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Dynamic Modeling from Flight Data 
with Unknown Time Skews 

Eugene A. Morelli * 
NASA Langley Research Center, Hampton, Virginia, 23681 

A method for estimating dynamic model parameters from flight data with unknown time 
skews is described and demonstrated. The method combines data reconstruction, nonlinear 
optimization, and equation-error parameter estimation in the frequency domain to 
accurately estimate both dynamic model parameters and the relative time skews in the data. 
Data from a nonlinear F-16 aircraft simulation with realistic noise, instrumentation errors, 
and arbitrary time skews were used to demonstrate the approach. The approach was further 
evaluated using flight data from a subscale jet transport aircraft, where the measured data 
were known to have relative time skews. Comparison of modeling results obtained from 
time-skewed and time-synchronized data showed that the method accurately estimates both 
dynamic model parameters and relative time skew parameters from flight data with 
unknown time skews.  

Nomenclature 
x y za ,a ,a  = body-axis translational accelerometer measurements, g 

b  = wing span, ft 
c  = mean aerodynamic chord, ft 

X Y ZC ,C ,C  = body-axis nondimensional aerodynamic force coefficients 

l m nC ,C ,C  = body-axis nondimensional aerodynamic moment coefficients 

[ ]Ε   = expectation operator 

[ ]  = Fourier transform operator 

g  = gravitational acceleration, ft/s2 

[ ]Im   = imaginary part 

x y z xzI , I , I , I  = mass moments of inertia, slug-ft2 

j  = imaginary number = 1−  
m  = aircraft mass, slug 
M  = number of frequencies 

TM  = body-axis pitching moment from engine thrust, ft-lbf 
p, q, r  = body-axis roll, pitch, and yaw rates, rad/s or deg/s 

aP  = ambient static pressure, lbf/ft2 
q  = dynamic pressure, lbf/ft2 

[ ]Re   = real part 

S  = wing reference area, ft2 
T  = maneuver length, s 

x zT , T  = body-axis engine thrust components, lbf 
u, v, w  = body-axis air-relative velocity components, ft/s 
V  = airspeed, ft/s 
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α  = angle of attack, rad or deg 
β  = sideslip angle, rad or deg 

s e a r, , ,δ δ δ δ  = stabilator, elevator, aileron, and rudder deflections, rad or deg 
, ,φ θ ψ  = Euler roll, pitch, and yaw angles, rad or deg 

θ  = parameter vector 
Σ  = covariance matrix 

superscripts 
T transpose 
 ̂  estimate 
   time derivative 
   Fourier transform 

–1 matrix inverse 
†  complex conjugate transpose 

subscripts 
cg = center of gravity 
I = inboard 
L = left 
r = reconstructed 
R = right 
o = reference value or base term 
O = outboard 

I. Introduction 
VERY commonly-used method for dynamic modeling based on measured data makes an implicit assumption 
that all measured signals are sampled at the same time1,2. In practice, this is never exactly true, due to issues 

such as multiplexing in the analog-to-digital conversion electronics, and different sampling rates for various signals, 
for example. In high-quality aircraft instrumentation systems designed to collect data for dynamic modeling, such 
issues are well known, and steps are taken to minimize the differences in the sampling times for the measured data. 
The usual approaches involve accurately recording the time when each sample was taken (time tagging), and/or 
linear interpolation to approximate simultaneous data sampling.  
 Unfortunately, not every dynamic modeling task is undertaken with data that have been carefully time tagged or 
interpolated. Some examples are data from an aircraft accident, and data from a low-budget instrumentation system, 
such as might be found on munitions, unmanned air vehicles, or remotely-piloted vehicles. Past approaches to 
solving this problem have included estimating the time skews separately, as well as estimating model parameters 
and time skews simultaneously in a combined nonlinear parameter estimation formulation3-5. In some practical 
situations, the effort necessary to time synchronize the sampled data is prohibitively expensive, and sometimes not 
even possible.  
 This paper reports the results of an investigation focused on finding a dynamic modeling method that can be 
used in cases where the sampled signals may have unknown relative time skews. This can simply mean that the 
assumption of simultaneous data sampling has been violated, and the exact sampling times of the measured signals 
are not known. But it can also mean that there are practical or instrumentation issues that produce a time skew in the 
signal before it is sampled. Common examples are lags in air flow angle data due to sensor position on the aircraft or 
pressure tubing lengths, and control surface data time skews from low sampling rates or the use of control surface 
command data rather than control surface position data. For conventional dynamic modeling methods, the presence 
of relative time skews in the measured data has known detrimental effects on dynamic modeling accuracy6.  
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 A real-world example of the importance of this issue is the first 
flight of the X-43A hypersonic research vehicle, or Hyper-X, which 
was aborted during the launch phase7. Investigation of the event 
focused (among other things) on the dynamic model of the booster 
and Hyper-X stack (see Fig. 1) in the transonic region. Uncertainty in 
the sample times of the measured signals used in the investigation led 
to an extensive effort to accurately determine what those sample 
times were. It was very important to the mishap investigation to 
determine the sample times accurately, so that the dynamic modeling 
based on measured flight data would produce accurate results, and 
the root cause of the mishap could be identified. A dynamic 
modeling method that could be applied regardless of the actual 
relative time skews in the data would have saved a large amount of 
time and expense in the mishap investigation.  
 The purpose of this paper is to explain and demonstrate a method 
for accurately identifying dynamic models based on flight data with unknown time skews. The next section 
describes the general idea and gives some background information. Following this, the method is applied to data 
from an F-16 nonlinear simulation, using realistic noise, instrumentation errors, and known time skews in the data. 
Finally, flight data from a subscale transport aircraft were used to demonstrate that the method produces accurate 
modeling results for data with unknown time skews, and can also serve as a diagnostic tool to identify data that have 
significant relative time skews.  

