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Abstract. We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat 

loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads.  We report 

here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective 

emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum 

testing of the Telescope.  

 

INTRODUCTION 

Cold Radiometers 

Low cost radiometers were developed to allow in situ measurements of heat flux from both known and 

unknown sources in thermal-vacuum tests.  These radiometers utilize a Winston cone to concentrate incident 

radiation from a relative compact solid angle onto an absorber and attached thermometer.  The absorber and 

thermometer are weakly coupled to the base of the radiometer on which another thermometer is attached to 

compare temperatures.  The difference between the heated sensor thermometer and the base thermometer, when 

multiplied by the temperature and gain factor, gives the heat load captured by the radiometer.  This, in turn, by 

knowledge of the emissivity of the absorber and acceptance angle of the Winston cone, gives the equivalent flux 

emanating from the source.  The lower the operating temperature, the more sensitive the thermometers and the 

better the thermal isolation.  The type of thermometers used, CernoxTM 1080, give the best resolution in the 15-

25 K range.  More details of the design, testing and calibration are given in References 1 and 2. Key features of 

the radiometers are that the response to signals entering within the angle of acceptance (11° half angle field of 

view (FOV)) is flat and the absorbing material, “Steelcast” is wavelength independent [3] over the blackbody 

radiation spectrum of interest in these tests.  These properties greatly simplify the calibration and interpretation 

of the radiometer signals. 

The radiometers can be calibrated in situ by applying extra electrical power to the thermometer and reading 

out the apparent temperature.  The same is done for the base thermometer to compensate for the self-heating 

within the sensor itself.  A plot of input power vs. temperature difference between the sensor and the base then 

produces the gain of the radiometer. 

   

JWST Testing 

The James Webb Space Telescope (JWST) is a 6.7 m diameter visible and infrared telescope that will be 

operated in the 40-60 K range in space.  To verify proper operation, the telescope and instruments will be tested 

in large thermal-vacuum chambers.  (See, for instance, FIGURE 1.) These tests are very expensive, so to reduce 

risk, several pieces of critical Ground Support Equipment (GSE) to be used for these tests are characterized for 

optical and thermal performance.  The radiometer-related aspects of two of these GSE thermal tests will be 

described in this paper. A third major piece of optical GSE, the Cryogenic Photogrammetry Module was also 

tested using cold radiometers. Results of that test will be reported later. 
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FIGURE 1. Test configuration of the JWST telescope and instrument package at Johnson Space Flight Center, Chamber A.  

For scale, the Primary mirror is 6.7 meters in diameter. 

 

COCOA TESTS 

One of the pieces of critical GSE is the Center of Curvature Optical Assembly (CoCOA).  This large 

interferometer operates outside the thermal vacuum chamber at room temperature but has a view into the 

chamber through a large glass port.  To protect thermal balance testing, a passively cooled shutter is placed in 

front of the window when the CoCOA is not being used.  It was necessary to measure the shutter temperature 

and thermal emissivity and the emission from the CoCOA itself in two configurations with the shutter open  

A test of the CoCOA was performed at Marshall Space Flight Center’s large 20 K-shrouded thermal vacuum 

chamber know as the XRCF.  While the CoCOA itself was within a surrounding 120 K shroud, it operates at 

room temperature and in normal room temperature air.  It was therefore surrounded by a hermetic shell and by 

MLI and kept warm by the flow of air ducted from outside the chamber.  A plate cooled by a dedicated 20 K 

refrigerator cryogen loop was mounted directly under the CoCOA.  Four radiometers were placed on this plate as 

shown in FIGURE 2 under the CoCOA shutter.  The radiometers had an additional cylinder surrounding the 

Winston cone to prevent stray radiation from a warm (120 K) part of the shroud from heating the body of the 
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radiometer.  An additional radiometer was positioned on the cold plate to look directly at this hot part of the 

shroud.  

The shutter was constructed with an aluminum frame with an MLI blanket. It was thermally isolated from the 

room temperature CoCOA and was allowed to float thermally between the warm CoCOA above and the cold 

chamber below.  On the bottom of the shutter, the last, outward facing layer was black kapton with VDA 

aluminum on the blanket side.  It was this layer that the radiometers faced.  Radiometer #4, R4, faced the the 

center of this outer blanket.  A Cernox thermometer was taped to the outside of the blanket and covered with a 

small patch of black kapton to match the emissivity of the rest of the shutter.  By measuring the temperature the 

radiometer reading could be converted directly to an effective emissivity. 

The shutter was allowed to cool to its equilibrium temperature over several days.  The cold plate below the 

shutter was maintained at less than 24 K during this time.  Radiometer measurements were made continuously. 

All 4 radiometers viewing the shutter game the same reading to better than ± 5%. The shutter temperature 

reached 103.4 K and from the R4 reading its emissivity was 0.62, which is slightly lower than the expected value 

of 0.74 at this temperature. Perhaps the aluminized surface provided a reflection of any transmitted radiation.  

