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Abstract 
 
This report provides an overview of the Parallel Grand Canonical Monte Carlo 
(ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for 
simulating the thermodynamic evolution of metal alloy systems at the atomic level, and 
predicting the thermodynamic state, phase diagram, chemical composition and 
mechanical properties. The code is designed to simulate multi-component alloy systems, 
predict solid-state phase transformations such as austenite-martensite transformations, 
precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, 
etc., which can aid the design of novel metallic alloys. While the software is mainly 
tailored for modeling metal alloys, it can also be used for other types of solid-state 
systems, and to some degree for liquid or gaseous systems, including multiphase systems 
forming solid-liquid-gas interfaces. 
 
 
1.  Introduction 
 
The objective of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation 
code is to provide a flexible computational tool to model solid-state systems, such as 
metal alloys, from physics based principles at the atomic level. This modeling gives 
insightful understanding of the physical processes that govern material properties of an 
alloy at the thermal and loading conditions representative for the manufacturing and 
processing stages, as well as in service. Such understanding increases the design space 
beyond what is achievable through constitutive models obtained from empirical data. As 
such, ParaGrandMC helps to guide the design process and to predict the functionality of 
the alloy in specific applications. 

The code is designed to study the thermodynamic properties, phase diagram, 
chemical composition, and mechanical properties of condensed matter systems. The 
approach taken is based on evolving an initially given atomic system (defined through a 
list of atomic coordinates of all participating atoms) using the Monte Carlo (MC) 
algorithm [1]. The algorithm is based on repeated random sampling, so called Metropolis 
sampling [2], of the configuration space of the system using the classical Boltzmann 
probability distribution. In the process, internal variables of the system, such as system 
energy, internal pressure, system size (strain), and others, are reported continuously 
during the simulation. Atomic configurations, in terms of coordinates of all atoms, are 
stored at predefined time intervals for a post-processing analysis, such as phase 
identification, lattice parameter estimates, free energy integration, etc. A recently 
suggested parallelization algorithm [3] based on a specific domain decomposition is used. 
The algorithm is implemented by using Message Passing Interface (MPI) to work on 
distributed multi-core Central Processing Unit (CPU) platforms allowing simulations of 
multimillion atom systems. 

The simulation of the system evolution in ParaGrandMC can be performed in the 
following two basic statistical thermodynamic ensembles: (i) canonical – a simulation for 
a constant number of atoms and fixed chemical composition; or (ii) semi-grand canonical 
– a simulation for a constant number of atoms, but of varying chemical composition, 
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which is controlled through the chemical potential of each element present in the system. 
Both ensembles are simulated under given constant temperature. Different loading 
regimes can be applied by varying the system size in all three spatial dimensions 
synchronously or independently to sustain constant hydrostatic pressure or constant 
selected stress tensor components. 

Verification of ParaGrandMC code was performed in two ways. First, by comparing 
the results with a serial MC code, “SOLD”, built by Yuri Mishin from George Mason 
University and tested against the broadly used Large-scale Atomic/Molecular Massively 
Parallel Simulator (LAMMPS) package [4], and second, by comparing with molecular 
dynamics simulations of identical systems.  

The goal of this report is to provide an overview of ParaGrandMC’s features and 
capabilities and to demonstrate its parallel performance. The theoretical foundation of the 
simulation methodology is given in Section 2, followed by an explanation of the 
parallelization technique implemented in the code in Section 3. A description of the 
required input and the resultant output data of the code is provided in Section 4. Analysis 
of the parallel performance is given in Section 5 before the document is concluded in the 
summary section. 

 
2.  Theoretical Foundation 
 
2.1. General Overview 
 
ParaGrandMC uses a variation of a lattice-free Semi-Grand canonical Monte Carlo 
(SGMC) simulation technique [5]. In such a simulation, a system of atoms representing a 
material system is evolved through a repeated random sampling of the configuration 
space of the system (a 3N-dimensional space for a system of N atoms with 3 positional 
degrees of freedom for each atom in the three-dimensional (3D) system volume) using 
the classical Boltzmann probability distribution at a chosen temperature T. The algorithm 
consists of generating random trial moves in the configuration space that are accepted or 
rejected according to the Metropolis sampling scheme [2]. In this scheme, the trial move 
is accepted with the probability 

 

𝑃 = 1                                                    , ∆Φ ≤ 0
𝑒𝑥𝑝 −∆Φ 𝑘!𝑇 , ∆Φ > 0    ,       (1) 

 
where ∆Φ is the change in the thermodynamic potential of the system during the trial 
move, and kB is the Boltzmann constant. Depending on the simulated thermodynamic 
ensemble, ∆Φ can take different forms, which will be described separately. Irrespective 
of the form, ∆Φ always contains the change in the potential energy ∆E of the system, 
defined as the energy of interaction among all atoms. Interatomic potentials of Embedded 
Atom Method (EAM) type [6,7] and Angular Dependent Potential (ADP) types [8] are 
used to calculate ∆E. Their functional formulation is described in Section 4. If the move 
is accepted, the system state is updated to the new state. If the move is rejected, the 
system state remains unchanged. Execution of a number of trial moves equal to the 
number of atoms N, represents 1 Monte Carlo Step (MCS). 
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As a result, starting from an initial given configuration, the system evolves through a 
Markov chain of events towards a state of thermodynamic equilibrium. Once reached, 
thermodynamic equilibrium is maintained throughout the simulation.  