II. Method 
 In the time domain, it is difficult to accurately determine time skews in sampled data, because of the quantization 
related to the sampling interval and the fact that implementing any time skew value that is not an integer multiple of 
the sampling interval involves interpolation of the data. This causes convergence problems in time-domain 
parameter estimation algorithms, as well as resolution limitations for the estimated values of the time skews. 
However, if the analysis is done in the frequency domain, the time skews are continuous-valued parameters, and 
these problems do not exist. Consequently, the approach described here uses frequency-domain methods.   
 The problems that arise from time-skewed data are related to relative time skews, or time skews of sampled time 
series relative to one another. If all of the time series are time skewed in exactly the same way, then for dynamic 
modeling purposes, there is no problem, and the modeling can proceed normally.  When the data have relative time 
skews, these time skews can be falsely interpreted as phase lag due to the system dynamics, for example, and this 
causes errors in the model parameter estimates.   
 A good approach to the problem is to first define a reference for the time skews in the data. Body-axis 
translational accelerations and angular rates typically come from a single Inertial Measurement Unit (IMU), so that 
the time skew between these measured quantities is negligible, and the data from the IMU provide a good reference 
for the time skews. Time skews for other sampled time series can be defined relative to this reference. With this 
timing reference established, there are typically two categories of data whose time skew must be determined relative 
to the reference:  

 1) Air flow data:  airspeed V , sideslip angle β , and angle of attack α  

 2) Control surface deflection data:  elevator eδ , aileron aδ , and rudder rδ  (and possibly other controls) 

 For example, aircraft longitudinal short-period dynamics can be described by the following linear equations1: 

 ( ) ( ) ( ) ( ) ( )1
e eq et Z t Z q t Z tα α α δ δα τ α τ δ τ− = − + + + −  (1a) 

 ( ) ( ) ( ) ( )e eq eq t t q t tα α δ δα τ δ τ= − + + − M M M  (1b) 

 
Figure 1.  Hyper-X stack being carried 

to altitude on the NASA B-52B 
Credit: NASA Armstrong Flight Research Center 



 

 
American Institute of Aeronautics and Astronautics 

 

4 

 ( ) ( ) ( ) ( )e e
o

z q e
Va t Z t Z q t Z t
g α α δ δα τ δ τ = − + + −   (1c) 

where the dimensional stability and control derivatives 
e eq qZ , Z , Z , , , ,α δ α δM M M  and the relative time skews 

e
, ,α δτ τ  are unknown parameters to be estimated from the data. The aircraft response and control variables in 

Eqs. (1) are perturbation quantities, as usual for linearized dynamic equations1.  
 Equations (1) can be readily transformed into the frequency domain1,  

 ( )1 e
e

jj j
q ej e Z e Z q Z e δα α ωτωτ ωτ

α δωα α δ −− −= + + + 

    (2a) 

 e
e

jj
q ej q e q e δα ωτωτ

α δω α δ −−= + + 

 M M M  (2b) 

 e
e

jjo
z q e

Va Z e Z q Z e
g

δα ωτωτ
α δα δ −− = + +  



  (2c) 

 In the transformed Eqs. (2), the relative time skews are continuous-valued parameters that can be estimated in 
the same manner as the stability and control derivatives. At first glance, it would appear that all of the unknown 
parameters in Eqs. (2) could be estimated from the data using standard equation-error or output-error parameter 
estimation in the frequency domain1,8. However, this is not true, because the relative time skew parameter for angle 
of attack is highly correlated with the stability derivatives, which leads to inaccurate parameter estimates. The 
reason for this can be understood physically - any time skew in the angle of attack data can be interpreted as phase 
shift in the dynamic system, which can be modeled nearly equally well by adjusting the values of the stability 
derivatives or by adjusting the angle of attack time skew parameter. This is called model parameter correlation, 
which gives rise to an ill-posed parameter estimation problem that cannot be solved accurately. Note that the control 
time skew parameter does not have this problem, because the control has nothing to do with the phase shift 
associated with the dynamic system. Consequently, control time skew parameters are well-conditioned, identifiable 
parameters that can be estimated accurately along with the stability and control derivatives, using standard 
parameter estimation algorithms in the frequency domain.  
 The correlation between the stability derivatives and the angle of attack time skew can be broken if an accurate 
independent estimate of the angle of attack time skew parameter can be found. This can be done using data 
reconstruction, which in some contexts is called flight path reconstruction. In this approach, air flow data are 
reconstructed using IMU data (defined as having zero time skew) for translational accelerations, angular rates, and 
Euler attitude angles. The reconstructed air flow data are transformed into the frequency domain, as explained in the 
next subsection. Then a simple nonlinear optimization in the frequency domain can be used to accurately determine 
the relative time skews for the air flow data (airspeed, sideslip angle, and angle of attack). Once these relative time 
skew quantities are estimated accurately and separately, the resulting values are substituted into the dynamic 
equations (e.g., Eqs. (2)), and the remaining unknown parameters, consisting of stability and control derivatives and 
control time skew parameters, can be estimated accurately using a nonlinear parameter estimation algorithm in the 
frequency domain.  
 The next section describes transformation of measured flight data into the frequency domain. This is followed by 
an explanation of the data reconstruction and nonlinear optimization in the frequency domain used to accurately 
estimate time skews in the air-flow data. Then, the application of parameter estimation in the frequency domain to 
estimate stability and control parameters and the control time skews is explained, which completes the modeling. 
Because all of the unknown model parameters are estimated using standard parameter estimation algorithms in the 
frequency domain, the uncertainties in the estimated parameters can also be computed using standard methods1.  
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A. Transforming Data from the Time Domain into the Frequency Domain 
 Measured flight data are transformed from the time domain into the frequency domain using the finite Fourier 
transform. For an arbitrary scalar signal ( )x t  on the time interval [ ]0,T , the finite Fourier transform is defined by 

 ( ) ( ) ( )
0

T j tx t x x t e dtωω −≡ ≡   ∫  (3) 

The finite Fourier transform can be computed very accurately for arbitrary frequencies ω  using a numerical method 
based on Filon quadrature and cubic interpolation1,9.  
 When a time series has non-zero endpoints, the finite Fourier transform of the time derivative of that time series 
requires endpoint correction terms. Applying integration by parts to Eq. (3), 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0
              0

              0

T j t

Tj T j t

j T

x t x t e dt

x T e x j x t e dt

x T e x j x

ω

ω ω

ω

ω

ω ω

−

− −

−

≡  

= − +

= − +

∫

∫

 





 (4) 

 Applying high-pass filtering to a time series or assuming perturbations from an initial reference condition 
imposes a zero initial condition. This leaves only one term for the endpoint corrections, so that 

 ( ) ( ) ( )j Tx t x T e j xω ω ω−= +     (5) 

Equation (5) was used to compute the finite Fourier transform for the time derivative of a time series that has been 
high-pass filtered or conditioned as a perturbation from an initial reference condition.  