The total emission per area from the shutter bottom surface was 4000 mW/m2, which, in turn is used to calculate 

the amount of power escaping into the chamber to be 0.27 W, which is within the acceptable range for its final 

use in the JWST test. 

The shutter was then opened.  Two modes of the CoCOA with different thermal signatures were tested:  one 

with a hologram in place which has blanketing limiting the total heat output, and one with the hologram retracted 

which had the signature of a 293 K blackbody.  For this mode the heat load out of the aperture was 27.8 W.  

These tests were repeated several times for different durations over several weeks to simulate expected 

operations in Chamber A and to test the thermal limits and transient response. 

The radiometers were not initially designed to stare at a heat source as large as room temperature over the 

entire FOV. To obtain accurate results when the radiometer was operated with a very high heat load, it was 

necessary to calibrate the same radiometer a second time in the presence of this high heat load.  The same 

calibration procedure as performed at low temperature was followed, but higher electrical power was used.  The 

temperature-dependence curve that was used for readout between 15 and 25 K was surprisingly relatively 

accurate even when the sensing element was at 75 K, and followed the thermal conductance dependence of 

stainless steel as expected.  This gave confidence in the accuracy of the heat load measurements. 

 

 

 
 

 
FIGURE 2. Four radiometers (R4 is back center) mounted on the cold plate under the CoCOA shutter.  The shutter has a “U” 

shaped opening for balancing and is in the open position in this picture. 
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OSIM TESTS 

Objectives 

Before integrating the Integrated Science Instrument Module (ISIM) to the telescope, ISIM is tested by itself 

in a smaller thermal-vacuum chamber at Goddard Space Flight Center (GSFC).  A smaller, simulator telescope, 

the Optical Simulator for the Instrument Module (OSIM) is used to test the instruments.  OSIM was 

cryogenically tested before installation of ISIM, characterizing its optical and thermal performance.  The thermal 

performance tests included a measurement of the heat load into ISIM (nominal 40 K) from OSIM (nominal 100 

K).  Compared to the JWST primary, secondary and tertiary mirrors, OSIM emits a significant amount of heat --

100 K vs. 30-50 K for the flight mirrors.  An important measurement to be made in the ISIM test is the lead load 

balance; measure heat into ISIM through harnesses, structure and internal dissipation to determine if the passive 

radiators have sufficient cooling power to maintain the instruments at their operating temperature (typically 36-

40 K).  To limit the amount of heat entering the ISIM cavity from OSIM a baffle is used.  The baffle is a slightly 

tapered, rectangular cross section, duct whose inside is painted with Ball InfraRed Black (BIRB) which has a 

high emissivity and low specularity.   

The goals of the radiometer measurements were to measure the heat load that will radiate from the OSIM into 

the ISIM cavity, determine the effectiveness of the baffle in limiting this heat load, and determine the effective 

emissivity of the OSIM aperture 

 

 

 

  
 

FIGURE 3. Three dimensional drawing of the OSIM test apparatus, showing the baffle and FOVs of the fixed 

radiometers (gray cones).  The radiometers’ central axes are shown as straight lines.  The two parallel lines at the bottom 

of the baffle are from the two translating radiometers. 
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Set Up 

Six radiometers were stationary, positioned around the exit aperture two of which had a view of only the 

upper portion of the baffle and four of which had views of the four walls of the baffle.  None of these 

radiometers had a view of the lowest 20% of the baffle or the aperture.  Two radiometers were attached to a 

moveable stage that translated across the baffle, aperture, and a support structure.  These two radiometers pointed 

directly down. (See Figures 3 and 4.) Unfortunately all radiometers but the lowest two were mounted to 

structures that were not well anchored to the 15 K shroud, and due to dissipation by the optical GSE attached to 

the moveable structure, operated at temperatures between 34-47 K for the first test, and 29-36 K in the second 

test.  The higher than expected temperatures had two adverse effects:  They limited the resolution (signal to 

noise) of the radiometers, and caused a longer that expected time constant of 5-10 minutes rather than the 

expected 10-20 seconds.  Part of this longer time constant was due to the structure itself relaxing rather than the 

radiometer. The two radiometers viewing only the very upper portion of the baffle were properly anchored at 17 

K and had excellent signal to noise. These demonstrated that no noticeable reflections (< 5 mW/m2) came from 

the upper baffle. The moveable radiometers were located 1.11 m above the exit of the baffle.  For this reason, 

their FOV included multiple elements as is described in the next section.  The baffle geometry itself was not 

symmetric due to the last folding flat mirror which accepted light from the side (FIGURE 4). Radiometer #9, the 

more sensitive of the two movable radiometers is close to the center of the baffle, but is not also centered over 

the aperture. 
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FIGURE 4. A schematic elevation of the baffle, obscuring plate, and radiometers.  The radiometer cone is 11° half angle.  (a) 

The radiometer position shown is 320 mm to the left of the center position. (b) view in direction of travel indicating the lack 

of symmetry in the baffle entrance. 