The simulation of the system evolution can be performed under various constraints, 
depending on which type of thermodynamic ensemble is being simulated. These 
constraints also specify different forms of the thermodynamic potential difference ∆Φ in 
Eq. (1). The following ensembles, and their variations are possible: 
 
2.2. Canonical Monte Carlo (CMC) constant volume (NVT) ensemble 
 
In the canonical NVT ensemble, the number of particles, 𝑁!, of each chemical element, α, 
are kept constant, the system volume is fixed (system dimensions do not change), and the 
system evolution is simulated under constant temperature: 

 
𝑁! = 𝑐𝑜𝑛𝑠𝑡.
𝑉 = 𝑐𝑜𝑛𝑠𝑡.    
  𝑇 = 𝑐𝑜𝑛𝑠𝑡.      

.           (2a) 

 
The trial move is defined by selecting a random atom and displacing it by a small random 
amount in a random direction. The move is accepted with the probability defined by Eq. 
(1), where ∆Φ is equal to the change of the total potential energy of the system ∆E, 
resulting from the trial move 

 
∆Φ =   ∆E.          (2b) 

 
2.3. Canonical Monte Carlo (CMC) constant pressure (NPT) ensemble 
 
In the canonical NPT ensemble, the number of particles, 𝑁!, of each chemical element, α, 
are kept constant, but the system volume is allowed to fluctuate while maintaining zero 
internal pressure at constant T: 

 
𝑁! = 𝑐𝑜𝑛𝑠𝑡.              
𝑃 = 𝑐𝑜𝑛𝑠𝑡.=   0
𝑇 = 𝑐𝑜𝑛𝑠𝑡.                

.          (3a) 

 
The volume fluctuation is achieved by an additional trial move executed once per MCS. 
This trial move applies a small random amount of homogeneous strain in one or several 
directions. The move is accepted with the probability given by Eq. (1), with  
 
∆Φ = ∆E− 𝑁𝑘!𝑇𝑙𝑛 𝑉′ 𝑉          (3b) 
 
where ∆E is the change of the potential energy due to the applied strain, and V ʹ′ and V are 
the new and old volumes of the system, respectively. 
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2.4. Semi-Grand canonical Monte Carlo (SGMC) constant volume (µVT) and constant 
pressure (µPT) ensembles 
 
In the semi-grand canonical ensemble, the total number of particles, N, is kept constant, 
but the number of particles for each chemical element, α, can vary, depending on a given 
chemical potential 𝜇!. The system constraints are defined as follows. 

 
For µVT ensemble: 

 
𝑁!! = 𝑁 = 𝑐𝑜𝑛𝑠𝑡.

𝜇! = 𝑐𝑜𝑛𝑠𝑡.                                
𝑉 = 𝑐𝑜𝑛𝑠𝑡.                                    
𝑇 = 𝑐𝑜𝑛𝑠𝑡.                                    

.         (4a) 

 
For µPT ensemble: 

 
𝑁!! = 𝑁 = 𝑐𝑜𝑛𝑠𝑡.

𝜇! = 𝑐𝑜𝑛𝑠𝑡.                                
𝑃 = 𝑐𝑜𝑛𝑠𝑡.= 0                    
𝑇 = 𝑐𝑜𝑛𝑠𝑡.                                    

.         (4b) 

 
The µPT ensemble involves a variation of the system size in the same way as in the 
canonical constant pressure (NPT) ensemble. 

Fixing the chemical potential allows the system to achieve thermodynamically 
equilibrated chemical composition, rather than being constrained to a fixed composition 
as in the canonical ensemble. Variation of the chemical composition is achieved by 
modifying the trial move in the canonical ensemble where, after displacing a random 
atom in a random direction, its chemical type is also changed in random among all of the 
existing chemical element types in the system. The move is accepted with the probability 
defined by Eq. (1), where 

 
∆Φ = ∆E+ ∆𝜇!" +

!
!
𝑘!𝑇𝑙𝑛

!!
!!

.       (4c) 
 

Here, ΔE includes the total energy change from the combined displacement and chemical 
change trial move. The symbol ∆𝜇!" = 𝜇! − 𝜇!, is the chemical potential difference 
between the newly assigned and the old chemical elements, α and β, of the chosen atom 
of atomic mass 𝑚! and 𝑚!, respectively. Note that when α≡β, Eq. (4c) transforms into 
Eq. (2b). 
 