B. Data Reconstruction and Time Skew Estimation in the Frequency Domain 
 Data from the IMU can be used in the nonlinear translational kinematic equations of motion to reconstruct 
body-axis velocity components u,v, w,  from which V , ,β α  can be computed. The required equations are1: 

 xu rv qw g sin gaθ= − − +  (6a) 

 yv pw ru g cos sin gaθ φ= − + +  (6b) 

 zw qu pv g cos cos gaθ φ= − + +  (6c) 

Airspeed, sideslip angle, and angle of attack can be computed from  and u,v, w  using1  

 2 2 2
rV u v w= + +  (7a) 

 ( )1
r rsin v Vβ −=  (7b) 

 ( )1
r tan w uα −=  (7c) 

 Equations (6)-(7) can be used to reconstruct airspeed, sideslip angle, and angle of attack data using IMU 
measurements. Consequently, the reconstructed r r rV , ,β α  time series do not have relative time skew.  
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 A practical problem with this data reconstruction is that IMU data for angular rates p, q, r,  and translational 
accelerations x y za ,a ,a , all typically have bias errors. This causes a time-dependent drift in the r r rV , ,β α  

reconstructions from Eqs. (6)-(7), even when the bias errors are small, because of the additive effect of the time 
integration. Furthermore, the initial conditions for the integrations in Eqs. (6) must be specified, and any errors in 
these values will bias the reconstructed data.  Scale factor errors for angular rate and translational accelerometer 
measurements are negligible in practice, and any errors in the Euler angles φ  and θ  will be mitigated by the 
trigonometric functions. Most IMU provide Euler angle time series (or equivalent quaternion data) that have been 
corrected for drift, using magnetometer measurements, for example.  
 For the data reconstruction in Eqs. (6), initial conditions must be specified. The initial conditions can be 
computed from initial measured values for the air flow data, or a mean of measured values in a steady initial flight 
condition. Initial conditions for the body-axis velocity component reconstructions are then computed from 

 ( ) ( ) ( ) ( )0 0 0 0u V cos cosα β=         (8a) 

 ( ) ( ) ( )0 0 0v V sin α=     (8b) 

 ( ) ( ) ( ) ( )0 0 0 0w V sin cosα β=         (8c) 

 In practical situations, particularly when the initial flight condition is not steady, this approach to finding the 
initial conditions for Eqs. (6) will be approximate. However, any errors in the initial conditions will be shown to 
have little effect on the modeling results.  
 From the foregoing discussion, it is clear that reconstructed r r rV , ,β α  time series can have significant bias and 
drift errors, from the approximate initial conditions used in Eqs. (6), as well as the biases in the IMU data for 
angular rates p, q, r,  and translational accelerations x y za ,a ,a . However, if the modeling is done in the frequency 

domain, where the bias and drift are removed for other reasons (discussed next), then this method of reconstructing 
air flow data can be used very effectively.  
 When transforming time-domain data into the frequency domain, the constant bias and drift (also called the 
trend, or the best-fit linear function of time) are always removed prior to applying the finite Fourier transform. This 
processing is done to avoid leakage from relatively large low-frequency components that can pollute the frequency-
domain data at low frequencies of interest1,10,11. It follows that bias and drift errors in the air flow data 
reconstructions are of no concern when the analysis is done in the frequency domain, because the bias and drift of 
every time series are removed anyway. In essence, the reconstruction is done in the time domain, and the errors 
incurred in doing that are discarded prior to transformation into the frequency domain. At that point, standard 
frequency-domain modeling methods can be applied. Note that this approach conforms with the practical reality that 
angular rate measurements and translational accelerometer measurements typically have small but non-zero bias 
errors, and negligible slope or scale factor errors1.  
 To estimate the time skew in the angle of attack measurement, a simple nonlinear optimization can be done in 
the frequency domain.  The model equation relating the measured angle of attack and the reconstructed angle of 
attack in the frequency domain is simply 

 j
r e αωτα α −=   (9) 

A nonlinear optimizer such as Gauss-Newton implemented in the frequency domain1 can be used to find the best 
estimate of the single unknown parameter ατ . Equivalently, the parameter estimation problem can be set up as an 
output-error parameter estimation problem in the frequency domain, which is also solved using a nonlinear 
optimizer. This parameter estimation problem is very well conditioned and the solution is obtained very rapidly 
using Gauss-Newton optimization in the frequency domain. A similar approach can be used to find the time skews 
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for airspeed and sideslip angle, individually. The angle of attack corrected for time skew in the frequency domain is 
computed by inverting Eq. (9) using the angle of attack time skew estimate ˆατ  found by the nonlinear optimizer, 

 ˆj
c e αωτα α=   (10) 

and similarly for airspeed and sideslip angle. Note that this approach retains data information from the air flow data 
measurements and only estimates relative time skews.  
 Once air flow angle data are corrected using the estimated time skews, the remaining aerodynamic modeling and 
control time skew estimation can be done in the frequency domain, as described in the next subsection.  
 Time skews in the Euler angle data from the IMU can be estimated in an analogous way using the nonlinear 
rotational kinematic equations of motion to reconstruct Euler angles , , ,φ θ ψ  from body-axis angular rates p, q, r . 
The rotational kinematic equations are1: 

 ( )r r r rp tan q sin r cosφ θ φ φ= + +  (11a) 

 r r rq cos r sinθ φ φ= −  (11b) 

 r r
r

r

q sin r cos
cos
φ φψ

θ
+

=  (11c) 

 Reconstructed r r r, ,φ θ ψ  time series have no relative time skew, because the data reconstruction is based on 
IMU body-axis angular rate data. Equation (11c) can be omitted because Euler yaw angle does not affect dynamic 
modeling, and does not appear in Eqs. (11a)-(11b). Initial conditions for Eqs. (11a)-(11b) can be set to initial 
measured values or a mean of measured values in a steady initial flight condition. As mentioned previously, most 
IMU provide Euler angle time series that have been corrected for drift. However, filtering and data processing 
involved in producing the Euler angle time series can produce time skews relative to the angular rate data.  
 The time skew in the Euler pitch angle data can be estimated in the same manner as described earlier, using a 
simple nonlinear optimization in the frequency domain.  For example, the model equation relating the Euler pitch 
angle data from the IMU and the reconstructed Euler pitch angle data in the frequency domain is simply 

 j
r e θωτθ θ −=   (12) 

The Euler pitch angle data corrected for time skew in the frequency domain is computed by inverting Eq. (12) using 
the time skew estimate ˆθτ  found by the nonlinear optimizer, 

 ˆj
c e θωτθ θ=   (13) 

The same approach can be applied for the Euler roll angle.  
 The rotational kinematic analysis can be done separately and independently from the translational kinematic 
analysis. Therefore, it is convenient to do the rotational analysis first, then correct the Euler angle data for the 
estimated time skews before doing the translational kinematic analysis to estimate the air flow data time skews. 
However, because the Euler angles appear only as arguments in trigonometric functions in the translational 
reconstruction Eqs. (6), and are not explanatory variables for the aerodynamic modeling, the rotational time skew 
estimation can be skipped.  

