehicles with ground-based air traffic management tools and other research facilities
- Medium-fidelity desktop simulators can be flown by human pilots or pilot model
- Medium fidelity pseudo-pilot stations allow a single research pilot to fly multiple traffic aircraft
- High-fidelity air traffic controller stations



### Challenges



Series of sequential experiments conducted across multiple Centers, facilities, and simulation environments over several years

- Communication and collaboration across Centers
- Difficult to compare results from multiple experiments
- Currently no standard or efficient method to synthesize data from multiple sources
- Simulation environments have different limitations and constraints
- Experiments can take different approaches with respect to the fundamental principles of design of experiments
- Incorporating findings from one experiment to the next experiment in the series

### Common Experiment Reporting Process



- Document the experiment throughout the entire process
- To facilitate communication and collaboration within project and support the transfer of NASA technologies
- Lessons learned, action items, and development needed for upcoming experiments

**Documents include:** 

- Test Plan
- Executive Summary
- Experiment Outbrief
- Controller and Pilot Training Materials
- Controller and Pilot Questionnaires

#### **Measures of Performance**



- Metrics to determine whether the system is expected to meet its performance objectives while operating within the allowable limits
- Quantitative measure that can be recognized when achieved

**Defines:** 

- Measurement approach
- Improvement threshold
- Validation criteria
- Performance goals
- Performance calculation method and sources

#### Simulation Facilities and Equipment





**Desktop Pilot Interface** 





**Full Mission Cockpit** 

**Batch Aircraft** 





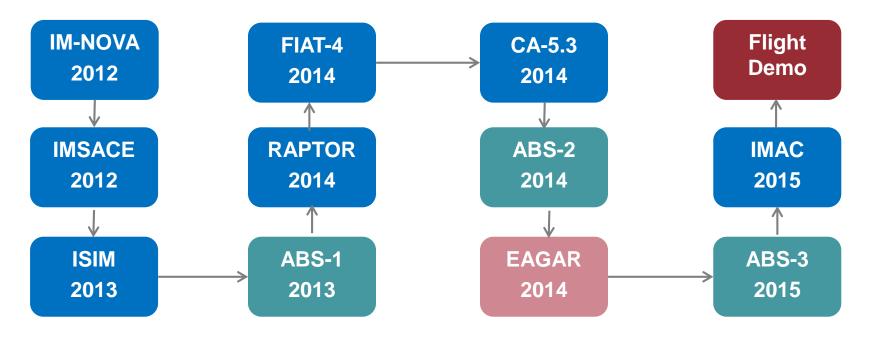


**ATC Stations** 

**Traffic Management Advisor** 

**Pseudo-Pilot Interface** 

#### Database System




- Data from each tool, simulator, and facility is recorded in a different format
- Need to be able to integrate and synchronize data from all sources
- Defined requirements for new database system and is currently being implemented
- Provides ability to assess system-level performance goals in order to meet research objectives
- Will decrease time and resources needed for data post-processing
- New capability available to all projects conducting research in the Langley facilities

### Sequential Experiments



- Multi-year iterative experimentation process
- Batch computer simulations and Human-in-the-Loop (HITL) experiments in preparation for a flight demonstration
- Collaborative effort between NASA Langley and Ames Research Centers



### **Batch and HITL Experiments**



| Batch Computer Simulation                  | Human-in-the-Loop Experiment                                |
|--------------------------------------------|-------------------------------------------------------------|
| Fast-time                                  | Real-time                                                   |
| Low / medium fidelity                      | Medium and/or high fidelity                                 |
| Airborne technologies only                 | Integrated system of ground-based and airborne technologies |
| Scripted scenarios                         | Dynamic scenarios                                           |
| Reduced realism                            | Realistic controller and pilot actions                      |
| Single facility and simulation environment | Multiple facilities and simulation environments             |
| Lower cost, fewer resources, less time     | Higher cost, more resources, more time                      |

#### **Batch Computer Simulations**



- Batch simulations can be used as a screening experiment
  - Ability to evaluate large number of factors in short time for fewer resources
  - Identify factors to be further investigated

- Batch simulation typically focuses on stressing the system, and so often explores larger region of interest
  - Identify treatment combinations to be further investigated

Incorporated into research objectives of upcoming experiment

#### Human-in-the-Loop Experiments



- HITL experiments involve human participants
  - Pilot and controller subjects
  - Pseudo-pilots and confederate controllers
- Collaborate with Human Factors SMEs to incorporate constraints resulting from pilot and controller participants into experiment design and analysis plan
  - Within-subject design
  - Order effects
  - Counterbalancing
  - Correlation structure

### Human-in-the-Loop Experiments



- HITL experiment utilizes simulated flight environment with high level of realism
- Results lead to design guidance for phraseology and procedures in ConOps, and can also be used to increase the level of realism in batch computer simulations
  - Voice communication
  - Data entry times
  - Trajectories
- Research effort with Virginia Commonwealth University (Dr. David Edwards)
- Increasing realism increases knowledge gained from batch simulation
- Saves time, money, and resources if able to meet research objective with batch simulation rather than HITL experiment

#### Summary



- Improved communication and collaboration within multidisciplinary team
- Supported clearly defined experiment objectives with quantitative metrics that can be recognized when achieved
- Increased comparability across experiments
- New capability to efficiently synthesize data from multiple sources and assess system-level performance goals
- Incorporation of findings from one experiment to the next for more strategic investment of resources, better defined objectives, and increased knowledge gained