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This paper presents a comparative analysis of a few metamodeling tech-
niques using numerical experiments for the single input-single output case.
These experiments enable comparing the models’ predictions with the phe-
nomenon they are aiming to describe as more data is made available. These
techniques include (i) prediction intervals associated with a least squares
parameter estimate, (ii) Bayesian credible intervals, (iii) Gaussian process
models, and (iv) interval predictor models. Aspects being compared are
computational complexity, accuracy (i.e., the degree to which the resulting
prediction conforms to the actual Data Generating Mechanism), reliability
(i.e., the probability that new observations will fall inside the predicted
interval), sensitivity to outliers, extrapolation properties, ease of use, and
asymptotic behavior. The numerical experiments describe typical applica-
tion scenarios that challenge the underlying assumptions supporting most
metamodeling techniques.

Abbreviations

CI Credible Interval
CFI Confidence Interval
DGM Data Generating Mechanism
GP Gaussian Process
IPM Interval Predictor Model
LS Least Squares
MCMC Markov Chain Monte Carlo
MLE Maximum Likelihood Estimate
PI Prediction Interval
PDF Probability Density Function
RBF Radial Basis Function

∗Corresponding Author, Luis.G.Crespo@nasa.gov, AIAA Associate Fellow.
†Aerospace Technologists, Dynamic Systems and Control Branch.

1 of 34

American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20160007743 2019-08-31T02:18:09+00:00Z



I. Introduction

The problem statement of interest is as follows. A Data Generating Mechanism (DGM)
is postulated to act on a vector of input variables, x ∈ Rnx , to produce an output, y ∈ Rny .
Let X ⊆ Rnx and Y ⊆ Rny be the sets of input and output variables associated with
the DGM. Denote by P the unknown probability distribution of the DGM. A general P
yields a random process in which y is an arbitrary random variable for a fixed value of x.
The particular case in which y is a deterministic function of x corresponds to a P that is
concentrated over the function. Assume that N independent input-output pairs are obtained
from a stationary DGM, and denote by z = {zi}, with zi = (xi, yi) for i = 1, . . . , N , the
corresponding data sequence. It is desired to build a metamodel of the DGM based on
z which will predict the output corresponding to an unobserved realization of the input.
The only information available to build such a model is the data. The presence of intrinsic
variability, and uncertainty about the DGM’s structure makes it unrealistic to build a model
that will predict a single output for a fixed input. Instead, we want to predict an interval into
which unobserved data is expected to fall. In this setting the two main problems of interest
can be stated as follows. First, we want to find a metamodel that, when evaluated at a new
value xN+1 of the input, returns an informative prediction of the unobserved output yN+1.
Second, we want to quantify the probability of yN+1 falling within the predicted interval. In
this setting an informative prediction can be interpreted as a narrow output interval of high
probability (given by P). Note that the second objective implies that the prediction must
conform to the DGM for any value of N without having any knowledge about its underlying
structure.

A few metamodeling techniques will be used to address the above objectives. Metamod-
eling [7] refers to the process of creating a mathematical representation of a phenomenon of
interest. These models can have a parametric or non-parametric structure. In the former
case the analyst first prescribes a model’s structure, which is an equation prescribing how the
output depends on the inputs and parameters, and then determines the parameter values for
which a measure of the discrepancy between observations and predictions is minimized. The
first step entails prescribing a suitable model structure. A plethora of model forms can be
assumed including polynomials, neural networks, radial basis functions, etc. The second step
is commonly referred to as model calibration or regression. In the presence of model-form
uncertainty, measurement noise, and numerical error, the prescription of a fixed parameter
value often yields inaccurate predictions. Consequently, it is preferable to prescribe a set of
parameter values or a joint random vector from which parameter points are chosen such that
the collective prediction resulting from evaluating the model at each of such points accu-
rately represents the ensemble of observations. Conversely, in a nonparametric regression the
predictor does not take a predetermined form but is constructed according to information
derived from the data. Nonparametric regression requires larger sample sizes than paramet-
ric regression because the model structure as well as the model hyper-parameters must be
inferred. Gaussian Process models or Kriging, non-parametric multiplicative regression, and
Kernel regression are commonly used techniques.

For simplicity sake, we will be limiting our study to the single input-single output case,
so nx = ny = 1. This paper addresses the above objectives by using several metamodeling
techniques to create surrogates of four DGMs. DGM1 is an unknown deterministic function
(i.e., the probabilistic cloud P has zero output variance and an unknown mean), DGM2 is
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a random process in which the aleatory component of the measured output depends on the
value of the input, DGM3 is a Gaussian random process with unknown mean and variance
functions, and DGM4 is a random process requiring extrapolation beyond the range of
observations. The metamodeling techniques studied are Prediction Intervals (PI), Bayesian
Credible Intervals (CI), Interval Predictor Models (IPM) and Gaussian Process (GPs) models.
The parametric regression techniques will use the linear structure

y = M(x, p) = p>ϕ(x; q), (1)

for ϕ(x; q) = {ϕ1(x; q1), . . . , ϕnp(x; qnp)}, where each ϕi is a non-negative-valued Radial Basis
Function (RBF). This basis was chosen because of its large flexibility and localized domain
of influence. The parameters prescribing each RBF, qi, comprise q. Whereas the parameters
in p ∈ Rnp are to be calibrated, those in q ∈ Rnq will be fixed in advance. The values of q
will be set empirically based on the data. By making all parametric techniques share the
same model structure M , we ensure that the same amount of modeling effort is devoted to
all of them. Conversely, a GP is a nonparametric technique for which the prescription of M
as in Equation (1), thus, of p are not required. A brief summary of the techniques being
compared is presented next.