2.5. Semi-grand canonical Monte Carlo with feedback (FB-SGMC) 
 
In the semi-grand canonical ensemble, described in Section 2.4, the chemical 
composition is not directly defined. It comes as a result of the MC equilibration 
procedure at a fixed set of chemical potentials 𝜇! . The desired chemical composition 
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has to be adjusted by choosing the appropriate chemical potentials, 𝜇!, which is done by 
trial and error. This is time consuming and not very convenient when a specific 
composition is targeted.  

FB-SGMC allows for achieving a predefined concentration of element α, by evolving 
𝜇! through an iterative feedback loop. In this loop, the change of 𝜇! after each MCS is 
proportional to the deviation of the current atomic fraction, 𝑐!, of element α from a 
preset value, 𝑐!!. The iterative equation is given as 

  

𝜇!
! =

𝜇!
!!! − 𝑎!

!!
!!! !!!

!!!

!
− 𝑐!! , 𝑓𝑜𝑟    𝑛 ≥ 2

𝜇!
! ,                                                                                                            𝑓𝑜𝑟    𝑛 < 2

  ,      (5) 

 
where index n labels Monte Carlo steps, and 𝑎! is an adjustable parameter that affects the 
computational efficiency but not the equilibrium end-state. Once the system has reached 
equilibrium, both the chemical composition and the chemical potential fluctuate around 
their equilibrium values. The size of the fluctuations depends on 𝑎! . Increasing 𝑎! 
decreases the fluctuations. 

The rest of the Monte Carlo scheme proceeds as the semi-grand canonical ensemble 
with fixed 𝜇!, as described in Section 2.4. Since the total number of atoms is fixed 
( 𝑁!! = 𝑁 = 𝑐𝑜𝑛𝑠𝑡.), only the differences between the chemical potentials, ∆𝜇!" =
𝜇! − 𝜇!, affect the composition. Therefore, without a loss of generality, one of the 
chemical potentials can be set to zero and the remainder can be evolved through Eq. (5). 
 
2.6. Variance-constrained semi-grand canonical Monte Carlo (VC-SGMC) 
 
VC-SGMC [5] is similar to FB-SGMC as described in Section 2.5, the only difference 
being the choice of the update function for 𝜇!. Instead of using Eq. (5), 𝜇! is updated 
according to the following equation 
 

𝜇!
! = 𝜇!

!!! − 2𝑏!
!!
!!! !!!

!!!

!
, 𝑓𝑜𝑟    𝑛 ≥ 3

𝜇!
! ,                                                                                      𝑓𝑜𝑟    𝑛 < 3

  ,       (6) 

 
where 𝑏! is an adjustable parameter that affects computational efficiency but not the 
equilibrium end-state. Note that in Eq. (6) there is no targeted concentration, 𝑐!!, and the 
resulting equilibrium concentration depends on the initial state of the system at 𝑛 = 0 
defined by 𝑐!

!  and 𝜇!
! , together with the external parameters, such as pressure and 

temperature. Since it can be proven [5] that Eq. (6) evolves the system towards 
equilibrium, then if the system starts from equilibrium, i.e., 𝑐!

! =𝑐!!, and 𝜇!
! = 𝜇!! , 

equilibrium will be maintained during the simulation. Thus, VC-SGMC is used to 
maintain equilibrium, while FB-SGMC is used to reach equilibrium. 

Both FB-SGMC and VC-SGMC, can be considered as special cases of a so-called 
Gaussian ensemble [5,9]. Gaussian ensemble is a theoretical construction where the 
system, instead of being in contact with an infinite reservoir of particles, as in the grand 
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canonical ensemble, is in contact with a finite reservoir. In the limiting case, when the 
reservoir cannot supply or take away any particles, Gaussian ensemble is transferred into 
the canonical ensemble. Thus, Gaussian ensemble can be considered as an intermediate 
case between canonical and grand canonical ensembles. Being in contact with a finite 
reservoir of particles, means that the fluctuations in 𝑐! will have a Gaussian distribution 
around the equilibrium concentration, with a dispersion that can be controlled by the size 
of the reservoir, or in the cases considered here, by the adjustable parameters 𝑎! and 𝑏! 
in Eq. (5) and Eq. (6), respectively.     

The advantages of the Gaussian ensemble with controlled system fluctuations is in 
simulating multicomponent systems during phase transformation or within the phase 
coexistence region in the phase diagram for immiscible systems. During a first order 
phase transition, the chemical potential has a discontinuity and becomes different in the 
two (old and new) phases. Thus, for a system with phase coexistence, or in the process of 
phase transition, a global chemical potential for the whole system is not defined. 
Consequently, fixing the chemical potential in (µVT) or (µPT) ensembles, as described in 
Section 2.4, makes it impossible to simulate phase coexistence and phase interfaces. 
Allowing for µ to vary in the FB-SGMC or VC-SGMC methods makes it possible to 
simulate phase coexistence. 