C. Aerodynamic Modeling and Control Time Skew Estimation in the Frequency Domain 
 Continuing with the aircraft longitudinal short-period dynamics example described earlier, and using the angle of 
attack data corrected for time skew, the frequency-domain equations are: 
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 ( )1 e
e

j
c c q ej Z Z q Z e δωτ

α δωα α δ −
= + + + 

    (14a) 

 e
e

j
c q ej q q e δωτ

α δω α δ −
= + + 

 M M M  (14b) 

 e
e

jo
z c q e

Va Z Z q Z e
g

δωτ
α δα δ − = + +  



  (14c) 

As mentioned earlier, the remaining unknown parameters, consisting of stability and control derivatives and control 
time skew parameter, can now be estimated using standard parameter estimation methods in the frequency domain.  
 Using an equation-error formulation, Eqs. (14) can be analyzed either individually or together. The equation-
error approach produces parameter estimates that minimize the least squares fit of the model to derivative 
information in the frequency domain for each equation1. For the pitching moment equation (14b), the equation error 
in the frequency domain is  

 ( ) ( )z yε −θ θ =  (15) 

where 

 z j qω=   (16a) 

 ( ) e
e

j
c q ey q e δωτ

α δα δ −
= + +θ 

 M M M  (16b) 

 
e e

T
qα δ δτ =  θ M M M  (16c) 

 The Fourier transform quantities based on the data, i.e., c e, q , ,α δ   are computed at M selected frequencies 
1 2k , k , , ,M .ω =   The number of frequencies M is selected to be much greater than the number of unknown 

parameters pn  ( 4pn =  in Eq. (16c)), and the frequencies are chosen to cover the frequency band associated with 

the dynamic model, e.g., [0.1, 1.5] Hz for rigid-body dynamics of a typical fighter or subscale aircraft. Note that the 
transform frequencies can be chosen arbitrarily (subject only to data information content limitations) using the high-
accuracy numerical method described in Refs. [1] and [9]. This results in an overdetermined set of equations with 
complex data, 

 ( ) +z y θ ε  =  (17) 

where 

 ( ) ( ) ( )1 1 2 2
T

M Mj q j q j qω ω ω ω ω ω=   z   
  (18a) 

 ( ) ( ) ( )1 2
T

c c c c Mα ω α ω α ω=   α   
  (18b) 

 ( ) ( ) ( )1 2
T

Mq q qω ω ω=   q   
  (18c) 

 ( ) ( ) ( )1 2
T

e e e e Mδ ω δ ω δ ω =  δ   

  (18d) 
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 [ ]1 2
T

Mω ω ω=ω   (18e) 

 ( ) ωy θ α q δ e
e

j
c q e e δτ

α δ
−

= + +M M M 

    (18f) 

and ε  is a vector of complex equation errors. Equation (18f) shows that the model output  is nonlinearly dependent 
on the parameters, because of the time skew parameter 

eδτ  in the exponential. This simply means that the solution 

cannot be obtained with the algebraic pseudo-inverse calculation normally used for equation-error parameter 
estimation, but rather must be solved using a nonlinear optimizer, such as Gauss-Newton in the frequency domain. 
The solution is obtained in a straightforward manner using nonlinear optimization (typically applied for other 
nonlinear parameter estimation, such as output-error problems) in the frequency domain, with the least squares cost 
function: 

 ( ) ( ) ( )1
2

†J − −      θ z y θ z y θ  =  (19) 

 The process produces accurate estimates for the stability and control parameters, as well as the control time 
skew. For these estimated parameters, as well as the air flow time skew parameters (which also come from a 
nonlinear parameter estimation solution), the estimated parameter covariance matrix can be computed from1 

 ( ) ( ) ( ) { } 12T †ˆ ˆ ˆ ˆE Reσ
−   ≡ =    

S SΣ θ θ θ θ θ− −  (20a) 

 ( )
ˆ=

∂
≡

∂ θ θ

y θ
S

θ


 (20b) 

where the equation-error variance estimate 2σ̂  can be found from the model residuals,  

 
( ) ( ) ( )2 1 †

p

ˆ ˆˆ
M n

σ     − −    −  
z y θ z y θ  =  (20c) 

and pn  is the number of unknown parameters, i.e., the number of elements in parameter vector θ . The standard 

errors of the estimated parameters are given by the square roots of the diagonal elements of the covariance matrix 

( )ˆΣ θ , 

 ( ) ( )j j jj
ˆ ˆs Varθ θ Σ= =  1 2 pj , , ,n=   (20d) 

 Explanations of why the estimated parameter standard errors are computed in this way, and why this calculation 
in the frequency domain produces parameter error measures that are consistent with the scatter in parameter 
estimates from repeated maneuvers, can be found in Ref. [1].  
 It is also possible to solve this parameter estimation problem using an output-error formulation in the frequency 
domain, which is equivalent to finding model parameter estimates that match the aircraft response information in a 
least squares sense, rather than the derivative information. However, that approach is more complicated, and it was 
found that the equation-error formulation provided better parameter sensitivity for the control time skew parameters, 
and produced modeling results with high accuracy. Because the nonlinear optimization is being done in the 
frequency domain, all of the calculations are algebraic, and the nonlinear optimization can be carried out very 
rapidly on a desktop computer.  
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 Using the equation-error approach described here, each equation (for example, Eq. (14b) or (14c)) can be 
analyzed individually. However, model parameters can also be estimated in a combined equation-error formulation. 
For example, Eqs. (14b) and (14c) could be combined, and the nonlinear optimization applied to the combined 
frequency-domain data. This allows the estimator to find a single best value for the control time skew, which 
appears in both Eqs. (14b) and (14c).  
 Experience has shown that using the output equation (14c) for za  gives superior modeling results compared to 
using the state equation (14a) for α , when estimating the model parameters that appear in both equations. This is 
related to improved parameter sensitivity and signal-to-noise ratio using the output equation (14c). Similar 
statements apply for lateral/directional modeling, relative to using the output equation for ya  versus the state 
equation for β .  