A. Prediction Intervals (PI)

Parameter estimation is commonly carried out by solving for the parameter realization that
minimizes the sum of squared errors between predictions and observations [6]. This approach
yields the Least Squares (LS) parameter estimate pLS. The precision of this estimate, which
prescribes how much it can deviate from its “true value” within an epistemic framework (i.e.,
the true value of p is fixed and unknown), is often evaluated using prediction intervals and
confidence intervals. In linear regression statistics, a prediction interval defines a range of
values within which the output is likely to fall given a specified value of the input. Linearly
regressed data are by definition non-normally distributed. Normally distributed data are
statistically independent of one another whereas regressed data are dependent on x. Because
of this dependency, prediction intervals applied to linear regression statistics are considerably
more involved to calculate than are prediction intervals for normally distributed data. The
uncertainty represented by a prediction interval includes not only the uncertainty/variation
associated with the population mean and the new observations, but also the uncertainty
associated with the regression parameter pLS. Because the uncertainties associated with the
population mean and new observation are independent of the observations used to fit the
model, the uncertainty estimates of these three sources are combined. This technique is often
applied to computational models having the structure

y = M(x, p) + η, (2)

where the prediction error or residual η is a random variable. This technique often requires
(i) assuming a distribution for the prediction error (e.g., η is a zero mean Normal with a fixed
variance), (ii) M and η assuming mathematically convenient forms and/or (iii) a nonlinear
M being accurately described by a linear approximation. As such, the suitability of the
predicted interval strongly depends on the validity of such assumptions. The implementation
of the PI method used is based on the MATLAB Statistics toolbox, R2015b.
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B. Bayesian Credible Intervals (CI)

A common approach to model calibration is Bayesian inference. This method’s objective is
to describe the model’s parameters as a vector of possibly dependent random variables using
Bayes’ rule. The resulting vector, called the posterior, depends on an assumed prior random
vector, and the likelihood function; which in turn depends on the data in z, and on the
structure of the mathematical model M . The Maximum Likelihood Estimate (MLE), which
is the value of p where the likelihood function is maximal, is searched for by using sampling
or optimization. Whereas the application of Bayesian inference to model calibration does
not require making any limiting assumptions on the manner in which y depends on p and
η nor on the structure of the resulting posterior, it requires that the calibrated variables in
p be epistemic. The variables to be calibrated can be a combination of physical epistemic
uncertainties and hyper-parameters of aleatory variablesa. Note that the consideration of
aleatory uncertainties requires assuming a structure for them, so they can be parameterized
in terms of epistemic variables that can be calibrated. This modeling exercise often requires
significant effort and insight into the structure of the DGM.

The presence of aleatory and model-form uncertainty yields calibrated models that might
fail to properly describe the prediction error. As more data is available, the posterior ap-
proaches a Dirac delta, making the predicted output y converge to a deterministic function
of the input. As such, the offset between this function and the data points is not captured
by the calibrated model. This deficiency can be mitigated by adding a discrepancy term to
M [4]. This term, which might depend on epistemic and aleatory variables, is calibrated
along with the parameters of M using Bayesian inference. In our application of this method
we will use Equation (2) and make the standard deviation of η an additional calibration
variable. This is a common approach that greatly facilitates the evaluation of the likelihood
function, thereby substantially reducing computational effort. Moreover, this modification
prevents the CI prediction from converging to a function (i.e., an interval with zero spread)
as N increases. When the posterior is multimodal or when its support covers a wide range,
predictions based on the MLE estimate might not be sufficiently informative. In such cases,
CI should be used instead [4]. Credible intervals result from sampling the posterior using
Markov Chain Monte Carlo (MCMC) sampling. Despite its high computational demands,
the need for including a discrepancy term, and of the potentially high sensitivity of the
posterior to the assumed prior, Bayesian Calibration is commonly regarded as a benchmark
in model calibration. The implementation of the CI method used in this study uses ele-
ments of the MATLAB Statistics toolbox R2015b, and non-commercial code developed by
the authors.

C. Interval Prediction Models (IPM)

IPMs [1, 3, 2] are metamodels that cast the spread in the data as interval uncertainty in
the parameters p of the computational model M(x, p) without the need for a discrepancy
term such as η in (2). IPMs are calculated via optimization. When the model M depends
linearly on the parameters, the corresponding optimization program is convex, thus, numer-
ically efficient to solve. The developments in [2] focus on models depending linearly on the

aFor instance, if q contains the physical parameters of the model M , where q1 is epistemic and q2 is
aleatory having a Gaussian distribution with zero mean and standard deviation σ, the vector [q1, σ]> of
variables to be calibrated contains two epistemic variables, one physical and one non-physical.
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parameters and arbitrarily on the input. This setting enables the calculation of IPMs that
admit a rigorous description for the range of the predicted output, and of the uncertainty in
the model’s parameters. Furthermore, IPMs enable a rigorous bounding of the probability
that a future observation will fall within the predicted interval. This certificate of correctness
does not require making any assumption on the underlying structure of the DGM. This is a
substantial benefit of IPMs over all other metamodeling techniques.

