Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

Matthew R. Bolcar^a

Lee Feinberg^a, Kevin France^b, Bernard J. Rauscher^a, David Redding^c, and David Schiminovich^d

With help from the LUVOIR Science & Technology Definition Team, Study Office, and Technology Working Group

> 26 June 2016 Edinburgh, Scotland, UK Paper 9904-18

^aNASA Goddard Space Flight Center, ^bUniv. of Colorado, ^cJet Propulsion Laboratory, ^dColumbia Univ.

A Brief History of LUVOIR

- **pre-2010:** Advanced Technology Large Aperture Space Telescope (ATLAST) mission concept study
- 2010: 2010 Decadal Survey, New Worlds, New Horizons
 - "...lay the technical and scientific foundations for a future space imaging and spectroscopy mission..." [page 20]
 - Recommended the definition of a future UV-optical space telescope
- 2013: NASA Astrophysics 30-year Roadmap
 - First mention of LUVOIR as a "Formative Era" mission
- 2013+: Additional work on ATLAST
 - Goddard, JPL, Marshall, Space Telescope Science Institute
- **2015:** AURA From Cosmic Births to Living Earths
 - Recommend the High Definition Space Telescope
- **2016:** Formation of LUVOIR Science & Technology Definition Team

A Brief History of LUVOIR

- **pre-2010:** Advanced Technology Large Aperture Space Telescope (ATLAST) mission concept study
- **2010:** 2010 Decadal Survey, *New Worlds, New Horizons*

– "...lay the technical and scientific foundations for a future space
For a *much* more detailed history, see:

Thronson, *et al.*, "A path to a UV/optical/IR flagship: ATLAST and its predecessors", *JATIS*, **2**(4), 2016.

- Goddard, JPL, Marshall, Space Telescope Science Insitute
- **2015:** AURA From Cosmic Births to Living Earths
 - Recommend the High Definition Space Telescope
- **2016:** Formation of LUVOIR Science & Technology Definition Team

The LUVOIR STDT

• Tasked with:

- Identify a compelling science case
- Define a design reference mission with strawman payload
- Prioritize and roadmap necessary technologies
- Supported by the Study Office at Goddard Space Flight Center

The LUVOIR STDT

• Tasked with:

- Identify a compelling science case
- Define a design reference mission with strawman payload
- Prioritize and roadmap necessary technologies
- Supported by the Study Office at Goddard Space Flight Center

LUVOIR Science*

- Broad array of general astrophysics
 - Wide-field of view, high-resolution imaging in the Hubble bandpass (UV NIR)
 - Wide-field of view, multi-object UV spectroscopy
 - Sensitivity at wavelengths at least as short as 100 nm
- Direct imaging of dozens of habitable exoplanets
 - Spectroscopic search for biosignatures
 - High-precision astrometry and/or radial velocity
 - Comparative planetology
- Local solar system observations

*Subject to further definition by the STDT

LUVOIR Science*

- Broad array of general astrophysics
 - Wide-field of view, high-resoluti bandpass (UV – NIR)
 Implies a need for precision UV
 - Wide-field of view, multi-object optics and sensitive UV detectors.
 - Sensitivity at wavelengths at least as short as 100 nm
- Direct imaging of dozens of habitable exoplanets
 - Spectroscopic search for biosignatures
 - High-precision astrometry and/or radial velocity
 - Comparative planetology
- Local solar system observations

*Subject to further definition by the STDT

LUVOIR Science*

- Broad array of general astrophysics
 - Wide-field of view, high-resolut Implies a need for precision UV optics and sensitive UV detectors. bandpass (UV – NIR)
 - Wide-field of view, multi-object
 - Sensitivity at wavelengths at least as short as 100 nm
- Direct imaging of dozens of habitable exoplanets
 - Spectroscopic search for biosigna Implies a need for high-contrast
 - High-precision astrometry and/or imaging and ultra-stable optics.
 - Comparative planetology
- Local solar system observations

