National Transonic Facility

NASA Langley Research Center Hampton, Virginia

Force Measurement Improvements to the National Transonic Facility

Sidewall Model Support System

Scott L. Goodliff (presenter) Sundareswara Balakrishna David Butler C. Mark Cagle David Chan Gregory S. Jones William E. Milholen II

SciTech 2016 San Diego, California

<u>Outline</u>

- The National Transonic Facility
- Introduction and Problem Statements
 - challenges with powered semi-span testing in a transonic cryogenic environment
- The FAST-MAC Model
 - primary testing platform
- Calibration of the NTF-117S Balance
- Balance Cavity Recirculation System (BCRS) Description and Modifications
- Sidewall Model Support System (SMSS) Description and Modifications
- Test Results
 - repeatability results, thermal stability data, wind-off zero data
- Concluding Remarks
- Questions

The National Transonic Facility

 Closed circuit, transonic, wind-tunnel at NASA Langley Research Center

- Flight Reynolds numbers achievable through cryogenics and pressurization
- Capable of supporting both full-span and semi-span test articles

OPERATING PARAMETERS

 Mach Number:
 0.1 to 1.2

 Test Temperature:
 -250°F to 120°F (116 K to 322 K)

 Total Pressure:
 15 psia to 120 psia (1 atm to 8.2 atm)

Test Gas:Air, Nitrogen, MixReynolds Number:146x10⁶ per foot (max)Fan Power:101 MW

Introduction

- SMSS used for semi-span testing
 - originally designed for cryogenic lowspeed high-lift applications
 - internal components and balance kept warm
- Flow control system (FCS) recently integrated into SMSS to provide 2 concentric flow paths of high-pressure air (up to 20 lbm/sec)
- **ENABLES** active flow control engine simulation propulsion airframe integration
- Transonic cryogenic test environment coupled with high-pressure air delivery system presented force measurement challenges

TEST TITLE	TEST COMPLETION DATE		
FLOW CONTROL ACCEPTANCE	December 2010		
FAST-MAC 1	April 2011		
FAST-MAC 2	DECEMBER 2012		
FAST-MAC 2.5	JUNE 2015		
RCEE	September 2015		

Balance Thermal Stability Problems

- Balance temperature stability is critical for high data quality
 - balance cavity recirculation system (BCRS) uses heater/blower combination to maintain balance temperature of 100°F

- Addition of FCS restricted flow area through center of balance
 - system became thermally anemic, could not maintain balance temperature
 - Ingestion of cold gas into balance cavity could not be overcome by convection of heated air around the balance

Correlation of Thermal Gradient to WOZ Data

- Wind-off zero (WOZ) data from early testing provided evidence of thermal deficiencies on force data
- Strong correlation found between temperature gradient and load
- Thermal gradients also apparent between front and back of balance
 - Improvements needed to BCRS to offset enthalpy loss, reduce gradients, and improve mass flow

Balance Data Sensitivity to Non-Repeatable Load Path

- Load path between metric/non-metric hardware was found to be non-repeatable
 - PIP (pressure interface part) bridged metric model components
 - pre-load on balance changed from assembly to assembly, captured in WOZ data

Mechanical modifications needed to ensure load path repeatability

The FAST-MAC Model

• The FAST-MAC model is the primary blowing testbed used in recent SMSS tests (*Eundamental <u>A</u>erodynamic <u>S</u>ubsonic <u>T</u>ransonic <u>M</u>odular <u>A</u>ctive <u>C</u>ontrol)*

• Uses flow control system to direct high-pressure air over the flap

- slot at 85% chord, four individual plenums for tailored blowing, configurable slot height

Calibration of the NTF-117S Balance

- All force and moment measurements made with NTF-117S balance
- Flow control hardware bridging balance requires a system calibration that includes PIP pressure and temperature
- Recent modifications to mechanical assembly required new calibration

			CALIBRATION ACCURACIES (95% CONFIDENCE)		
For more info	COMPONENT	Max Load	2009 BALANCE ALONE	T213 System CALIBRATION	T222 System CALIBRATION
	NORMAL FORCE	12,000 LBS	+/- 6.00 LBS	+/- 16.3 LBS	+/- 24.8 LBS
AIAA 2010-4542	AXIAL FORCE	1,800 LBS	+/- 2.52 LBS	+/- 7.78 LBS	+/- 4.64 LBS
AIAA 2012-3318	PITCHING MOMENT	90,000 IN-LBS	+/- 144 IN-LBS	+/- 64.8 IN-LBS	+/- 330 IN-LBS
AIAA 2014-0275	ROLLING MOMENT	670,000 IN-LBS	+/- 803 IN-LBS	+/- 422 IN-LBS	+/- 1575 IN-LBS
	YAWING MOMENT	110,000 IN-LBS	+/- 90.3 IN-LBS	+/- 200 IN-LBS	+/- 400 IN-LBS