D. Gaussian Process (GP) Models

GP models [5] are the only non-parametric approach studied in this article. A GP is a
stochastic process in which the predicted output is a normal random variable having a mean
and a covariance that depend on the input. Moreover, every finite collection of those random
variables has a multivariate normal distribution. The distribution of a Gaussian process is
the joint distribution of all those (infinitely many) random variables, and as such, it is a
distribution over functions. The calculation of GPs requires prescribing functional forms for
the mean and the covariance functions. The hyper-parameters of these functions are often
calibrated using a Bayesian framework, for which priors must be prescribed. Techniques such
as MLE and the Maximum A Posteriori (MAP) estimate, which is the mode of the posterior
distribution, are commonly used techniques for setting the value of the hyper-parameters
of the covariance function. In spite of the high computational cost of GPs, which restricts
their usage to a few thousand data points, and the high sensitivity of the prediction to
the assumed mean and covariance structures, GPs are widely used due to their ability to
(i) characterize complex functional relationships, and (ii) to account for the variation in
the predicted output caused by the distribution of the data; e.g., predictions away from
the data exhibit a larger predicted variance. The GP method was implemented using the
software package GPML version 3.5 developed by Rasmussen et al., and available through
the url http://www.gaussianprocess.org/#code for a zero mean function and a squared
exponential covariance function.

II. Figures of Merit

Each of the metamodeling techniques above will be used to compute an interval-valued
function of the input. This function will be denoted as I(x) = [y(x), ȳ(x)], where y(x) and
y(x) are the lower and the upper limit of the interval respectively. In the case of PI, CI, and
GP we will use the confidence level α = 0.01 (i.e., an output range bounded by the 0.5 and
99.5 quantiles, so we expect them to contain 99% of the probability), whereas for the IPMs
we will neglect the worst 100α% of the data (See [1] for techniques to detect and outliers).
This will make all predictions comparableb. The following figures of merit will be used for

bIn this study IPMs will be used to approximate the tightest interval value function of the input for which

P [∪x∈X x× I(x)] = 1− α. (3)

This will enable comparing the IPM predictions with those generated based on a 1− α confidence interval.
To this end, we will first calculate an IPM based on the full set of N observations. We then identify the
100(1 − α) percent of the observations falling in the inner most portion of the predicted interval. This can
be efficiently done by removing the observations attaining the largest values of ρ (See [1]) such that the
removed set is uniformly distributed over X. A second IPM based on the retained observations will then
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evaluating the metamodels performance:

1. The expected spread of the interval prediction corresponding to metamodelM, ∆(M),
is defined as

∆(M) =
1

Vol(X)

∫
X

δ(x)dx, (5)

where Vol(·) is the volume operator, and δ(x) = ȳ(x)−y(x) is the spread. ∆(M) is the
expected value of δ(x) corresponding to a uniform distribution over the input range. A
smaller expected spread denotes a more informative global prediction whereas a small
spread denotes a more informative local prediction.

2. The unreliability of metamodel M, γ(M), is defined as

γ(M) = ProbP [{x, y} 6∈ [x, I(x)]] . (6)

Hence, γ(M) is the probability that a future observation will fall outside the predicted
interval. We chose the unreliability over the reliability, which is the probability of
falling within the predicted interval, so different orders of magnitude can be clearly
plotted in a logarithmic scale. When the prediction matches the DGM exactly we
obtain the ideal value γ(M) = α. Note, however, that attaining such a value does not
necessarily imply that the predicted interval coincides with the ‘true’ interval. The
true interval-valued function, denoted by

Itrue(x) = [y
true

(x), ȳtrue(x)], (7)

is the output range between the α/2 and the 1−α/2 quantiles of the DGMc. To evaluate
how well I(x) approximates Itrue(x), we use the error metrics introduced next.

3. The error incurred by approximating the upper limit of Itrue(x) is

ē(M) =

∫
X

(ȳtrue(x)− ȳ(x))2dx. (8)

4. The error incurred by approximating the lower limit of Itrue(x) is

e(M) =

∫
X

(y
true

(x)− y(x))2dx. (9)

5. The CPU time, t(M), is the time required to generateM and evaluate I(x) at the set
of input values xe.

be calculated. An upper bound of the probability of falling outside the predicted interval, whose boundaries
approximate the α/2 and 1-α/2 quantiles of the DGM, is given by:

γ(M) = ε (β, bαNc, d,N) , (4)

where ε(β, k, d,N) is given in Campi [1], β is the confidence parameter, k is the number of outliers, the b·c
operator is the greatest integer less than or equal to its argument, and d is the number of design variables
used to calculate the IPM.

cThe true interval-valued function will be estimated by exhaustive sampling of the DGM in all but the
DGM 4 case, in which an analytical form is available.
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6. Containment of the data by the predicted interval is evaluated by

µ(M) =
1

N

N∑
i=1

I[yi ∈ I(xi)], (10)

where I[·] is the indicator function. The value µ(M) = 1 indicates the predicted
interval contains all N data points.