 Although the example shown here is for longitudinal short-period dynamics using dimensional stability and 
control derivatives, the same approach can be used for other models, including lateral/directional dynamic models. 
Furthermore, the approach also applies if the modeling is done using nondimensional aerodynamic coefficients and 
nondimensional stability and control derivatives. In that case, the measured data to be matched by the model using 
the equation-error formulation are nondimensional aerodynamic force and moment coefficient data, computed from 
flight measurements as follows1: 

 ( )X x xC m a T q S= −  (21a) 

 ( )Z z zC m a T q S= −  (21b) 

 ( ) ( )2 2
m y x z xz TC I q I I pr I p r M q S c = + − + − − 

  (21c) 

 Y yC m a q S=  (22a) 

 ( ) ( )l x xz z yC I p I pq r I I qr q Sb = − + + −    (22b) 

 ( ) ( )n z xz y xC I r I p qr I I pq q Sb = − − + −    (22c) 

 These expressions retain the full nonlinear dynamics in the equations of motion for a symmetric rigid aircraft. 
For local modeling, the aerodynamic force and moment coefficients computed from Eqs. (21) and (22) can be 
modeled using linear expansions in aircraft states and controls, e.g., 

 
2qX X X X
qcC C C C
Vα δ

α δ= + +  (23a) 

 
2qZ Z Z Z
qcC C C C
Vα δ

α δ= + +  (23b) 

 
2qm m m m
qcC C C C
Vα δ

α δ= + +  (23c) 

 
2 2p rY Y Y Y Y
pb rbC C C C C
V Vβ δ

β δ= + + +  (24a) 

 
2 2p rl l l l l
pb rbC C C C C
V Vβ δ

β δ= + + +  (24b) 
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Figure 2.  F-16 Aircraft 

Credit: NASA Langley Research Center 

 

 
2 2p rn n n n n
pb rbC C C C C
V Vβ δ

β δ= + + +  (24c) 

where all aircraft states and controls are perturbations from a reference condition. In each expansion, a single term is 
shown to represent all relevant and similar control terms, to simplify the expressions. For example, in Eq. (24b), the 
term lC

δ
δ  represents all the control terms for lC , e.g., 

a rl l a l rC C C
δ δ δ
δ δ δ≡ + . For a typical stability and control 

flight test maneuver, dynamic pressure q  is relatively constant or changes slowly, so that small time skews in the q  
data will have little effect on the modeling results. Similar statements apply for the thrust terms.  
 At this stage, the time skew parameters are introduced, the time series are transformed into the frequency 
domain, and the modeling proceeds in the same way as described earlier. Note that the linear expansions in 
Eqs. (23)-(24) do not include bias terms, because modeling in the frequency domain excludes these terms, as a result 
of detrending the time series prior to transforming the time series into the frequency domain, which is equivalent to 
projecting the time-domain data onto complex sinusoidal basis functions with selected non-zero frequencies. If the 
bias and linear drift with time are of interest, they can be estimated using a follow-on estimation in the time domain, 
which is a well-conditioned and simple problem to solve12.  
 The linear aerodynamic models in Eqs. (23) and (24) contain parameters called nondimensional stability and 
control derivatives, such as lC

β
 and 

emC
δ

, which characterize the stability and control of the aircraft.  

III. Test Aircraft 

A. F-16 Nonlinear Simulation 
 The F-16 is a single-seat, multi-role fighter with a blended 
wing / body and a cropped delta wing planform with leading 
edge sweep of 40 deg.  Thrust is provided by one General 
Electric F110-GE-100 or Pratt & Whitney F100-PW-220 
afterburning turbofan engine mounted in the rear fuselage.  
Figure 2 shows a photograph of the F-16.  Mass properties and 
geometry of the aircraft are given in Table 1.   
 The aircraft was modeled with controls for throttle thδ , 
stabilator sδ , aileron aδ , and rudder rδ .  Speed brake and 
flaps were assumed fixed at zero deflection.  Throttle 
deflection was limited to the range 0 1thδ≤ ≤ , stabilator 

deflection was limited to o o25 25sδ− ≤ ≤ , aileron deflection 

was limited to o o21 5 21 5a. .δ− ≤ ≤ , and rudder deflection was 

limited to o o30 30rδ− ≤ ≤ .  These limits represent the physicals stops.   

 Nondimensional aerodynamic force and moment coefficient data were derived from a low-speed static wind 
tunnel test and a dynamic forced oscillation wind tunnel test, both conducted with a 16% scale model of the F-16.  
The aerodynamic database applies to the F-16 flown out of ground effect, with landing gear retracted, and no 
external stores.  Static aerodynamic data were in tabular form as a function of angle of attack and sideslip angle over 
the ranges o o10 45α− ≤ ≤  and o o30 30β− ≤ ≤ , respectively.  Dynamic data were provided in tabular form at zero 

sideslip angle over the angle of attack range o o10 45α− ≤ ≤ .  Dependence of the nondimensional coefficients on α  
was included in the q dependencies, due to the manner in which the data were collected in the wind tunnel.   
 The engine model was based on ground test data in tabular form, with thrust given as a function of altitude, 
Mach number, and engine power level.  Engine power level was computed from throttle position and throttle 
gearing, including first order dynamics for the dynamic thrust response.   
 The F-16 nonlinear simulation was programmed completely in MATLAB®.  Full nonlinear equations of motion, 
including turbine engine gyroscopic effects, were used.  Complete details on the F-16 nonlinear simulation can be 
found in Appendix D of Ref. [1].   
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Figure 3.  T-2 subscale jet transport aircraft 

Credit: NASA Langley Research Center 

B. T-2 Subscale Jet Transport Aircraft 
 The T-2 aircraft is a 5.5 percent dynamically-scaled 
model of a generic commercial twin-engine jet transport 
aircraft.  A photograph of the aircraft in flight is shown in 
Fig. 3.  The aircraft has twin jet engines mounted under 
the wings and retractable tricycle landing gear.  Aircraft 
geometry and nominal mass properties are given in 
Table 1.  Further information on the T-2 subscale jet 
transport aircraft and associated flight test operations can 
be found in Refs. [13]-[16].   
1. Control Surfaces 
 Control surfaces on the T-2 aircraft are left and right 
ailerons, left and right inboard and outboard elevators, 
upper and lower rudders, left and right inboard and 
outboard trailing-edge flaps, and left and right inboard and outboard spoilers, for a total of 16 independent control 
surfaces.  For the flight data analyzed in this work, only the elevators, ailerons, and rudders were deflected.  The 
individual elevator surfaces were moved together as a single elevator surface, and similarly for the rudders.  Left and 
right ailerons were deflected asymmetrically, in the conventional way.  Definitions of control surface deflections are 
given below.  Trailing edge down is positive deflection for wing and elevator surfaces, and trailing edge left is 
positive for rudder surfaces.   