 

Results and Analysis 

The measurements performed on the OSIM suffered from the number of different thermal emitters in the field 

of view.  Heat from the optical instrument also appeared as a reflection off some of the neighboring surfaces 

visible to the radiometer, which confused the results.  The source of this heat was traced to warm (120 to 140 K) 

preamplifier boxes located next to the optical and near infrared cameras located above the back of the 

radiometers.  These boxes had a direct line of sight to surface C in FIGURE 5.  The boxes were not able to be 

turned off and allowed to cool, but changing their temperature from 140 to 120 K reduced the signal background 

by nearly a factor of two. When the radiometer is centered over the exit of the baffle, the aperture is off to one 

side. The view is represented by the schematic in FIGURE 5.  Interpretation of this scene is ambiguous with only 

one view.  To help deconvolve the radiation coming from each of the sources, the radiometer was translated 

across the exit of the aperture in the direction indicated in FIGURE 6.  Near the edge of the baffle the change in 

signal was greatest, so the radiometer was moved in 25 mm steps.  The FOV was divided into 5 zones as 

indicated in FIGURE 5.  For simplicity, a constant flux per unit area was assigned to each zone. We compare the 

proportion of the FOV of each of the items multiplied by a flux per unit area for each item to come up with a 

predicted value for the flux into the radiometer.  This result is compared to the actual reading.  A best fit to the 

data is obtained by varying each of the items’ flux intensity.  The result of this analysis is shown in FIGURE 7. 

Once the flux intensity is obtained, the heat load is determined by multiplying by each item’s view factor.  A 

more thorough analysis of the view factors will be done in the future to better fit the measured values. 

 

 

 
 

 

FIGURE 5.  Depiction of the scene within the radiometer FOV. Area A is the aperture to the OSIM mirror, M is the mirror 

chain, B is the upper 80% of the baffle, B1 is the lower 20% of the baffle, and C is the obscuring plate and other areas above 

the exit of the baffle.  The circle is the radiometer field of view. 
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FIGURE 6.  Progression of the FOV as the radiometer translates from the center to the left side of the baffle and aperture. (a) 

centered, (b) 173 mm left, (c) 273 mm left, (d) 348 mm left, (e) 398 mm left. Note that items moving to the right are in the 

foreground and items moving to the left are in the background relative to the center of the entrance aperture, A. 

 

 

 

Early in the testing we obtained the effective emissivity of the aperture’s mirror chain by making a 

measurement with and without a blocking “filter” at the pupil.  This filter had a black kapton outer surface which 

had an expected emissivity of 0.74.  The difference in the measured heat at the radiometer combined with the 

known fractional solid angle of the pupil gave an effective emissivity of the mirror chain of 0.085.  This value is 

consistent with a chain of 4 mirrors each with an emissivity of <0.03, as expected.  This knowledge, in turn, was 

used to fix the heat flux from area M.  Also, since the radiometer readings remained constant when the 

radiometers were moved more than 400 mm from the center, this value (196 mW/m2) was taken to be the value 

for C. 

For OSIM we obtained a total heat load of 21.5 mW ± 2.0 mW through the exit of the baffle. This consists of 

20.4 mW from the entrance aperture to the baffle, 0.5 mW from the mirror chain, and 0.6 mW from reflections 

from the baffle, primarily from the area near the entrance aperture. The total power is relatively insensitive to the 

portion coming from reflections vs. from the aperture directly.  The result compares favorably to the 

conservatively estimated 28 mW in the baffle and aperture design.  The primary contributors to the error bar are 

uncertainty in the location of baffle and obscuring plate reflections, and the absolute accuracy of the radiometer 

calibration.  It became apparent when fitting the data that the calculated data are very sensitive to certain 

radiometer positions.  This is good because it restricts the possible interpretation of the measured data.  However 

this also means that the calculated values are very sensitive to the real positions of the elements in the scene.  For 

instance, the fit is not good in the range from -150 to -200 mm.  This is probably due to inaccuracy of the 

modeling of the edge of the obscuring plate.  A 20 mm change in position of this obscuring plate would provide a 

good fit to the data. 



 
 

FIGURE 7.  The radiometer measurements and calculated results for OSIM. Note that the line is a guide to the eye for the 

calculated values and is not a fit to the data.  The error bars on the measurements are approximately the size of the filled 

circles. 

 

SUMMARY 

This paper describes two tests using the cold radiometers developed at NASA.  The results demonstrate the 

usefulness of the radiometers in determining radiative heat fluxes, and effective emissivities.  Even when a scene 

has several different emitters within it, by varying the radiometer position and/or the temperature of the sources, 

knowledge of the flux from each item can be obtained. 
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