7. Conservatism, which degrades the informative value of the predicted interval by making
it overly wide, can be evaluated using

ν(M) =
N∑
i=1

min s(xi, yi)I[yi ∈ I(xi)] + ηmax s(xi, yi)I[yi 6∈ I(xi)], (11)

where s(xi, yi) = [|y(xi) − yi|, | yi − y(xi)|] ∈ R2, and η > 1 is a parameter used
for penalizing intervals not containing the data. Whereas an observed output falling
within the predicted interval yields a summand ranging between zero and one half of
the spread at the corresponding input, a predicted interval not containing the output
yields a summand greater than the spread. As such, ν(M) assumes large values when
the predicted interval is overly wide and it fails to contain all the data.

Note that γ(M), ē(M), and e(M) evaluate the degree to which a prediction based on N
observations conforms to the DGM as N →∞. Naturally, these metrics cannot be calculated
in most practical applications due to the inability to exhaustively evaluate the DGM. Even
though µ(M) and ν(M) are metrics of practical interest, the numerical experiments that
follow focus on ∆(M), γ(M), ē(M), e(M) and t(M) only.

Notice that metamodels for which Itrue(x) ⊂ I(x) might yield values for γ(M) close
to the targeted value α even though I(x) might well be a poor representation of Itrue(x).
This anomaly however will yield large values for ē(M), and e(M). For instance, if I(x) =
10Itrue(x), γ(M) might be close enough to α to regard M acceptable. However, the large
values of ē(M), and e(M) will indicate and overly conservative prediction.

III. Numerical Experiments

Four numerical experiments were conducted each based on a different DGM. Each DGM
targets a particular phenomenon of interest. DGM1 is an unknown deterministic function
(i.e., the probabilistic cloud P has zero output variance and an unknown mean), DGM2 is
a random process in which the aleatory component of the measured output depends on the
value of the input, DGM3 is a Gaussian random process with unknown mean and variance
functions, and DGM4 is a random process requiring extrapolation beyond the range of
observations. The structure of the DGMs will remain unknown to the metamodeler who will
only have the data points extracted from it to build a surrogate.

For each experiment we have several ensembles of observations, each corresponding to a
different value of N . Denote by E1, E2, . . . Ene data ensembles corresponding to N1, N2,
. . ., Nne observations respectively, where Ni < Ni+1 for i = 1, . . . , ne − 1. The values of
N chosen are selected arbitrarily. The ensembles are constructed such that the data points
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in Ei are also in Ej for all j > i. The data in each ensemble will be used to generate the
family of metamodels M1, M2, . . ., Mne for each metamodeling technique. The figures of
merit ∆, r, ē, e and t will be used for analysis and comparison. The dependency on N
will be studied by comparing members of the same family, whereas the dependency on the
metamodeling technique will be studied by comparing members of different families for the
same data ensemble.

Recall that all parametric methods will assume the same model structure M . As such,
we are devoting the same amount of modeling effort to all of them. In particular, M is
assumed to be a linear combination of np = 10 Gaussian RBFs:

y = M(x, p, q) =
10∑
i=1

pie
−
(
x−µi
σi

)2

. (12)

The centers µi and spread parameters σi constituting qi will be fixed in advance, so only
the parameters in p will be calibrated (with the exception of CIs for which an additional
calibration variable is used to prescribe a discrepancy term, as explained in Section I.B.).

A. Data Generating Mechanism 1 (DGM1)
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Figure 1. DGM1 and N1 = 50 data points (×).
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Figure 1 shows DGM1, which is a deterministic function of the input, in the range
X = [−1, 1]. Hence, all percentile curves are equal and Itrue(x) has zero width. A total of
ne = 12 data ensembles corresponding to the N values in {50, 100, . . . , 600} were obtained
from DGM1. The points corresponding to first ensemble are shown as red crosses.

Figure 2 shows the predictions resulting from applying all metamodeling techniques for
the N1 = 50 case. The PI is shown in cyan, the CI in magenta, the IPM in blue, and the
GP in green. The same color conventions apply throughout this paper. Note that the limits
of the IPM contain b0.99N1c observations by design whereas the other metamodels do not.
Further notice that all metamodels capture most of the observations with a varying degrees
of tightness. Figure 3 shows the predictions corresponding to N12 = 600. The comparison

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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8
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Data DGM PI CI GP IPM

Figure 2. DGM1: predictions for N1 = 50 observations.

between Figures 2 and 3 illustrates the convergence properties of each metamodeling tech-
nique as the number of observations increases. Whereas the range of the IPM increased, that
for all other methods decreased. The IPM provides the tightest interval value function of x
containing 99 percent of the data. Note that the CI and GP prediction improved considerably
as N increased becoming more tight and less oscillatory globally. Further notice that the GP
matches well the oscillatory behavior of the DGM for x < 0 but it fails to do so for x > 0.
The predictions corresponding to all parametric methods can be made tighter by choosing a
better structure for M , say, through the selection of better q values, whereas improvements
to the GP prediction require assuming more suitable mean and covariance functions, and
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corresponding priors. The latter task is far more cumbersome and non-intuitive than the
former one.
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Figure 3. DGM1: predictions based on N12 = 600 observations.

