

Dr. Jeffrey Beyon

NASA Langley Research Center Hampton, VA 23681

December 18, 2015

High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center

Dr. Jeffrey Beyon

NASA Langley Research Center Hampton, VA 23681

December 18, 2015

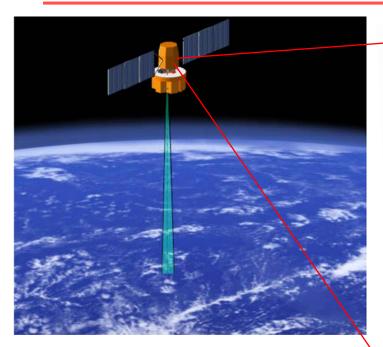
Out line

- Introduction
- Accomplishments
- Approach
- Key Milestone History
- Integration of HOPS into Science Projects
- HOPS Concept to Flight
- HOPS Collaboration
- Key Contributors
- Acknowledgment and Q&A

Introduction

- Funded by NASA's ESTO (Earth Science Technology Office) AIST (Advanced Information Systems Technology) program.
- Period: April, 2012 April, 2015
- Entry TRL 2, Exit TRL 5.
- Goals
 - Develop a high-speed, on-board reconfigurable and scalable data processing platform for science instruments
 - Demonstrate HOPS capabilities to address computationally intensive ASCENDS and 3-D Winds algorithms.
 - ASCENDS: Active Sensing of CO2 Emissions over Nights, Days, and Seasons
 - Demonstrate HOPS is reconfigurable and scalable.

Accomplishments



- HOPS Hardware (HW) offers high performance, scalable and re-configurable real-time data processing capabilities to high data volume missions.
- 6U HOPS HW offers 20 GB/sec of FPGA-memory bandwidth and 4 GB/sec of inter-board bandwidth.
- HOPS HW is path-to-flight while reducing the risk in the transition to TRL 6.
- HOPS HW reduces the power and mass by more than one order of magnitude than SOA radiation tolerant hardware.
- HOPS HW costs \$20K, and its flight radiation tolerant HOPS cost estimate is 1-2 orders of magnitude less than SOA radiation tolerant hardware for equivalent processing capacity.
- HOPS HW prototype using COTS successfully completed two flight campaigns on the HU25B and the DC-8 demonstrating the real-time on-board processing capabilities. Such an end-to-end demonstration is equivalent to the demonstration of HOPS HW.
- HOPS HW enables ASCENDS and 3-D Winds to perform real-time on-board data processing while reducing the data volume up to 99%. HOPS HW is 30 to 700 times faster in 64K FFT computing than SOA radiation tolerant hardware.

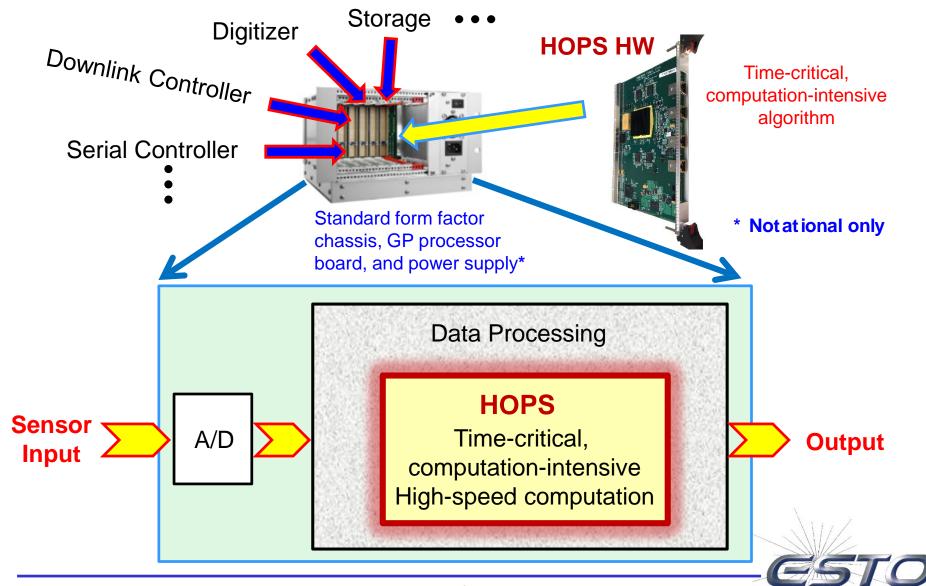
Accomplishments

Reduced downlink data volume and terrestrial data processing time

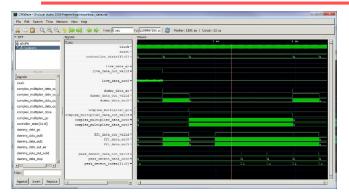
Approach

- Select representative algorithms for requirement definition and demonstration.
- Develop a software-based HOPS model that simulates timing, functions, and data volume accurately.
- Develop a HOPS prototype using COTS products and verify timing and functionality.
- Develop the final HOPS hardware derived from the software-based model and the COTS prototype.
- Demonstrate selected algorithms.