At present, there is no clear argument which of the two methods, FB-SGMC or VC-
SGMC, is more advantageous in simulating phase coexistence. A detailed comparison 
study for the case of the γ/γʹ′ phase coexistence in NiAl alloy system is given in [9], which 
shows that both methods are comparable under a suitable choice of the 𝑎!  and 𝑏! 
parameters. The ability to explicitly prescribe a target chemical composition in the FB-
SGMC method gives it a certain practical advantage over the VC-SGMC.  

  
2.7. Canonical ensemble with atom swap moves 
 
Considering the problems with a non-defined global chemical potential during the state of 
phase coexistence, as discussed in Section 2.6, a method to simulate phase coexistence is 
to use canonical ensemble with fixed composition. The problem with using CMC in 
(NVT) or (NPT) versions, as described in Sections 2.2 and 2.3, is the inability to change 
the chemical type of an atom. Thus, relying only on displacement moves alone, takes a 
prohibitively long time to intermix the chemical elements.  

One way to introduce chemical change of an atom without changing the overall 
chemical composition and the total number of atoms is to use swap moves. In a swap 
move, a pair of atoms is selected at random and their chemical type is swapped, so that 
the chemical element of the first atom is assigned to the second atom, and vice versa. The 
move is accepted with the probability defined by Eq. (1), where 

 

∆Φ = ∆𝐸!" + ∆𝜇!" + ∆𝜇!" +
!
!
𝑘!𝑇 𝑙𝑛!!

!!
+ 𝑙𝑛!!

!!
= ∆𝐸!".   (7) 

 
Above, ∆𝐸!" is the potential energy difference due to the swap of the chemical types α, 
and β, between the two atoms, while their atomic positions remain fixed. Since 
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∆𝜇!" = −∆𝜇!", and 𝑙𝑛!!
!!

= −𝑙𝑛!!

!!
, the only non-zero term left in Eq. (7) is ∆𝐸!". If 

the two atoms are of the same chemical type (α ≡ β), then there is no change in the 
system state (i.e., ∆𝐸!! = 0), but statistically, the attempt is counted as accepted, since in 
this case ∆Φ = 0  and 𝑃 = 1  in Eq. (1). This regime simulates the same canonical 
ensembles as described in Section 2.2 and Section 2.3 with the constraints defined by Eq. 
(2a) and Eq. (3a) for NVT and NPT ensembles, respectively.  

In combination with the displacement MC moves, described in Section 2, the swap 
move tremendously accelerates the intermixing of atoms of different chemical types in a 
multicomponent system. Its efficiency in exploring a large volume of the configuration 
space is similar to the SGMC methods described in Sections 5 and Section 6. Note also, 
that there is no need of defining a chemical potential as an additional parameter, because 
the chemical potential terms in Eq. (7) cancel each other. Because of the fixed chemical 
composition, the canonical ensemble with swap moves is highly efficient in simulating 
phase coexistence in multicomponent multiphase systems.  

The disadvantage of implementing a swap MC move is in the difficulty of its 
parallelization. At present, there is no efficient way to execute a series of random swap 
moves in parallel. For large systems, where a constant composition needs to be 
maintained, the preferred methods are the FB-SGMC and the VC-SGMC methods, 
because of the possibility for their parallelization. In such cases, the constant chemical 
composition is achieved by setting high enough values for the coefficients 𝑎! and 𝑏! in 
Eq. (5) and Eq. (6), respectively, so that the fluctuations around that composition can be 
made sufficiently small [9]. 

In ParaGrandMC, the execution of the swap MC move has been optimized 
significantly and partially parallelized. For example, while the swap move can be 
executed together with the displacement moves of the two pair atoms, which is usually 
the case in serial MC codes, in ParaGrandMC the swap move is performed separately. At 
each MCS, the code first executes N displacement trial moves, and then another series of 
N swap MC moves. The separation of the two moves allows for speed up by: (i) applying 
full parallelization on the displacement moves; (ii) taking full advantage of the fact that 
the swap moves do not include change in the atomic positions, but only of the chemical 
types of the atoms, which can significantly speed up the calculation of ΔE; and (iii) some 
partial parallelization can still be applied for stand alone swap moves, depending on the 
relative positions of the two paired atoms. In spite of that, the tests presented in Section 5 
of this report show that this regime is the least efficient of all methods examined and 
requires further development.  

 
 
3.  Parallel Implementation of the Monte Carlo Method  
 
From a computational standpoint, the Monte Carlo method requires sequential random 
memory access, which prevents efficient parallelization. Until recently, parallelization 
schemes were implemented only in terms of replicating the simulated system with some 
random variations on the available number of processor cores, or processing elements 
(PEs), and executing independent MC simulations on each processor for obtaining better 



 

 
12	
  
	
  

 

and faster statistical sampling. This strategy is mostly efficient for relatively small 
systems in equilibrium, which are thermodynamically equivalent. On the other hand, the 
replica method does not take advantage of parallelizing the computation of a single 
system and is limited when the system size is too large to be handled efficiently by a 
single PE. In addition, many systems require long simulation time to reach 
thermodynamic equilibrium before being replicated. A particular example is the case of 
multicomponent metal alloys of non-stoichiometric composition, which require large 
atomic systems to be simulated for representative statistics.  