A comparison of the metamodeling techniques above using the figures of merit in Section
II is presented next. Recall that the expected spread ∆ evaluates the tightness of the
predicted interval globally. Figure 4 shows the dependency of ∆ on N . The IPM attains
the smallest expected spreads consistently, whereas CIs and GPs exhibit a wider range of
variation. In the case of the CI, this behavior occurs even though the Markov Chain Monte
Carlo (MCMC) sampling of the posterior appears to converge. The curve corresponding
to the IPM is generally non-decreasing by virtue of including the data from one ensemble
into the larger ensembles (it would be strictly non-decreasing for α = 0). The predictions
corresponding to PI and CI are highly conservative for most input values, i.e., they yield
overly wide output ranges deviating considerably from the intrinsic aleatory variation of the
DGM (See Figures 2 and 3). Conservatism can be evaluated by using the figures of merit µ
and ν introduced earlier.

Figure 5 shows the error in the upper and lower limits of the predicted interval. Recall
that these errors measure the discrepancy between a prediction based on N observations
and the true quantiles of DGM. As such, we can only hope for the errors to converge to zero
asymptotically. The IPMs and GPs yield the best approximations to Itrue(x). These two
methods also exhibit the good convergence properties.
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Figure 4. DGM1: expected spread ∆ vs. number of observations.
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Figure 5. DGM1: Error in the upper limit ē (circle), and lower limit e (diamond).
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Figure 6 shows the CPU time required by each metamodeling technique. Bayesian meth-
ods, which are the most time consuming, are based on a random walk with a fixed number
of steps. As such, the increment in the CPU time is solely caused by having to perform more
evaluations of the likelihood function. The computational cost of GP grows the fastest. This
growth, which is mainly a result of a matrix inversion that scales as O(N3), restricts its
usage for non-sparse formulations to relatively low values of N (i.e., a few thousands). The
time requirements for the IPM, which entails solving a convex optimization problem, grows
polynomially with N . As such it can handle problems with hundreds of thousand of data
points. Lastly, PIs only require solving a linear least squares optimization problem and us-
ing statistical assumptions on the DGM to yield a prediction. As such, their computational
demands are the lowest.

50 100 150 200 250 300 350 400 450 500 550

10
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10
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10
2

Number of Observations

C
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U
 t

im
e

 

 

IPM PI CI GP

Figure 6. DGM1: Dependency of the CPU time t in seconds on number of observations.

Finally, Figure 7 shows the unreliability defined in (6). Recall that the theoretical value
for the unreliability is equal to the confidence level α = 0.01. Whereas the value of γ for all
metamodels is calculated empirically by sampling the DGM and evaluating the probability
of being outside the predicted interval, IPMs enable the calculation of an analytical upper
bound to γ. This upper bound enables making an assessment on the reliability of the
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prediction solely based on the data available (i.e., we don’t need to (i) use additional data
for validation, (ii) assume a distribution for the data, (iii) make asymptotic claims requiring
N → ∞). As such, this is a distribution-free result (i.e., we do not need to know/assume
anything about the probability distribution P governing the DGM) which is applicable to all
data ensembles regardless of the value of N . This upper bound is shown as a blue dashed
line. Note that both the upper bound and the empirical estimate of the IPMs unreliability
decrease monotonically with N , and that such a bound is a close approximation of the actual
unreliability. The empirical calculation of γ is often infeasible in practice due to the high
cost of obtaining a sufficiently large sample set of the DGM. As such, the ability to calculate
a tight reliability upper bound without having to make any assumptions on P constitute a
significant benefit of IPMs over all other methods.

As before, the unreliability of the CI varies irregularly whereas the conservative character
of the PI prediction makes it to be much closer to the theoretical value than the other
methods. The small value of γ is the result of over-bounding the true 99% quantile curves.
As such, this is not an indication of goodness but instead of a large amount of conservatism
in the prediction, as shown in Figure 3.
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Figure 7. DGM1: Dependency of the unreliability 1− r on number of observations.
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B. Data Generating Mechanism 2 (DGM2)

Figure 8 shows two-percentiles curves of DGM2 in the input range X = [−1, 1]. This
figure is obtained by performing a large Monte Carlo simulation of the DGM. Note that the
aleatory component of the output y depends on the value of the input x. The output y
converges to a deterministic function as x decreases, whereas it becomes a strongly skewed
random process with input dependent moments as x increases. As such, metamodeling
techniques assuming that the output depends additively on aleatory variables having a input-
independent structure will incur significant error (e.g., the structure of the discrepancy term
used by CIs and the underlying structure of GP models). DGM2 is the result of a process
in which the output y is a deterministic function of two variables: the input x shown and
an input z absent from the “experiment” used to collect the data. As such, the perceived
spread in the measured outputs is not caused by measurement noise or aleatory variability
in y but instead it is the result of model-form uncertainty.
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Figure 8. DGM2: Two percentile lines and N1 = 1000 data points (×).