*Subject to further definition by the STDT

Technology Prioritization for 2016 Cycle

Technology Area	Difficulty	Urgency
High-Contrast Segmented-Aperture Coronagraphy	CRITICAL	CRITICAL
Ultra-Stable Opto-mechanical Systems (includes Sensing, Control, Mirrors, and Structures)	CRITICAL	CRITICAL
Large Format, High Sensitivity, High-Dynamic Range UV Detectors	HIGH	HIGH
Vis/NIR Exoplanet Detectors	HIGH	MED
Starshade	HIGH	MED
Mirror Coatings	MED	MED
MIR (3–5 μm) Detectors	LOW	LOW

High-Contrast, Segmented-Aperture Coronagraphy

 Coronagraphy + large aperture (> 8m) provides high-yield exoEarth detection & characterization

Parameter	Goal	State-of-the-Art (WFIRST)
Aperture Type	Obscured, Segmented	Obscured, Monolith
Raw Contrast	1×10 ⁻¹⁰	8.54×10 ⁻⁹
Inner Working Angle	2 λ/D @ 1 μm	3 λ/D @ 0.55 μm
Bandpass (Instantaneous)	10 – 20%	10%
Bandpass (Total)	400 nm – 1.8 μm	523 nm – 578 nm
Throughput	> 10 %	< 5 %
LOWFSC Controllable Modes	Pointing, Z4-Z11	Pointing
LOWFSC Speed	> 1 kHz	~1 kHz
LOWFSC Accuracy	< 10 pm RMS	< 0.5 mas RMS per axis
Post-processing Contrast Gain	> 10×	3×

High-Contrast, Segmented-Aperture Coronagraphy

- Recommendations:
 - Continue the Segmented Coronagraph Design & Analysis study:
 - Improve model fidelity with dynamics, wavefront error, etc.
 - Continue "cross-pollination" and design collaboration

- Viable candidates must be *demonstrated* on a UV-compatible, segmented aperture testbed prior to 2020 Decadal Survey
 - Need to establish credibility of segmented aperture coronagraphy

Ultra-Stable Opto-Mechanical Systems

- High-contrast imaging with a coronagraph requires wavefront stability ~10 pm RMS per wavefront control step
- Three general components to achieving wavefront stability:
 - Sensing Technologies
 - Control Technologies
 - Stable Structures & Mirrors
- An architecture involving all three is likely necessary to achieving the necessary stability

Sensing Technologies:

- Image-based techniques
 - Use the light from the object being observed
 - e.g. Zernike wavefront sensor, phase retrieval, etc.
 - Usually photon-starved, and therefore slower
 - Wavefront updates at 10s of minutes or hours
- External metrology
 - Use absolute metrology of optical system
 - e.g. laser trusses, edge sensors, etc.
 - Can be made arbitrarily fast, at the expense of added complexity
 - Provide wavefront updates at a few Hertz
- Use both:
 - Image-based techniques to control slow thermal drifts
 - External metrology to control faster dynamic drifts

Control Technologies:

- Primary Mirror Segments
 - Rigid body actuation in 6 degrees-of-freedom (*a la* JWST)
 - Higher-order control via warping harness or embedded actuators
- Macro-scale deformable mirrors
 - Currently used by most coronagraphs for speckle nulling
 - Continuous facesheets
- MEMs deformable mirrors
 - Continuous facesheet or segmented
 - Segmented can be mapped 1-to-1 to primary mirror segments for fast control of segment (tip/tilt)
- All require stable, precise, fast electronics

Stable Structures and Mirrors:

- Thermally stable mirror materials
 - ULE[®], Zerodur[®] for low CTE at room temperature
 - SiC for high thermal conductivity, low CTE at colder temps
- Thermally stable structures
 - Composites with low CTE, CME
 - Better understanding of joints and lurches
- Requires better modeling and validation of linearity assumptions at picometer levels

Ultra-Stable Opto-Mechanical Systems

- Recommendations:
 - Systems-level approach to solving the problem
 - Mirrors, structures, sensors, actuators, materials, modeling, and the overall architecture must be developed together
 - Substantial participation of industry is necessary
 - Design and development activities to demonstrate closed-loop picometer-class stability for segmented apertures
 - Competitive development of picometer component sensing and control technologies and architecture feasibility demonstrations

