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Introduction

The Primordial Inflation Explorer (PIXIE) [1, 2]

• Space-based polarizing Fourier transform spectrometer (FTS).

• Designed to measure the polarization and intensity spectra of the

CMB.

• Multimode “lightbucket” design enables nK-scale sensitivity across

2.5 decades in frequency with just 4 thermistor-based bolometers.

• Like other FTSs [3, 4, 5, 6], PIXIE’s design and experimental

approacha represent a significant departure from imagers often used

for CMB measurements. This is especially true for the detectors.

• Large etendue (AΩ = 4 cm2 sr).

• Handle large optical load (120 pW).

• Large and mechanically robust absorber structure (30x larger than

the spider web bolometers on Planck [7]).

• Limited sensitivity to particle hits.

• Sensitive to all optical frequencies of interest (15 GHz - 5 THz).

• Photon-noise limited (NEP ≤ 1× 10−16 W/
√
Hz).

aSee Al Kogut’s poster on systematic error mitigation and Dale Fixsen’s talk on beams. 2



Instrument description

Each focal plane has two

polarization-sensitive bolometers

mounted back-to-back with their

polarization axes orthogonal.

Incident radiation:

~Einc = Ax̂ + Bŷ (1)

Measured power:
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Inverse Fourier transform:

SLx (ν) = A2ν − B2
ν.

SLy (ν) = B2
ν − A2ν.

SRx (ν) = A2ν − B2
ν.

SRy (ν) = B2
ν − A2ν.

(3)

Signal = small modulated component

in a bright (∼ 120 pW) background. 3



Instrument description

• Mirror position z → optical path difference `: z ' `/4.

• Mirror velocity v : v = z/ (3 sec) = 1.73 mm/sec.

• Optical path difference ` → interfering radio frequency ν: ` = c/ν.

• Radio frequency ν → Audio (FTS) frequency ω: ω = 4νv/c .

• CMB: ω . 15 Hz.

• Dust: ω . 100 Hz.

These constraints drive the bolometer bias and bandwidth requirements.

Detectors must be photon noise limited across all FTS frequencies

(0− 100 Hz) under large, near-constant (∼ 120 pW) optical bias.
4



Detector design and fabrication



Detector design - overview

Detectors are fabricated using standard microfabrication techniques.

They consist of three main components:

• Absorber structure - absorb single linear polarization

• Endbanks - measure incident optical power with silicon thermistors

• Frame - thermal sink and interface to readout

Each beam’s focal plane will consist of two indium bump-hybridized

detectors mounted < 20 µm apart with their absorbers orthogonal.

→ measure orthogonal polarizations of nearly the same electric field.
5



Absorber structure - overview

• Consists of a grid of suspended, micromachined, ion implanted

silicon wires.

• Wires are degenerately doped to be metallic at all temperatures.

• Effective sheet resistance of the whole structure is 377 Ω/�.

• Absorber area sets low frequency cutoff of instrument (15 GHz); grid

spacing (30 µm) sets high frequency cutoff (5 THz).

• Wire widths and thicknesses are highly uniform across the array.

• Thickness set by starting SOI device layer thickness (1.35 µm).

• Wires are etched to width with an ICP RIE process. 6



Absorber structure - mechanical characterization
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• Doping induces compressive stress in absorber wires; previous devices

had their wires buckle and protrude up to 20 µm from the frame.

→ problematic for a hybridized pair of bolometers.

• Detectors subject to vibrations and acoustic excitations at launch.

→ need resonant frequencies of absorber structure to be much

greater than excitation frequencies of launch.

• Solution: deposit highly tensile Al2O3 film on absorbers outside of

active optical region.

→ Fabricated absorbers are flat and expected to oscillate with

amplitudes of < 0.4 µm rms during launch. 7



Endbanks - overview

• Consists of a gold bar for

thermalization and two doped

silicon thermistors on a

crystalline silicon membrane.

• The gold bar also sets the heat

capacity of the endbank.

• Endbank is formed from the

device layer of the SOI

substrate.

• Endbanks are connected to the chip frame through eight silicon legs.

• Thermistors are doped to operate below metal-insulator transition.

Electron transport mechanism is variable range hopping [8]:

R (T ) = R0 × exp

√
T0

T
, (4)

where R0 and T0 are constants largely determined by geometry

and doping, respectively. 8



Frame
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Figure 1: replace this with In bump SEM

• The chip frame is designed so that any two bolometer chips can be

hybridized together.

• Large gold-covered areas serve as heat sinks.

9



Package and readout



Package and readout - dark tests

• Thermistor operates under current bias (Rbias >> Rtherm).

• Bolometer is connected to a cryogenic (130 K) JFET amplifier with

tensioned leads, mitigating capacitive microphonic contamination of

the signal band. We use Interfet NJ14AL16 JFETs that are screened

for low noise performance (5.5 nV/
√
Hz at 100 Hz).

• Amplifier converts the high source impedance of the thermistors

(MΩ-scale) to the low output impedance of the JFETs (1.8 kΩ).

• Low impedance signal is AC coupled to a room temperature

amplifier.

10



Detector performance



Performance - load curves
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• Determine R0 and T0 from the measured resistances under low

electrical bias.

→ T0 = 15.11 K and R0 = 911 Ω. Operating resistance: 5.42 MΩ.

• Determine average thermal conductance Ḡ between the thermistors

and the bath from the high-bias end of the load curves:

Ḡ =
Pbias

T1 − T2
. (5)

• Fit to the measured Ḡ with a function G̃ = G0 × Tβ .

→ The fit is close to the expected value (βphonon = 3). 11



Performance - thermal model

• For the endbank geometry,

break Au bar, thermistors, and

legs into small elements.

• Solve for the etendue AΩij,ik

beween all elements.

• Heat flow between elements

(e.g., between i and j) is given

by Pij = Aij

(
T ν
i − T ν

j

)
.

• Determine G between elements, determine C from material

properties/geometries, measure VRH parameters R0 and T0, and

solve for non-equilibrium bolometer noise [9]:

NEPbolometer
2 = γ14kbT

2G +
1

S2

(
γ24kbTR+e2n +γ3i

2
nR+γ4NEPexcess

2
)
.

(6)
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Performance - noise
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• Thermal model reproduces the measured Ḡ well.

• Modeled noise fits the measured noise well for multiple bias

conditions.

• Running the model for the optical and electrical bias conditions

expected during flight, we calculate a bolometer NEP of

7.93× 10−17 W/
√
Hz.

Expect to be photon noise limited across the entire PIXIE bandwidth. 13



Conclusions



Conclusions

• We designed, fabricated, and characterized large area

polarization-sensitive bolometers for the PIXIE experiment.

• Mechanical characterization of the fabricated PIXIE bolometers

shows that the tensioning scheme successfully flattens the absorber

strings.

• Enables indium bump hybridization of a pair of bolometer chips.

• Mitigates microphonic sensitivity during launch.

• The dark data provide significant insight into the thermal behavior

of the endbanks.

• Thermal model agress well with the data.

• The results indicate that the PIXIE bolometers satisfy the sensitivity

and bandwidth requirements of the space mission.

• Upcoming work:

• Characterize the absorber structure (dark measurements of thermal

transport and AC impedance, optical measurements with a cryogenic

blackbody source.)

• Subject a hybridized pair of bolometers to environmental testing.
14
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