A total of ne = 12 data ensembles corresponding to values of N in {1000, 2000, . . . , 12000}
were obtained from DGM2. Figure 8 also shows the data corresponding to the first ensemble.
Figures 9 and 10 show the interval predictions corresponding to N1 = 1000 and N12 = 12000.
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Figure 9. DGM2: predictions for N1 = 1000 observations.
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An empirical approximation to the limits of Itrue(x), calculated based on a large Monte
Carlo sample of DGM2, is shown as a thick black line. Note that the IPM provides the best
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Figure 10. DGM2: predictions for N12 = 12000 observations.

description of the true interval throughout X. All other methods fail to discriminate between
these two regions. Even though the range of the PI decreases as N increases, the converged
interval grossly misrepresent the DGM. This is apparent near x = 0.85, where the midpoint
of the predicted interval diverges from the high-probability region. The predictions resulting
from CI and GP are poor representations of the DGM. Both methods describe the overall
trend of the data acceptably well (i.e., they contain a region where most of the probability is),
but not their input-dependent spread. Whereas CI yields the most conservative prediction,
the GP method rapidly becomes insensitive to additional data. Further notice that the GP
kind of traces the region in Y where most of the probability is (the skewness of y is a positive
increasing function of x).

A comparison based on the expected spread, not shown, and the errors, shown Figure 11,
indicates that IPMs yields the best approximation. Note that all methods but the CI settle
fairly rapidly, and values corresponding to the first member of the ensemble are not much
different from those corresponding to the last one. Finally, Figure 12 shows the unreliability
as a function of N . As before, IPM provides unreliability estimates that are the closest
to the theoretical prediction and the corresponding upper bound is tight. Note that the
GP prediction corresponding to the first ensemble is practically equal to that for the last
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Figure 11. DGM2: Error in the upper limit ē (circle), and lower limit e (diamond).
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ensemble. As such, the substantial increment in computational effort required to calculate
and evaluate the GP model (data not shown) is not justified by the corresponding changes
in the prediction.
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Figure 12. DGM2: Dependency of the unreliability 1− r on number of observations.
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C. Data Generating Mechanism 3 (DGM3)

Figure 13 shows two-percentile curves of DGM3 in the input range X = [−1, 1]. This is a
Gaussian random process admitting analytical expressions for the mean and variance func-
tions. Note that both of these functions vary with x in a nonlinear fashion. A total of ne = 11
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Figure 13. DGM3: Two percentile lines and N1 = 25 data points (×).

data ensembles corresponding to values of N in the set {25, 50, 75, 100, 250, 500, 750, 1000,
5000, 10000, 25000} were extracted from DGM3. Figures 14 and 15 show the observa-
tions, the true interval value function, and the predictions corresponding to N6 = 500 and
N9 = 5000 respectively. Note that the range of the predicted interval for all methods, with
the notable exception of IPMs, is fairly independent on the value of x. The CI and IPM
predictions change as more data points are available, whereas the PI and GP predictions are
practically insensitive. As before, the IPM prediction is the closest to the true interval-valued
function.

Figure 16 shows the error in the upper and lower limits of the predicted intervals as a
function of N . The errors attained by the IPM predictions are the smallest of all methods by
a sizable margin. At N11 = 25000 the IPM errors are at least one order of magnitude smaller
than the rest. Notice that the GP fails to describe the DGM well (e.g., the predicted variance
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Figure 14. DGM3: predictions for N6 = 500 observations.
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Figure 15. DGM3: predictions for N9 = 5000 observations.
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becomes excessively large as x decreases) even though both the DGM and the metamodel
are Gaussian processes. The error points missing in the GP curve are the result of the high
computational demands of the method, which prevented calculating the GP model.
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Figure 16. DGM3: upper limit error ē (circle), and lower limit error e (diamond).

Figure 17 shows the CPU time of generating and evaluating a metamodel as a function
of N . The figure illustrates the rapid growth in the computational cost of GPs, which
prevents its usage for data ensembles having more than a few thousand data points, thus,
larger input dimensions. As explained before, this cost prevented the calculation of GPs
for N = 10000, and N = 25000 whose CPU time points are missing from the figure. The
CPU time for the IPM includes an empirical procedure for identifying the data points falling
outside the tightest output domain containing 99% of the N observations, and the solution to
2 convex optimization programs. Such a program, solved using the interior point algorithm
LIPSOL (the Linear Interior Point Solver used by the MATLAB linear program solving
function linprog), is solvable in polynomial time; i.e., iteration complexity O(

√
nL) and

computational complexity O(n3L). The first program solves for an IPM based on the original
N observations whereas the other one solves for an IPM based on the observations falling in
the 0.05 and 99.5 quantiles. This figure illustrates that the computational requirements of
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the IPMs are about two-orders of magnitude smaller than those of GPs for N > 103.
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Figure 17. DGM3: Dependency of the CPU time t on the number of observations N .