ParaGrandMC utilizes a recently suggested algorithm [3] for parallelization based on 
a special kind of domain decomposition. The domain decomposition is implemented in 
combination with a link-cell algorithm used for fast search of nearest neighbors in the 
interaction range of a given particle [1].  

In brief, the link-cell algorithm divides the entire system volume into link-cells 
(Figure 1), and each link-cell keeps a list of the atoms that are placed inside it. The link-
cells are of close to cubic shape with a size 𝑎!!"" slightly larger than the interaction range 
of the potential. The search for a neighbor in the interaction range of a particle does not 
have to exceed the nearest neighbor link-cells. In a 3D system the search range includes a 
cube of 3! = 27 link-cells, rather than the whole system. 
 

 
 
Figure 1: Schematic representation of the link-cell spatial decomposition of the volume of a 
simulated system among a number of Processing Elements (PEs) for parallel computation. Bold 
lines indicate regions for different PEs. Dotted lines indicate the link-cell mesh with the cells in 
grey indicated as shared cells with the neighboring PE. 
 

Each PE processes a part of the link-cell mesh assigned to it following a uniform 
spatial decomposition of the whole system volume. The PE shares the states of the atoms 
in the link-cells neighboring other PEs. In ParaGrandMC, the spatial decomposition is 
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performed only in the y- and z-directions, resulting in a two-dimensional (2D) grid 
arrangement of the PE units (while the link-cell mesh is 3D). For systems of moderate 
size of less than 107 particles, a 2D PE arrangement was found to be optimal from a 
performance standpoint, compared to a 3D arrangement, which requires more internode 
communications. The y-z 2D PE arrangement achieves best performance when the x-
dimension is chosen to be the shortest system dimension, because it is not decomposed 
over multiple PEs. For optimal performance, the spatial decomposition parallelization 
requires an even number of PEs in each dimension. Thus, for the 2D decomposition, the 
total number of requested PEs must be divisible by 4. 

The parallelization of the MC simulation explores the fact that if two MC moves are 
independent of each other (meaning that the acceptance or rejection of the first does not 
affect the acceptance or rejection of the second, and vice versa), they can be executed 
simultaneously. In the case of a short range interaction, MC moves on particles that are 
further apart than the interaction range are independent and can be executed 
simultaneously. Thus, the MC algorithm for executing 1 MCS (consisted of N MC trial 
moves and N = number of atoms in the system) proceeds by first, generating the random 
list of N trial atom selections* needed for the entire MCS. Next, the algorithm identifies 
groups of atoms in the list that are all outside of each others interaction range. Trial 
moves on the atoms of one such group can be executed in parallel by the available PEs. 
The same steps are repeated for the next group, until all N trial moves are conducted, 
before repeating the procedure for the next MCS. 

The key point in this algorithm is how to efficiently identify the groups of non-
interacting atoms. The procedure takes advantage of the already created link-cell mesh 
for the system. For simplicity, the procedure is illustrated in Figure 2 for a two-
dimensional system, but its 3D implementation is straightforward. The link-cells are 
grouped in 2x2 arrays and are indexed inside each array from 1 to 4 in a clockwise 
direction. All link-cells of the same index form a set. As a result, atoms from different 
link-cells of one and the same set (for example, atoms A and B marked in Figure (2)) are 
guaranteed to be outside of their interaction range and can be executed simultaneously if 
they belong to separate PEs. The algorithm for the execution of one MCS is illustrated 
through the flowchart in Figure 3. 
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Figure 2: Two-dimensional partitioning of the link-cell mesh in sets of four cells, numbered from 
1 to 4. For demonstration, the link-cells of set number 1 are shown in gray. Events on atoms of 
the same set, but of different cells (for example on atoms A and B), can be performed 
simultaneously if they belong to different PEs. 
 

 
 
Figure 3: Flowchart summarizing the parallel execution of one Monte Carlo Step (MCS) for a 
system of N atoms. The operations inside the dashed rectangle are executed by each PE 
independently. The operations outside the dashed rectangle are executed by the master PE. 
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4.  Input and Output Data  
 
4.1. Input data 
 
ParaGrandMC needs the following input data: (i) an input model configuration file; (ii) a 
command file; and (iii) a set of files describing the implemented interatomic potential. A 
detailed description of each file format is given in the ParaGrandMC User’s Guide, which 
is included in the distribution package of the software. Here, a brief description of these 
files is given. 