 ( )1
4 LO LI RI ROe e e e eδ δ δ δ δ= + + +  (25a) 

 ( ) ( )1 1              
2 2R L upper lowera a a r r rδ δ δ δ δ δ= − = +  (25b) 

 A research pilot executed the flight test maneuvers from inside a mobile control room, using a synthetic vision 
display drawn from telemetry data and a local terrain database, along with video from a camera in the nose of the 
aircraft.  Inputs from the research pilot and a ground-based flight control system were used to generate control 
surface commands which were transmitted by telemetry to the aircraft.  The aircraft can also be flown by a safety 
pilot using direct visual contact and conventional radio control.   
 The flight control system has the capability to inject automated control surface perturbations to excite the aircraft 
dynamic response for modeling purposes.  These control surface perturbations can have arbitrary waveforms, and 
can be applied to multiple control surfaces individually or simultaneously.  The perturbations are summed with pilot 
and feedback control commands in the flight control system, just before the actuator command rate and position 
limiting.  Typically, the research pilot flies the aircraft to the desired flight condition(s), then initiates the automated 
control surface perturbations by holding in a button switch on the throttle.   
2. Instrumentation and Data Acquisition 
 The T-2 aircraft was equipped with a micro-INS, which provided 3-axis translational accelerometer 
measurements, angular rate measurements, estimated attitude angles, and GPS velocity and position.  Air data 
probes attached to booms mounted on each wingtip (visible in Fig. 3) measured angle of attack, sideslip angle, static 
pressure, and dynamic pressure.  Measurements from static pressure sensors and ambient temperature sensors were 
used to compute air density and altitude.  Engine speeds in rpm were measured and used as inputs to an engine 
model to compute thrust.  The engine model was identified from ground test data, with adjustments for ram drag 
identified from flight data.  Potentiometers on the rotation axes of the control surfaces measured control surface 
deflections.  Mass properties were computed based on measured fuel flow, pre-flight weight and balance, and inertia 
measurements done on the ground for the aircraft without fuel.  Pilot stick and rudder pedal commands and throttle 
position were also measured and recorded.  Data from onboard sensors were telemetered to the ground in real time.  
Sampling rate for the flight data was 200 Hz, downsampled to 50 Hz for data analysis and dynamic modeling.   
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IV. Results 
A. Simulation Results 
 The method for dynamic modeling based on flight data with unknown relative time skews was first applied to 
data from the F-16 nonlinear simulation. Orthogonal optimized multisine excitations1 were applied simultaneously 
to the stabilator, ailerons, and rudder. Gaussian random noise with magnitude for approximately a 20:1 signal-to-
noise ratio (five percent noise, based on simulation output root-mean-square values) was added to all simulation 
outputs, and typical bias errors (0.1 deg/s for the angular rate sensors and 0.01 g for the translational accelerometers) 
were applied.  Time skew equal to 0.10 s (time delay) was applied to airspeed, sideslip angle, and angle of attack 
data, and time skew equal to –0.10 s (time advance) was applied to the controls. These time skew values were 
chosen as arbitrary but realistic values, for demonstration purposes. Figure 4 shows simulated F-16 longitudinal 
flight data without time skews (“time synch”) and with time skews (“time skew”). Figure 5 shows airspeed, sideslip 
angle, and angle of attack data from the maneuver, compared to the data reconstruction using other measurements. 
Inaccurate initial conditions for the data reconstruction were purposely introduced. The time-domain reconstruction 
clearly shows bias and drift errors, as well as time skews in the air flow data.  
 The corrected time skew method described in Section III was applied to the time skewed data, with parameter 
estimation results shown in column 2 of Table 2, with the heading Corrected Time Skew Method.  Equation-error in 
the frequency domain was formulated using both the pitching moment equation (2b) and the body-axis z 
acceleration output equation (2c) simultaneously, with a single unknown time skew parameter for the stabilator. The 
transformation of time domain data into the frequency domain was done using the frequencies: 

 [ ]2 2 0 02 2 0 04 2 0  Hzf T T . T . .= + +    (26) 

where T was the time length of the maneuver in seconds.  This selection of frequencies includes at least two cycles 
for each frequency during the length of the maneuver, with a very fine frequency resolution to capture details in the 
frequency domain.  The 2 Hz upper limit for the frequency band was selected so that all deterministic frequency 
content was included, but wideband noise was automatically filtered by the transformation.  This approach enhances 
signal-to-noise ratio, and improves modeling results, while retaining all useful information for parameter estimation 
in the frequency domain.  Conversion to the frequency domain was done using the high-accuracy finite Fourier 
transform1,9 mentioned earlier, which allows selection of the transformation frequencies, independent of the length 
of the maneuver T.  The accuracy of this numerical calculation is on the order of the round-off error of the computer.   
 Equation-error parameter estimation in the frequency domain was then applied to simulated noisy data without 
time skews, with the results shown in column 3 of Table 2. Comparing results in columns 2 and 3 of Table 2 shows 
that the corrected time skew method produced model parameter estimates from time-skewed data with roughly the 
same accuracy and uncertainty as equation-error in the frequency domain applied to data without time skews. This 
demonstrates that the proposed method successfully solves the problem it was designed to solve. Previous realistic 
simulation testing and flight test data analysis have shown that the accuracy of model parameters estimated using 
equation-error in the frequency domain is comparable to using a time-domain output-error method employing 
iterative nonlinear optimization1,10,17. The proposed method also estimated the time skews in the data very 
accurately, as shown in the last two rows of column 2 in Table 2. Column 4 of Table 2 shows the inaccurate 
parameter estimation results obtained from time-skewed data using equation-error in the frequency domain.  These 
results highlight the need for the proposed method when the data are time skewed.  
 Figure 6 is a graphical representation of the parameter estimation results given in Table 2.  The vertical bars 
shown in Fig. 6 indicate the 95 percent confidence intervals, or 2ˆ ˆθ σ± . The parameters most adversely affected by 
time skews in the data were the αM  and qM  stability derivatives.  
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 A Monte Carlo analysis was done by selecting angular rate and translational acceleration biases, as well as air 
flow and control time skews, from specified intervals using a uniform probability density, and applying varying 
white Gaussian noise sequences to the simulation outputs.  The angular rate biases were chosen on the interval 
[−0.5, 0.5] deg/s and translational acceleration biases were chosen on the interval [−0.02, 0.02] g.  Air flow and 
control time skews were chosen individually from the interval [−0.20, 0.20] s.  Parameter estimation results were 
computed using the method described in Section III, and using equation-error in the frequency domain applied to 
data without time skews. In addition, parameter estimation results were computed by applying equation-error in the 
frequency domain to time-skewed data, to demonstrate the detrimental effects of time-skewed data on parameter 
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estimation results. The entire analysis was repeated 200 times with the same input sequences applied to the control 
surfaces, but with different instrumentation biases, time skews, and random noise sequences for each run.   
 Table 3 shows parameter estimation results from the Monte Carlo runs.  The standard errors were computed 
from the scatter in the parameter estimates, 