Figure 18 shows the unreliability as a function of N . As before, the conservatism in the
PI yields an overly small unreliability, the CI has an erratic behavior, and both the IPM’s
unreliability and its upper bound approach the theoretical value. As before, the upper bound
on the unreliability closely approximates the actual reliability, and the approximation error
converges to zero as N increases.
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Figure 18. DGM3: Dependency of the unreliability 1− r on the number of observations N .
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D. Data Generating Mechanism 4 (DGM4)

Figure 19 shows the two-percentile curves of DGM4 in the input range X = [−1, 1.5] as
well as a few data points. Note the data gaps in [−0.25 < x < 0.15] and x > 1. These
gaps will be present in all data ensembles, which correspond to the 10 values of N in the
set {100, 200, . . . , 1000}. The objective of this example is to evaluate the predictions during
extrapolation. Without making any further assumptions on the DGM, there is no basis to
expect any prediction to properly represent the DGM outside the range of measured inputs
X̂ = [−1,−0.25]∪ [0.15, 1]. The quality of a prediction within X̂ can be objectively assessed
by comparing it with the data. Any notion of goodness outside this domain, however, is
always subjective. Whereas conjectures about the behavior of the DGM outside X̂ are often
used to justify extrapolation, say, because of expert opinion, continuity in the moments, or
the understanding of the underlying physics driving the DGM, the resulting prediction will
likely not conform to P. The behavior of DGM4 outside X̂ can be anything and expecting
the resulting predictions to conform to such an unknown (to the metamodeler in this paper,
and to everyone in practical applications) is unreasonable. Note that the existence of data
gaps, say, because our inability to take measurements outside X̂, is equivalent to having a
DGM based on the conditional probabilistic cloud {P|x ∈ X̂}. Inferences and theoretical
predictions such as the predicted intervals resulting from all metamodeling techniques, in-
cluding the upper bound on a IPM’s reliability, must conform to this conditional DGM to
be valid.

Figures 20 and 21 show the predictions corresponding to a set with N1 = 100 and N10 =
1000 observations respectively. The best predictor within X̂ is the IPM, followed by the GPs
and the PIs. The CI prediction is too conservative to have informative value. As a result
from the RBF structure assumed, the spread of the IPM approaches zero as the separation
between the input x and the data set X̂ increases. This is apparent at x = 1.5 where the
spread of I(x) is zero. This would not have been the case for other bases. Conversely, the
PI prediction has constant spread throughout the input range. Further notice that whereas
the spread of the GP prediction increases rapidly during extrapolation, the spread within X̂
is fairly constant. Such an spread is driven by the region of the DGM exhibiting the largest
aleatory variation, which in this case occurs somewhere in x ∈ [0.15, 1]. Hence, the predicted
variance in x ∈ [−1,−0.25] is overly conservative. This anomaly can be created by a single
outlier in the data set. As such, having a single observation deviating considerably from
the rest of the observations will degrade the tightness of the GP prediction globally by an
extent proportional to the magnitude of such a deviation. This problem can be prevented
by removing outliers from the data set upfront, as it was done with IPMs. The spread of the
GP prediction outside the domain of the data increases rapidly. Even though this behavior
is somewhat intuitive, there is no rational basis supporting the belief this practice is indeed
correct (e.g., the physics driving the DGM might imply that the output must converge to
zero as the input increases, so the diverging spread predicted by a GP during extrapolation
violates the underlying physics of the phenomenon of interest). Numerical experiments
showed that alternative priors for the hyper-parameters of the mean and covariance functions
(results not shown) affect the prediction outside X̂ without noticeably altering the prediction
within X̂.

Extensions to the IPM framework that enable manipulating the prediction during extrap-
olation are being developed. These extensions have been kept separate from the data-based
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Figure 19. DGM4: Two percentile lines and N1 = 100 data points (×).
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IPMs shown thus far in order to separate objective, data-based information from subjec-
tive, belief-based information. These extensions, omitted in this article, will be presented
elsewhere.
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Figure 20. DGM4: predictions for N1 = 100 observations.

Figure 22 shows the error in the limits of the predicted interval as a function of N . As
before, IPMs attain the smallest error in all cases. The results in this figure are somewhat
misleading since they account for the behavior of the prediction outside X̂, a domain where
there is no basis to expect any method to perform better than any other. The trends in the
errors observed previously apply to DGM4 as well.

Finally, Figure 23 shows the unreliability of the predictions. The line discontinuities in
this figure are the result of not being able to plot γ = 0 in the log scale. Note that the upper
bound of the reliability is below the empirical reliability. This anomaly is the result of using
{P|x ∈ X} rather than {P|x ∈ X̂} in the analysis, i.e., calculating the empirical reliability
using input values outside the data range X̂. As expected, this anomaly disappears when
the empirical reliability is calculated based on the data set X̂ used to build the IPM.
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Figure 21. DGM4: predictions for N10 = 1000 observations.
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Figure 22. DGM4: Error in the upper and lower interval limits, ē (circle), and e (diamond).
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Figure 23. DGM4: Dependency of the unreliability on number of observations.
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IV. Discussion

A few general remarks regarding the strengths and limitations of the metamodeling tech-
niques compared are in order. A fundamental premise in this analysis was to use comparable
levels of effort in the development and tuning of all metamodels. To this end we assumed
that all parametric methods have the same computational model M , thus, they all share
the same calibrating variables. The only deviation from this rule was the assumption of
η being a Normal zero-mean random variable with a fixed standard deviation, which is an
additional calibrating variable for the Bayesian CI (see details above). Even though better
model structures could have been used instead, we purposely chose not to do so. Embarking
into the process of using a model structure targeting the particular features of a DGM will
not only violate the premise above, but might also significantly increase the computational
demands of the method. For instance, if the structure of the likelihood function is no longer
Gaussian, its evaluation will require creating a sampling-based approximation to a probabil-
ity density function of unknown structure. This practice greatly increases the computational
demands of calculating the MLE, and of sampling the posterior via MCMC. In this regard,
the inclusion of GPs as an alternative metamodeling technique is unfair because its increased
flexibility gives it a substantial advantage over the parametric metamodeling techniques.