Key Milestone History


Key Milestones	Date
Define high-speed computing architecture and model.	09/2012
Demonstrate algorithms on software-based HOPS model.	03/2013
Prototype HOPS with COTS hardware. Develop VHDL for algorithm.	09/2013
Test algorithm on COTS hardware and architecture refinement.	12/2013
Design and build HOPS hardware. VHDL porting.	03/2015
Test, verify data processing algorithms on HOPS hardware.	04/2015

Integration of HOPS into Science Projects


Earth Science Technology Office

HOPS – Concept to Flight

SystemC

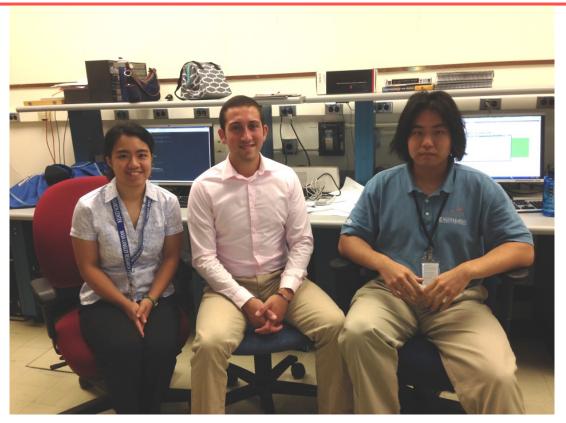
HOPS COTS (3U)

HOPS HW (6U)

(Superset of HOPS COTS in operations and functionalities)

Earth Science Technology Office

HOPS Collaboration

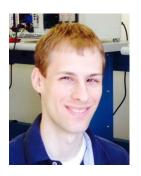

- LaRC science teams: ACES, ASCENDS, and DAWN (3-D Wind)
- LaRC Engineering Directorate branches: Thermal and Mechanical
- Other NASA centers and contractors
 - Armstrong Flight Research Center (AFRC): HOPS COTS integration in the DC-8.
 - Exelis Inc. HOPS COTS flight demonstration with MFLL instrument.
 - Kennedy Space Center (KSC): Joint proposal effort discussion
- Academia
 - University of Florida (UF) in Gainesville: NSF CHREC (Center for High-Performance Reconfigurable Computing)
 - University of Michigan (UM) in Ann Arbor
 - Summer intern students: 1 in 2013 and 3 in 2014 (UF and UM)

HOPS Collaboration

Summer Students.

From left to right:


Dorothy Wong (U of FL – Gainesville) Aaron Crasner (U of MI – Ann Arbor) Kazumitsu Onishi (U of FL – Gainesville)



Key Contributors (in random order)

Dr. Tak Ng Co-I. FPGA. HOPS Architecture.

Jordan Davis
Board Design.
Flight Op. IT.
HU-25 & DC-8.

James Adams PCB Design. PRs. HU-25 & DC-8.

Mark Hutchinson
Branch Head. HOPS
Signal Conditioning
for DC-8. Resources.
Staffing.

Kevin SomervilleMentor for Davis.
Board Design.

Steve Bowen HOPS Signal Conditioning for DC-8.

Charles Antill HOPS Signal Conditioning for HU-25 & DC-8.

Jim Fay Flight Op. IT. DC-8.

Dr. Michael Obland PI for ACES. HU-25.

Byron Meadows
PM for ASCENDS.
DC-8.

Acknowledgments

We are very grateful for the support from

NASA Science Mission Directorate (SMD),

NASA SMD Earth Science Technology Office (ESTO),

and the ESTO Advanced Information System Technology

(AIST) program.

Acronym List

- ACES: ASCENDS CarbonHawk Experiment Simulator
- AIST: Advanced Information Systems Technology
- ASCENDS: Active Sensing of CO2 Emissions over Nights, Days, and Seasons
- CHREC: Center for High-Performance Reconfigurable Computing
- COTS: Commercially Off The Shelf
- ESTO: Earth Science Technology Office
- FPGA: Field-Programmable Gate Array
- GP: General Purpose
- HOPS: High-Speed On-Board Data Processing for Science Instruments
- HOPS HW: HOPS Hardware. aka HOPS custom board. Final deliverable.
- IT: Integration and Testing
- MFLL: Multifunctional Fiber Laser Lidar
- PI: Principal Investigator
- PM: Project Manager
- TRL: Technical Readiness Level
- UF: University of Florida
- UM: University of Michigan
- VHDL: VHSIC Hardware Description Language