 
( ) ( )2

1

1
1

θ θ
n

i
i

ˆˆ
nθσ

=

= −
− ∑  (27a) 

 
1

1θ θ
n

i
i

ˆ
n =

= ∑  (27b) 

where n is the total number of Monte Carlo runs.  The computed ˆθσ  quantifies the scatter in repeated parameter 
estimates.  Figure 7 shows the results graphically, using 95 percent confidence intervals, as in Fig. 6.  
 The Monte Carlo  results show that the proposed modeling method for time-skewed data (Table 3, column 2, and 
“corrected time skew” in Fig. 7) is accurate in terms of the mean value of the parameter estimates, but exhibits 
slightly larger scatter in the individual estimates from each run, compared to using equation-error in the frequency 
domain and data without time skews (Table 3, column 3, and “time synch” in Fig. 7).  However, in both cases, the 
scatter for repeated estimates was small.  In addition, time skew parameters were estimated very accurately using the 
proposed method, with root-mean-square errors less than 0.018 s. The parameter estimation results obtained using 
equation-error in the frequency domain with time-skewed data (Table 3, column 4, and “time skew” in Fig. 7) show 
biased parameter estimates with large scatter, which highlights the need for the proposed method.  
 Error bounds for the parameter estimates can be lowered by running maneuvers repeatedly and averaging the 
individual parameter estimates, or analyzing the data from repeated maneuvers together.  Because the proposed 
method is accurate in the mean, improved parameter accuracy can be obtained with time-skewed data using repeated 
maneuvers to compensate for the slightly larger scatter in the parameter estimates.   
 Parameter estimation results from the Monte Carlo analysis demonstrate that accurate modeling results can be 
obtained by applying the proposed method to noisy time-skewed data with realistic bias errors in the angular rate 
and translational acceleration measurements.   
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B. Flight Test Results 
 After the modeling method was successfully developed and validated using F-16 nonlinear simulation data, the 
same approach was applied to flight data from the T-2 subscale jet transport aircraft.  This section contains the flight 
results and associated discussion.   
 Figure 8 shows flight data from the T-2 aircraft during a maneuver where orthogonal optimized multisine inputs1 
were applied simultaneously to the elevator, aileron, and rudder controls.  The nominal flight condition was 4.6 deg 
angle of attack and 130 ft/s airspeed, at 750 ft altitude.  Measured flight data included both control surface 
commands and control surface positions.  The elevator command and position data are shown in the top plot of 
Fig. 8. The elevator position time series is roughly a lagged version of the elevator command time series, so that a 
simple time lag can be used as an approximate model for the actuator and control linkage. This provided an 
opportunity to test the proposed method using control data that is known to be time skewed.  
 Using an approach similar to the F-16 nonlinear simulation testing, parameter estimation results were computed 
by applying the method described in Section III to the flight data, using control command data as the input. 
Equation-error in the frequency domain was applied to flight data that included control position data as the input, 
along with angle of attack data corrected for the time skew estimated by the frequency-domain data reconstruction 
technique described in Section III. In addition, parameter estimation results were computed by applying equation-
error in the frequency domain to time-skewed flight data, which included control command data as the input and 
uncorrected angle of attack data.  
 Table 4 shows the flight results in a format similar to Table 2. Figure 9 shows the model fit to the data in the 
frequency domain using the proposed method, and Fig. 10 shows the corresponding model fit to the data in the time 

domain.  Both of these model fits are degraded 
slightly by the fact that a pure time shift is only an 
approximate model for the elevator actuator and 
control linkage, and the measured angle of attack 
includes the effects of imperfections in the air flow 
angle measurements from the wingtip vanes, such 
as the structural response of the wings and wingtip 
booms during dynamic maneuvering, turbulence, 
inertia and friction in the vane mechanisms, and 
local flow effects, typically called upwash. These 
effects do not appear in the reconstructed angle of 
attack data. Nevertheless, the model fits in both 
the time and frequency domains are excellent. 
Figure 11 is a graphical depiction of the modeling 
results in Table 4, presented in the same way as in 
Fig. 6.  
 As in the F-16 simulation case, the parameter 
estimates computed by applying the proposed 
method to time-skewed data showed good 
consistency but slightly larger uncertainties, 
compared to the parameter estimates computed 
using time-synchronized data.  The modeling 
results in this case demonstrate some robustness to 
the practical effects listed earlier, which were not 
modeled in the F-16 nonlinear simulation.  As in 

the simulation case, applying frequency-domain equation error parameter estimation to time-skewed data produced 
inaccurate parameter estimates with large error bounds. 
 The estimated time skew in the angle of attack data relative to the IMU data matched well with a separate 
estimate in the time domain based on the least squares difference between detrended measured angle of attack data 
and detrended reconstructed angle of attack data, see Fig. 12.  The angle of attack time skew estimated in this way 
matched the frequency domain estimate to within the error bound of the frequency-domain estimate. Note that the 
measured and reconstructed angle of attack data in the lower plot of Fig. 12 have been detrended, to highlight the 
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time skew. Without the detrending, this plot would look more like the lower plot in Fig. 5.  Figure 13 is a magnified 
view of the upper plot in Fig. 12, showing that the control time skew estimate found by the method described in 
Section III (-0.0750 s from Table 4) was an excellent match to the known time skew shown in Fig. 13.  