The numerical experiments above consistently indicate that IPMs provide the tightest
interval prediction of the data at a reasonable computational cost. This method does not
have a single parameter to tune, and there is no need to iterate or evaluate the convergence of
the solution. All IPM results shown in this article were obtained in the very first run. These
features as well as the ability to rigorously bound the reliability of the prediction make the
IPM technique preferable. Furthermore, the IPMs matched very well all four DGMs without
having to adjust the structure M to the particular experiment.

The assumed Gaussian RBF structure dictates the extrapolating properties of the pre-
diction for all parametric methods, whereas the assumed covariance function and the corre-
sponding prior dictate that for the GPs. There is no basis to expect any method or model to
describe well the DGM during extrapolation. This observation applies to all metamodeling
techniques, parametric or not. Overall, PIs require the least computational effort but the
conservatism in the resulting prediction made them practically useless. Bayesian CI exhib-
ited high sensitivity to the support set of the assumed prior and were expensive to calculate.
This sensitivity yielded considerable variation in the predicted interval.

GPs provided acceptable predictions overall. The GPs’ performances were closely depen-
dent on the number of observations N and on the input values where the GPs are evaluated.
In regard to the dependency of N , and when x is sufficiently close to the range of observed
inputs, there were three distinct operational ranges: a range of small values of N where the
predicted interval has an input-dependent spread (N < 103), a range of moderate values
of N where the predicted interval has an input-independent spread sized according to the
strongest aleatory part of the DGM (103 < N < 5 × 103), and a range of moderately large
values of N where the calculation of the GP is numerically intractable (N > 5×103). Hence,
operating within the second range of N values, for which the GP model has saturated and
it is insensitive to additional data, yields conservative predictions at all inputs where the
aleatory spread of the DGM is not the largest. Hence, the presence of a few outliers at some
input values has the potential to degrade the tightness of the prediction globally (this will
also be the case for IPMs). The features characterizing these 3 operational ranges should
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be used to determine the number of input dimensions nx for which a GP can render an
acceptable model. In regard to the dependency of the GP prediction on the value of the
input, we noted that the spread of the resulting interval grows rapidly with the distance
between the testing input and the closest measured input. This makes the predicted in-
terval non-informative during extrapolation. Furthermore, the tuning of the GP model by
the selection of the mean and the covariance functions and the priors of the corresponding
hyper-parameters was quite cumbersome and non-intuitive. Even though the results above
are based on the squared exponential covariance function, several other functions were tried
did not render better results. The referenced GP software used in this work allowed for ex-
tremely general definitions of these priors, leaving the user with a myriad of possible choices.
Unfortunately, the apparent lack of causality and intuition with such choices obscured and
complicated the usage of the method. The degraded performance of the GPs observed might
also be the result of having to prescribe global values for the hyper-parameters of the mean
and covariance functions. As Figure 3 illustrates, a value for the length scale parameter that
suits a subdomain of the input range (x < 0) might be unacceptable for other subdomains
(x > 0). Multi-model techniques that might be used to mend for this deficiency were not
considered in this analysis.

There are several conceptual differences between standard metamodeling techniques and
IPMs. One of them is that while most of these techniques aim at interpolating the data,
IPMs aim at describing their spread. For instance, while each of the functions comprising
a GP model for a zero-noise level passes through all the data points, there is at least one
member of the family of infinitely many functions comprising an IPM passing through each
data point. The differences are not only conceptual, but also practical. The calculation of an
IPM requires solving an optimization problem, which for the linear program formulation used
here can be done very efficiently for a large number of design variables and constraints; i.e., on
the order of 105 using standard optimization algorithms. This enables considering problems
with many more data points N , thus input dimensions nx, than alternative approaches such
as standard, non-sparse implementations of GPs which are restricted to a few thousand
points.

A final remark regarding the usage of metamodels is in order. Each metamodeling tech-
nique should stipulate the application domain X ⊂ Rnx associated with the resulting com-
putational model. In the context of this paper such a domain is the set of inputs where
the prediction is an adequate representation of the DGM. As the examples above show,
the application domain X might not even contain the entire data domain. The data, expert
opinion, and engineering judgment must be used to prescribe and communicate X to the user
of the model. This can be attained by making the predicted output range artificially wide
outside X . A reduction in the informative value of the prediction will discourage using the
model outside its domain of application (this is a natural appeal of GP models, for which the
predicted variance grows rapidly with the separation from the data). This practice, which
requires modifying the data-based metamodel so the prediction during extrapolation is also
dictated by belief- and physics-based arguments, will make the reliability bound of IPMs
invalid.
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