ttps://ntrs.nasa.gov/search.jsp?R=20160007727 2019-08-31T02:19:23+00:00Z

National Aeronautics and Space Administration

Effects of Damage on Long-term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures

Winfred S. Kenner NASA LaRC

Structural Mechanics and Concepts Branch AIAA SciTech 2016, January 3-8, 2016 San Diego, California

Outline

- Background
 - Inflatable Structures
 - Problem Statement
- Approach
- Hardware and Test Facility
- Test Results
- Summary

Inflatable Structures

 Goal: Conduct an experimental creep study to identify effects of damage on webbing performance over extended time period

- Causation: Damage due to deployment and/or service
- Definition: Damage is defined as vertical incisions of varying length and number
- Analytical analysis: Inaccurate for nonlinear materials over time
- Time period: Study was conducted over an 18-month time period

onal Aeronautics and

Goal: Generate long-term displacement data from webbings under load

Test Facility

- Large
- Overhead crane
- Available for multiple years

Test Hardware

- High load capacity
- Quick assembly

Displacement Measuring Device

- Accurate
- Continuous measurements

Data Acquisition

- Variable rate
- Continuous recordings over multiple years

Creep Test Facility

Magnified Webbing Images National Aeronautics and Space Administration

 Eleven test groups defined by test material, applied load, and damage
Horizontal incision: Known to have an adverse effect on strength proportional to length

Test Matrix

ational Aeronautics and Space Administration

Pristine Webbings										
Group #	Webbing materials	Webbing #	UTS (%)	Webbing length	Length of test (months)					
1	6K Kevlar	1 2	20 20	144 144	34 34					
2	6K Kevlar	1 2	20 20	60 60	3 3					
3	6K Kevlar	1 2 3 4	43 43 50 50	68 84 82 80	39 39 35 35					
4	6K Vectran	1 2 3	50 50 50	80 80 80	34 34 34					
5	12.5K Vectran	1 2 3	29 29 29	116 116 116	29 29 22					
6	6K Vectran	1 2 3 4 5	25 25 25 25 20	66 66 66 66 66	44 44 44 44					

Damaged Webbings										
Group	Webbing	Webbing	UTS	Webbing	Length	Incision				
#	materials	#	(%)	length	of test	length				
					(months)	(inches)				
7	6K	1	20	60	18	5				
	Kevlar	2	20	60	16	5				
0	6K	1	6.7	60	14	1				
8	Kevlar	2	6.7	60	14	1				
		3	6.7	60	14	1				
9	6K	1	20	62	3	5				
-	Kevlar	2	20	62	3	5				
		3	20	62	3	5				
10	6K	1	20	60	18	5 (multiple)				
	Vectran	2	20	60	18	5 (multiple)				
		3	20	60	18	5 (multiple)				
11	12.5K	1	29	48	18	1				
	Vectran	2	29	41	18	1				
		3	29	43	18	1				

*Ultimate tensile strength (UTS)

Environmental Influences on Displacement 🐼

- Daily, seasonal, and yearly temperature and humidity effects influence the creep displacement curve
- Webbings exhibits negative coefficient of thermal expansion (CTE)

Characteristics of Displacement Curve

- 3-year time period
- Four characteristic curve patterns
- Failure experienced above 50% UTS

Effects of Damage

- Damage introduces vertical spikes into local wave pattern
- Damage doesn't effect strength over time

Effects of Damage

National Aeronautics and Space Administration

12

Webbing

Fill yarns

- Vertical spikes are due to transfer of load from damaged to pristine warp yarns
- Cut fill yarns have little effect on webbing strength

National Aeronautics and Space Administration

Effects of Damage

 Magnified view of damaged webbing wave patterns relative to baseline pattern indicates insignificant effect of damage

Effects of Rotation

- Rotation introduces a divergent global wave pattern
- Rotation has a significant effect on strength over time

Running Sum Calculation Nation

- Local wave patterns can be eliminated and global wave patterns highlighted through the use of running sum data
- Each data point in presented graph consist of 20 days of data

Running Sum Calculation Nation

- All wave patterns can be eliminated and a continuous curve generated through the use of running sum calculations
- Each data point in presented graph consist of 1 year of data
- Running sum curve is comparable to a classic creep curve

 Numerous Kevlar and Vectran webbings have maintained strength and supported a range of loads below 50% UTS over a four year period

Summary

- Cumulative visual and displacement data from the webbings indicate limited wear over the four year period
- Damage defined by vertical incisions generate minute increases in displacement without detrimentally effecting long term strength
- Rotation has a detrimental effect on webbing strength
- Utilization of running average calculations can smooth out short-term variations and highlight long-term trends

Future: Webbing Studies National Aeronautics and Space Administration

Goal: Experimentally validate long life and identify potential failure modes of webbings.