The input model configuration file, named “structure.plt” contains a header with the 
dimensions of the system and the number of atoms it contains, followed by a list of all 
atoms. Each atom is described by its identification (ID) number, atomic (x, y, z) 
coordinates in Å, a number identifying the associated chemical element, and a code 
number for the constraint degrees of freedom for this atom, if any. 

The command file, named “pgmc.com”, contains a list of commands with parameters 
that define the simulation conditions for various regimes describing the whole simulation 
procedure. A complete list of the commands and their implementation is given in the 
User Guide. 

The interatomic potential is presented in the form as published in the NIST repository 
for interatomic potentials [10]. The potential is represented as a series of tabulated 
functions given in text file format in *.dat files stored in one directory. A list of the 
potential files and their ordering is given in the file “pot.dat”, which is used by 
ParaGrandMC to access the files. 

Interatomic potentials of EAM type [6,7] and ADP type [8] are currently 
implemented in ParaGrandMC. Their functional form, expressed through the total system 
potential energy E, is given as follows. For the EAM potential: 
 
𝐸 = !

!
Φ!" 𝑟!"!,! !!! + F! 𝜌!! ,         (8a) 

 
and for the ADP potential: 

 

𝐸 = !
!

Φ!" 𝑟!"!,! !!! + F! 𝜌!! + !
!

𝜇!! !
!,! + !

!
𝜆!
!" !

!,!,! − !
!

𝜈!!! .    (8b) 
 

Here, indices i and j enumerate interacting atoms at a distance 𝑟!", and the superscripts 
𝛼,𝛽 = 1, 2, 3 refer to the Cartesian coordinates. The first term in Eqs. (8a and b) 
represents pair interactions, Φ!" 𝑟!"  being the pair-interaction potential between atoms i 
and j. The term F! 𝜌!  is the embedding energy of atom i as a function of the collective 
electron density 𝜌! created at site i by all other atoms in the system 

 
𝜌! = ρ! 𝑟!"!!! ,          (9) 
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where ρ! 𝑟!"  is the electron density coming from atom j, placed at a distance 𝑟!" from 
atom i. The Φ!" 𝑟!"  and F! 𝜌!  terms are both centrosymmetric in the sense that they 
depend only on the distance 𝑟!" between atoms i and j, but not on their relative orientation 
with respect to other atoms in the system. Only these terms constitute the EAM potential 
in Eq. (8a).  

In a number of cases, a centrosymmetric potential is not enough to describe the 
interatomic forces. Some examples include transition metals, or systems with more 
pronounced covalent bonding. To address this deficiency, the EAM form Eq. (8a) has 
been extended to include orientation dependent vector and tensor terms in Eq. (8b) in the 
form of 

 
𝜇!! = 𝑢 𝑟!" 𝑟!"!!!! ,           (10a) 
 
𝜆!
!" = 𝑤 𝑟!" 𝑟!"!𝑟!"

!
!!! ,           (10b) 

 
and the trace of λ 

 
𝜈! = 𝜆!!!! .             (10c) 
 
Eqs. (10a-c) require the definition of the two additional functions u 𝑟  and w 𝑟 , which 
express the anisotropy of the interactions in terms of dipole and quadrupole expansion of 
the potential energy. These additional functions enable a description of a direction-
dependent interactions in the ADP potential, but at a computational expense that is twice 
the EAM potential. 

ParaGrandMC can also utilize model configuration and potential files in the format 
defined by the broadly used Large-scale Atomic/Molecular Massively Parallel Simulator 
(LAMMPS) package [4]. 
 
4.2. Output data 
 
As a result of the simulation, ParaGrandMC produces the following output files: (i) an 
output configuration file, (ii) an output data file, and (iii) a log file. 

The output configuration file has the same format as the input configuration file 
“structure.plt”, but its name is given in the pgmc.com command file keeping the 
extension “plt”. The output file can be directly used as an input file, after renaming to 
“structure.plt”, so that a follow up simulation can be started where the first simulation has 
been interrupted. Because output configurations can be produced repeatedly during the 
simulation, each output configuration file has the number of the performed MCS as a 
suffix to its name. For example, “filename.00123456.plt” stores the system configuration 
produced after 123456 MCS. A converter from “plt” to “imd” format for use with the 
opens source code OVITO [11] for visualization and analysis purposes is available. The 
output configuration file can also be written in LAMMPS format [4]. 

The output data file has the name of the configuration output file, as given in the 
pgmc.com file, but with extension “dat”, and without the MCS number (e.g., 
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“filename.dat”).  This file stores measurements of various parameters of the system, such 
as system energy, system dimensions, chemical composition, etc. that are taken 
periodically during the simulation as instructed in the pgmc.com file. The output data file 
is continuously appended as the simulation proceeds. The data are stored in text format in 
columns and can be used directly with a number of plotting programs, such as xmgrace 
[12], gnuplot [13], or Microsoft Excel®. 