Large Format, High Sensitivity, High Dynamic Range UV Detectors

- Micro-channel Plates (MCPs) are current state-of-the-art for UV detectors
 - Limited dynamic range (cannot view bright objects)
 - Limited lifetime ("gain-sag" issue)
 - Difficult to tile in large arrays
- EMCCD & sCMOS are of interest
 - Must first be evaluated for radiation hardness and noise performance
 - Could provide a path for large-format, high dynamic range
 - Need improvement in UV sensitivity

Large Format, High Sensitivity, High Dynamic Range UV Detectors

Parameter	Goal	State-of-the-Art (MCP)
Operational Bandpass	90 nm – 400 nm	90 nm – 300 nm
Read Noise	0	0
Dark Current	0	0
Spurious Count Rate	\leq 0.05 counts / cm ² /s	0.05 counts / cm ² /s
Quantum Efficiency (Peak)	75 % (FUV – NUV)	45 – 20% (FUV – NUV)
Resol Size	≤ 10 μm	20 µm
Dynamic Range	$\geq 10^4$ Hz / resol	40 Hz / resol; 5 MHz global
Time Resolution	≤ 100 ms	<< 1 ms
Format	≥ 8 – 16 k pixels per side	8k x 8k
Radiation Tolerance	Good	Good

Large Format, High Sensitivity, High Dynamic Range UV Detectors

- Recommendations:
 - Technology-only balloon/rocket programs and laboratory demonstration can accelerate development
 - Minimize time spent on science instrumentation; focus on detector evaluation
 - Evaluate/develop EMCCD and sCMOS for radiation hardness and noise performance
 - If acceptable, pursue δ-doping for UV sensitivity
 - Also benefits the Vis/IR Detectors for Exoplanet Science technology need

Vis/IR Detectors for Exoplanet Science

- For high exoEarth yields, require extremely lownoise detectors
 - < 1 e⁻/pixel read noise; < 0.0010 counts/pixel/s dark current</p>
- Candidate technologies:
 - EMCCD:
 - Must be made radiation hard
 - sCMOS:
 - Must be evaluated for read noise, dark current, and radiation hardness
 - MKID/TES:
 - Energy resolving detectors require cryogenic operation which may be incompatible with picometer stability requirement

Starshade

- Alternative means to starlight suppression for exoplanet science
 - Trades telescope stability for added complexity of additional space craft flying in precise formation with observatory
 - Risk reduction should coronagraphy or stability prove too challenging
 - Mission enhancing for NIR exoplanet characterization
- Starshade Readiness Working Group (SSWG) recently formed
 - Develop "a technical concept and risk reduction plan" for starshade validation

Mirror Coatings

- Require broadband, high-performance coatings that are compatible with coronagraphy:
 - Maintain high reflectivity over band between 90 nm and 2.5+ μ m
 - High uniformity over 10-m class aperture
 - Minimize polarization aberration and cross-polarization leakage
- Need investigations in deposition processes to improve reflectivity and uniformity
- Demonstration of high-contrast imaging with UV-compatible coated segmented aperture is needed prior to 2020

MIR (3-5µm) Detectors

- Depending on operating temperature of LUVOIR, varying degrees of MIR science is possible
 - Observations are limited by telescope's thermal background
 - Even with a room-temperature telescope, cold instruments can enable some MIR transit spectroscopy
- Need to better understand needs of science observations relative to background limitations
 - Define detector needs and evaluate the technology gap

Conclusion

- Prioritized 7 technologies for LUVOIR, based on preliminary science case
- Three technologies elevated as urgent for 2016 investment:
 - High Contrast, Segmented Aperture Coronagraphy
 - Ultra-stable Opto-mechanical Systems
 - Large Format, High Sensitivity, High Dynamic Range UV Detectors
- Additional technologies will require development as
 - (a) the science case is further defined,
 - (b) the above gaps begin to narrow, and/or
 - (c) additional information is made available about current capabilities