- Addition of supply tube mounting adapter and pins in MIP
- De-coupled FCS from instrumentation tube

Instrumentation Tube Replacement

- Original 3-inch diameter instrumentation tube replaced with 3.5-inch diameter tube
- Increased cold-return annulus area by 300%, permitting greater mass flow through the tube for BCRS heat

SMSS/BCRS VERSION	FLOW AREA (IN ²)	MACH NUMBER @ 420 SCFM	MACH NUMBER @ 700 SCFM
Pre-Upgrade to FCS (2003)	7.00	0.144	0.189
Post-Upgrade with FCS (2010-2012)	1.55	0.625	0.920
WITH NEW INSTRUMENTATION TUBE (2013)	4.66	0.220	0.313

BCRS Modifications

- New instrumentation tube allowed for 60 scfm of BCRS heat, not enough to offset enthalpy losses and maintain balance thermal stability
 - original blower motor insufficient, limited blower speed
 - new motor enabled blower to reach its full capability of 700 scfm
- Re-design of BCRS ductwork required to interface with new instrumentation tube - removal of old interface created gaps between carousel and rotary union, had to be sealed
- Wiring upgrades provided 3x more power to 10 kW BCRS heater
- Modifications to BCRS control and usage - blower speed variation depending upon test condition

- new temperature sensor on balance used as feedback for BCRS heater

Test Results - WOZ Comparisons

Good evidence that hysteresis and non repeatable pre-loads had been successfully reduced

- WOZs during latest FAST-MAC test showed significant improvement in variation in all balance components
- Correlation between WOZ load and PIP pressure/temperature was higher

Test Results - FCS In/Out Comparisons

- Latest FAST-MAC test compared effect of removing the FCS
- First phase of test with FCS <u>in</u> Second phase of test with FCS <u>out</u>
 - removing FCS required full disassembly and removal of model and support hardware from SMSS
 - supply piping, hubcap, PIP removed
 - model re-assembled, exact same outer mold line
 - two different balance calibrations used
 - Drag measurements agree (no bias effects), system calibration removed effect of FCS bridging

	Test	Run	Mach	ReC (million)	Blowing	Config
0	222	82	0.850	15.0	Off	FCS In
	222	84	0.850	15.0	Off	FCS In
\diamond	222	85	0.850	14.9	Off	FCS In
Δ	222	135	0.850	14.9	Off	FCS In
	222	150	0.850	15.0	Off	FCS In
•	222	275	0.850	14.7	Off	FCS Out
	222	279	0.850	14.7	Off	FCS Out
•	222	280	0.850	14.6	Off	FCS Out

National Transonic Facility NASA Langley Research Center

Test Results – Balance Thermal Stability

- Balance temperature stability poor during first FAST-MAC test
 - temperature allowed to drop below 70°F
 - recovery back to 100°F not possible
- Temperature control better during third FAST-MAC test (FAST-MAC 2.5)
 - 100°F temperature achievable, but not maintainable
 - fairly rapid recovery with brief wind-off periods
- Stability achieved during RCEE test
 - balance stable even at -150°F

Transonic test conditions at -50°F and -150°F

Test Results – Balance Thermal Gradients

- Front-to-back thermal gradients also reduced
 - rate of gradient change reduced
 - allowed for more wind-on testing time and less wind-off recovery time

 Range of front (metric end) top-to-bottom balance temperature gradients significantly reduced - maximum gradient for RCEE less than 0.5°F - increased mass flow of BCRS able to offset the ingestion of cold gas

National Transonic Facility NASA Langley Research Center

Test Results - Drag Repeatability

- Drag repeatability is a good cumulative metric for quantifying improvement
- Overall drag repeatability was poor for first FAST-MAC test

 included blowing and nonblowing runs, air and cryogenic runs
- Repeatability was about 5 times better for latest FAST-MAC test
- Based on results from RCEE test, further improvement is expected

Concluding Remarks

Integration of flow control system required many improvements to the SMSS

 early tests had poor data quality due to temperature instabilities and non-repeatable mechanical assemblies

- Balance temperatures stable at cryogenic conditions with minimal gradients
- Mechanical bridging effects now repeatable and compensated for in system calibration
- SMSS originally designed for lowspeed high-lift applications
 - Now capable of providing high-quality data for powered transonic tests at cryogenic temperatures as low as -150°F

Force Measurement Improvements to the NTF Sidewall Model Support System

Questions?

SciTech 2016 Slide 19 of 19, S. Goodliff