The log file, called “pgmc.out”, stores log reports produced periodically from the 
code. Its purpose is mostly to help debugging if something has gone wrong during the 
simulation. As such, the pgmc.out file contains more detailed information about each step 
in the simulation process. Some examples are: the parameters of the interatomic potential, 
such as the range of the interactions and the type of the interacting chemical elements, 
information on the spatial decomposition of the system on different PEs, and how many 
atoms were on each PE.    
 
 
5.  Parallel Performance and Scalability 
 
5.1. Model description 
 
Several benchmark tests were performed with ParaGrandMC to demonstrate its 
performance and scalability. The tests were performed on a Beowulf Linux cluster 
consisting of nodes containing 4 CPUs each. The CPUs are 8-core AMD OpteronTM 6320 
series processors rated at 2.8 GHz, which makes a total of 32 PEs per node. The code was 
compiled using Intel® Composer XE compiler. The tests were performed on a single 
node using up to 32 PEs, and on two nodes, using up to 64 PEs.  

The tests used both types of interatomic potentials as described in Section 4 for two 
alloys. The EAM potential [7] describes a Ni85Al15 alloy of 85 atomic percent Ni and 15 
atomic percent Al, and the ADP potential [8] describes a Ni85Fe15 alloy. The two alloys 
are structurally very similar forming the γʹ′ phase as L12–structure in Ni3Al and Ni3Fe 
accommodating a few percent off-stoichiometry. The off-stoichiometry was chosen 
intentionally in order to allow for higher dynamics in the chemical variations in the 
systems. In the case of Ni85Al15, a coexistence with an atomically disordered γ phase can 
be observed within this chemical composition [9]. To make the tests for the two 
potentials comparable, the shorter interaction range of the Ni-Fe ADP potential of 5.2 Å 
was artificially increased to match the 6.7 Å of the Ni-Al EAM potential. This increase 
was performed by setting the potential energy in the additional range at zero, so that the 
atomic interaction is not altered, while the number of the examined neighbors, which 
substantially effects the computational speed, is made equal for both potentials.  

The atomic systems for both alloys were constructed from a startup cubic system, 
containing N=4000 atoms simulated under periodic boundary conditions in all three x-, y-, 
and z-directions. After equilibration at the simulation temperature of T = 1000K, the size 
of the system box was established at 35.7 Å for the Ni85Al15 alloy, and at 35.8 Å for the 
Ni85Fe15 alloy. After equilibration, the two startup systems were scaled up by replication 
in the y- and z- directions to N=16000 (2x2), 64000 (4x4), and 256000 (8x8) atoms. The 
size in the x-direction was not replicated, because the spatial decomposition for 
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parallelization is performed only in the y- and z-directions, as described in Section 3.  
A series of test simulations of 1000 MCS each were performed and the processor time 

was clocked for the MC cycles only, excluding input-output operations. All tests were 
performed at constant volume, fixed at the T=1000K equilibration temperature. In 
addition, a reference simulation on a single PE in serial mode (excluding all of the PE-to-
PE communication overhead) was performed for all tested regimes.  

 
5.2. Test results 
 
Figure 4 shows the wall clock time taken for one MC simulation of 1000 MCS as a 
function of the number of PEs requested. The results given are for the EAM Ni-Al 
potential model. Except for the smallest system of 4000 atoms, the strongest decrease in 
simulation time is at the transition from a serial execution on 1 PE to a parallel execution 
on 4 PEs. For the 4000 atom system, the communication overhead required for the 
parallel execution becomes comparable to the computation time and the benefit of the 
parallelization is small.  
 

 
Figure 4: Wall clock time for executing 1000 MCS on systems of different number of atoms N, as 
indicated in the figure, as a function of the requested number of PEs. The data are for the CMC 
(NVT) ensemble (Section 2.2). 
 

A notable increase in the wall clock time is observed at the transition from 32 to 36 
PEs for the N=128000 and N=256000 atom systems. This increase reflects the transition 
from the execution on a single node (of 32 PEs) to multiple nodes, which require inter-
node communication through an external router. This increase shows the sensitivity of 
the parallel MC scheme to the rate of data transfer between nodes. 

Since the cost of computer time is usually given per CPU hour, Figures 5(a,b) show 
the simulation time in terms of CPU hours (equal to the wall clock time multiplied by the 
number of requested PEs) as a function of the PE number for the EAM and the ADP 
potentials, respectively. In general, increasing the number of PEs results in an increase of 
the overall CPU time (and respectively, the cost of the simulation), which is due to the 
slower than proportional increase of the speed as the number of PEs is increased. Overall, 
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the ADP model is approximately twice more costly than the EAM model, which is as 
expected [8]. 
 

   
Figure 5: Total CPU time for executing 1000 MCS on systems of different number of atoms N, as 
indicated, as a function of the requested number of PEs, using (a) EAM potential, and (b) ADP 
potential. The data are for the CMC (NVT) ensemble (Section 2.2). 
 

