

HSRL-2 observations of aerosol variability during an aerosol build-up event in Houston and comparisons with WRF-Chem

<u>Sharon P. Burton</u>¹, Pablo Saide², Patricia Sawamura^{1,3}, Chris Hostetler¹, Rich Ferrare¹, Amy Jo Scarino^{1,4}, Tim Berkoff¹, David Harper¹, Tony Cook¹, Ray Rogers⁵, Greg Carmichael²

¹ NASA Langley Research Center, Hampton VA
²CGRER, University of Iowa
³Oak Ridge Associated Universities
⁴Science Systems and Applications, Inc., Hampton VA
⁵Lord Fairfax Community College, Middletown VA

High Spectral Resolution Lidar, HSRL-2

High Spectral Resolution Lidar 2 -

- measures profiles of aerosol optical properties at 3 wavelengths
- Flew on DAQ California, Houston, and Colorado

HSRL-2 measurement products

WRF-Chem model run performed by Pablo Saide, U. Iowa, for the SEAC4RS campaign, to provide guidance for flight planning and evaluate model in near-real time

Domain includes the DISCOVER-AQ Houston campaign as well

- WRF-Chem v3.5 CBMZ, 4bin MOSAIC, 12km dx, 52 vertical lvls, and WRFtracer for emission regions/sectors
- Emissions: anthropogenic, biomass burning (FINN, QFED2) with plumerise, MEGAN biogenics, dust & seasalt. MACC boundary conditions
- AOD assimilation (NRL product) every 3 hours, 1 cycle a day (Saide et al., ACP 2013)

Day by day extinction comparison

Insights about aerosol source & type

Aerosol source and type, 6 example layers

Anthropogenic vs. Smoke A vs. C

Anthropogenic vs. Smoke: A vs. C

Mixtures of Agriculture Smoke and Anthropogenic D vs. F

Mixtures of Agriculture Smoke and Anthropogenic: D vs. F

HSRL-2 Intensive Properties

Effect of Relative Humidity on lidar intensive properties: setup and assumptions

Diameter-independent growth factor:

$$D_{amb} = g * D_{dry}$$

the entire size distribution simply shifts to larger diameters as the particles grows.

• Correction is applied to both real and imaginary parts of refractive index following:

$$m_{amb} = \frac{m_{dry} + m_{H20}(g^3 - 1)}{g^3}$$

Growth factor function of RH from Petters and Kreidenweis (2007):

$$g = \left(1 + \kappa \frac{RH}{100\% - RH}\right)^{\frac{1}{3}}$$

where κ is the effective hygroscopicity parameter which captures all solute properties.

Less hygroscopic $\leftarrow 0 \le \kappa \le 1 \rightarrow$ More hygroscopic

Continental aerosols: $\kappa = 0.27\pm0.21$

Clean marine aerosols: $\kappa = 0.72\pm0.24$

Agricultural smoke: $\kappa = 0.2$

(Pringle et al., 2010, ACP) (Rose et al., 2010, ACP)

Lidar intensive properties: effect of Relative Humidity

Pure Smoke B,C,E

Pure Smoke: B,C,E

Lidar intensive properties for 6 aerosol samples

- Lidar intensive variables vary both within and between types
- Extinction angstrom exponent varies monotonically with size but is noisy
- Lidar ratio related to absorption, but also varies with particle size, as much as angstrom exponent does
- Backscatter color ratios have complicated dependence on size and complex refractive index

Variations within a type due to

- mixing
- humidification
- composition differences due to different sources (for smoke: e.g. wildfire vs. agricultural)
- aging & processing, etc.
- ???

Summary

- HSRL-2 makes horizontally and vertically resolved observations of aerosol layering and diurnal and day-to-day evolution
- High information content in HSRL-2 observations provides the opportunity for model assessment
- HSRL-2 measures a large set of intensive parameters that give information on aerosol type
- Subtleties in HSRL-2 intensive parameters have the potential to give a more nuanced understanding of aerosols
- WRF-Chem model gives context on aerosol sources and transport that helps with interpretation of lidar data
- DISCOVER-AQ Houston case study
 - characterized by large variability in aerosol properties, vertically, temporally and in observed optical properties.
 - included local anthropogenic pollution plus relatively fresh agricultural smoke and aged transported wildfire smoke

EXTRA: WHAT DOES IN SITU SAY?

UH_Moody_Tower 14:50 - 15:04

B: UH Moody Tower, 20130911, 14.84-15.07

Smith_Point 19:45 - 19:58

C: Smith Point, 20130911, 19.75-19.97

Smith_Point 14:27 - 14:43

D: Smith Point, 20130912, 14.45-14.71

E: West Houston, 20130912, 15.14-15.43

Deer_Park 16:03 - 16:20

F: Deer Park, 20130913, 16.05-16.33

DISCUSSION OF VARIABILITY OF INTENSIVE PARAMETERS OF SMOKE

....