V.  Conclusions 
 A method for accurately estimating dynamic model parameters from flight data with unknown time skews was 
developed and demonstrated using data from an F-16 nonlinear simulation and flight data from a subscale aircraft. 
The technique combines data reconstruction, nonlinear optimization, and equation-error parameter estimation in the 
frequency domain to create a simple and accurate method for dynamic modeling based on time-skewed data. The 
approach can also be used to accurately quantify time skews in the data, and therefore can be useful as a diagnostic 
tool. Although the technique was demonstrated using a longitudinal dynamic model with dimensional aerodynamic  
derivatives, the approach could be used just as well for nondimensional aerodynamic derivatives, and/or for 
lateral/directional dynamic models.   
 The technique developed for estimating air flow data time skews can be used for any type of maneuvering, not 
just the small perturbation maneuvers shown in the examples. For control time skew estimation, the aerodynamic 
model must be linear in the controls, but could be nonlinear otherwise.  
 An application of this approach is subscale aircraft flight testing, where control surface command data are used 
rather than direct measurements of control position.  Assuming the actuator dynamics can be approximated by a 
simple time lag, this modeling approach can be used to estimate aerodynamic parameters using only control surface 
command data, or data that may be time skewed because of telemetry delays, low-bandwidth actuators, or control 
linkages under flight loads. The approach can also be useful when air flow angle data come from pressure probes or 
flush air data systems, which may have pneumatic time lags.  The technique could also be applied to accident data or 
operational flight data, which often have unknown time skews, and could be useful as a diagnostic tool for relative 
time skews in flight data.  
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Table 1.  F-16 and T-2 Geometry and Mass Properties 

 F-16 T-2 
length c , ft 11.32 0.908 

wing span b , ft 30 7.083 
wing area S , ft2 300 7.046 

ox  0.35 c  42.628 in 

oy  0 0.000 in 

oz  0 0.000 in 

cgx  0.25 c  42.728 in 

cgy  0 0.000 in 

cgz  0 0.519 in 

m , slug 637.16 1.502 
xI , slug-ft2 9,496 1.077 

yI , slug-ft2 55,814 4.163 

zI , slug-ft2 63,100 5.016 

xzI , slug-ft2 982 0.416 

 
 
 

Table 2.  Frequency-Domain Equation-Error Longitudinal Parameter Estimation Results  
from F-16 Nonlinear Simulation Data using an Optimized Multisine Input 

440 ft/s,  10 000 ft,  5 dego o o oV h , α θ= = = =  

 
Parameter

θ  

Corrected  
Time Skew Method 

ˆ ˆθ σ±  

 
Data Without Time Skews 

ˆ ˆθ σ±  

 
Data With Time Skews 

ˆ ˆθ σ±  
Zα  −0.6648 ± 0.0064 −0.6670 ± 0.0065 −0.6424 ± 0.0098 

qZ  −0.0703 ± 0.0032 −0.0672 ± 0.0033 −0.1103 ± 0.0045 

s
Zδ  −0.0014 ± 0.0001 −0.0014 ± 0.0001 −0.0010 ± 0.0001 

Mα  −3.5909 ± 0.0384 −3.6043 ± 0.0362 −3.8119 ± 0.4706 

qM   −1.1032 ± 0.0218 −1.0926 ± 0.0183 −0.1448 ± 0.2143 

s
Mδ  −0.1054 ± 0.0006 −0.1055 ± 0.0005 −0.0754 ± 0.0062 

ατ    0.0949 ± 0.0030 − − 

sδτ  −0.0996 ± 0.0007 − − 
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Table 3.  Frequency-Domain Equation-Error Longitudinal Parameter Estimation Results  
for 200 Monte Carlo Runs of F-16 Nonlinear Simulation Data using an Optimized Multisine Input 

440 ft/s,  10 000 ft,  5 dego o o oV h , α θ= = = =  

 
Parameter

θ  

Corrected 
Time Skew Method 

ˆθθ σ±  

 
Data Without Time Skews 

ˆθθ σ±  

 
Data With Time Skews 

ˆθθ σ±  

Zα  −0.6693 ± 0.0075 −0.6686 ± 0.0013 −0.6943 ± 0.0546 

qZ  −0.0704 ± 0.0107 −0.0707 ± 0.0007 −0.0608 ± 0.0751 

s
Zδ  −0.0013 ± 0.0000 −0.0013 ± 0.0000 −0.0013 ± 0.0006 

Mα  −3.6020 ± 0.0425 −3.5978 ± 0.0068 −4.0167 ± 0.3761 

qM  −1.0868 ± 0.0583 −1.0907 ± 0.0062 −0.5346 ± 0.9675 

s
Mδ  −0.1056 ± 0.0003 −0.1054 ± 0.0003 −0.0763 ± 0.0343 

ατ  various ± 0.0175 − − 

sδτ  various ± 0.0006 − − 

 
 
 

Table 4.  Frequency-Domain Equation-Error Longitudinal Parameter Estimation Results  
for T-2 Flight Data using an Optimized Multisine Input 

130 ft/s,  750 ft,  4 6 dego o o oV h .α θ= = = =  

 
Parameter

θ  

Corrected  
Time Skew Method 

ˆ ˆθ σ±  

 
Data Without Time Skews 

ˆ ˆθ σ±  

 
Data With Time Skews 

ˆ ˆθ σ±  
Zα    −2.6111 ± 0.0331  −2.6231 ± 0.0335  −2.4763 ± 0.0336 

qZ      0.0793 ± 0.0087    0.0811 ± 0.0091    0.0248 ± 0.0060 

s
Zδ    −0.0035 ± 0.0009  −0.0029 ± 0.0008   −0.0008 ± 0.0006 

Mα  −32.394 ± 0.840 −34.812 ± 0.669 −26.337 ± 1.519 

qM   −3.7275 ± 0.2441  −3.8606 ± 0.1811   −1.1885 ± 0.2725 

s
Mδ   −0.7875 ± 0.0238  −0.7268 ± 0.0165   −0.5121 ± 0.0291 

ατ     0.0302 ± 0.0038 − − 

sδτ  −0.0750 ± 0.0033 − − 
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