A notable observation in Figure 5(a) is the appearance of a dip in the spent CPU time 
when going from 1 to 4 PEs for the largest systems of N=256000 atoms for the EAM 
potential. Similar dips are also present for the ADP systems of N=128000 and N=256000 
atoms in Figure 5(b). These local minima indicate a threshold in the system size, where 
parallelization becomes highly beneficial. One reason for such a threshold is the higher 
than linear decrease of the computation time due to the decrease of the allocated memory 
volume per PE as the atoms become distributed over multiple PEs. Due to the random 
memory access in the MC algorithm, the simulation time is highly sensitive to the 
allocated memory. For large enough systems, distributing the system volume to more PEs 
becomes cost effective.  

A notable peak increase of the CPU time is observed when the PE number exceeds 32 
PEs for both potentials. As mentioned already, this increase is due to requesting PEs from 
two nodes (of 32 PEs each) and the need for inter-node communication. The 
demonstrated behavior underscores the substantial role of the hardware architecture on 
the effectiveness of the parallel MC algorithm.  

The scaling plots shown in Figure 6 illustrate how many times faster (speed up) the 
MC simulation runs on multiple PEs compared to a single PE for both potentials. The 
data show that there is a steady increase of the speed up as the number of PEs increases. 
Both potentials show similar trends in speed up relative to a single PE execution with the 
ADP potential showing systematically higher values. The higher computational demand 
for the ADP potential while having the same communication overhead compared to the 
EAM potential favors parallelization. Larger systems experience notably larger speed up 
due to the higher load per PE, which benefits more from parallelization. Again, there is a 
noticeable dip in the speed up as the PE number exceeds 32 PEs and the inter-node 
communication slows down the performance. 
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Figure 6: Speed up of a parallel execution relative to a serial 1 PE execution on systems of 
different sizes for the two implemented types of interatomic potentials, EAM and ADP. The data 
are for the CMC (NVT) ensemble (Section 2.2). 
 

A question of interest is how MC simulations using the different ensembles, 
presented in Section 2, compare in terms of speed up. Figure 7 shows this comparison for 
the largest examined system of 256000 atoms. Figure 7a shows that in the case of the 
EAM potential, all three versions of the SGMC ensemble are equivalent in performance. 
The CMC (NVT) ensemble is slightly slower, which may be counterintuitive, since it is 
the simplest model of all. This ensemble exploits only single atom displacement MC 
moves, without change of the chemical type. The actual reason for its lower speed up is 
the higher acceptance rate of these moves, which is almost twice as high, compared to all 
of the SGMC ensembles (79% vs. 43% acceptance, respectively). Accepted trial moves 
involve more computations, because of the required update of the particle state in the 
system. In principle, the acceptance rate can be controlled through adjusting the 
maximum value of the random displacement move, which is an input parameter in the 
simulations.  

The lowest speed up is found for the canonical Monte Carlo with swap moves. As it 
has been discussed in Section 2.7, the swap MC moves are most difficult to parallelize, 
because they involve the simultaneous change of a pair of particles randomly selected 
from around the system. This regime is only partially parallelized, and its speed up is 
least affected by the number of PEs. For parallelization on more than 32 PEs, this speed 
up is practically non-existent. The ADP model, presented in Figure 7b, shows similar 
behavior as the EAM potential model with slightly higher speed up numbers, due to its 
more computationally demanding functional form, which favors parallelization.  
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Figure 7: A comparison of the parallel execution relative to a serial execution speed up for the 
various ensemble types, as discussed in Section 2, on a system of N=256000 atoms, for the two 
implemented types of interatomic potentials, (a) EAM and (b) ADP.  
 
 
6.  Summary 
 
This report presents the basic concepts of the ParaGrandMC code, together with the 
physics behind it. To help potential users understand the advantages of using 
ParaGrandMC, results of several parallel performance tests are provided. Overall, the 
analysis shows good scalability of the performance with the number of requested PEs. 
The computational efficiency of the code improves with the increase of the computational 
load. Larger systems using more computationally demanding calculations benefit more 
from parallelization. Parallelization for systems of less than 10000 atoms does not 
improve the performance substantially, and are best executed in a serial mode on 1 PE.  

A strong sensitivity of the performance on the communication speed between PEs is 
observed. Going from a shared memory intra-node to a distributed memory inter-node 
communication results in a noticeable decrease in performance. 

Differences in performance for the various simulated regimes implementing different 
kinds of MC trial moves are discussed. With the exception of the swap-moves canonical 
Monte Carlo regime, which is only partially parallelized, no significant performance 
differences are found between the rest of the regimes. The swap move CMC shows some 
small speed up when executed on a single multicore multi-CPU platform. In order to 
compensate for the low parallel efficiency of the swap move CMC, ParaGrandMC 
provides a number of options to constrain the fluctuations in the chemical composition 
for the FB-SGMC and VC-SGMC ensembles, making them a good substitution to the 
swap-move CMC for large system simulations.   

The ParaGrandMC code is available through https://software.nasa.gov/ . 
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