
THE CHLORINE ISOTOPIC COMPOSITION OF LUNAR URKREEP. J. J. Barnes1,*, R. Tartèse1,2, M. 

Anand1,3, F. M. McCubbin4, C. R. Neal5, and I. A. Franchi1, 1 Planetary and Space Sciences, The Open University, 

Milton Keynes, MK7 6AA, UK, *Jessica.barnes@open.ac.uk, 2IMPMC, Muséum National d'Histoire Naturelle, Par-

is, 75005, France, 3Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK, 4NASA John-

son Space Center, Mailcode XI2, 2101 NASA Parkway, Houston, Texas 77058, USA, 5Department of Civil & Envi-

ronmental Engineering & Earth Science, University of Notre Dame, IN, 46556, USA.  

 

 

Introduction:  Since the long standing paradigm of 

an anhydrous Moon [1] was challenged there has been 

a renewed focus on investigating volatiles in a variety 

of lunar samples (e.g., [2-9]). However, the current 

models for the Moon’s formation have yet to fully ac-

count for its thermal evolution in the presence of H2O 

and other volatiles [10-11]. When compared to chon-

dritic meteorites and terrestrial rocks (e.g., [12-13]), 

lunar samples have exotic chlorine isotope composi-

tions [7,14-17], which are difficult to explain in light of 

the abundance and isotopic composition of other vola-

tile species, especially H, and the current estimates for 

chlorine and H2O in the bulk silicate Moon [2,18].  

In order to better understand the processes involved 

in giving rise to the heavy chlorine isotope composi-

tions of lunar samples, we have performed a compre-

hensive in situ high precision study of chlorine iso-

topes, using NanoSIMS, of lunar apatite from a suite of 

Apollo samples covering a range of geochemical char-

acteristics and petrologic types.  

Results and discussion:  We show that the Cl iso-

topic composition of apatite from low- and high-Ti 

mare basalts are consistent with previous studies 

[7,14], with δ37Cl values from ~+2 to +18 ‰. In con-

trast, apatite from KREEP-rich basalts such as KREEP 

basalt 72275 [14] and very high potassium (VHK) bas-

alt 14304 have distinctly heavier Cl isotopic composi-

tions than apatite found in mare basalts. Similarly apa-

tite from highlands samples display very heavy Cl iso-

topic compositions (>+20 ‰). 

We investigated whether the heavy δ37Cl values of 

lunar rocks could be related to the proportion of 

KREEP component they contain, by comparing the Cl 

isotope compositions of apatite with bulk-rock incom-

patible trace element data. Our results strongly indicate 

mixing between a mantle source with low Cl isotopic 

composition (~0 ‰) and a KREEP-rich component 

characterized by a δ37Cl value ~+30 ‰.  

The internal differentiation of the Moon via a LMO 

predicts a volatile-rich urKREEP layer dominated by 

Cl [19], containing at least 1350 ppm Cl [2]. Boyce et 

al. [7] proposed that degassing of Cl from the LMO 

would account for the fractionation of Cl isotopes and 

δ37Cl values ~+30 ‰ in the residual urKREEP layer. 

Whilst the LMO model provides an elegant mechanism 

for concentrating Cl in the Moon, the solubility of Cl in 

basaltic silicate liquids is high (e.g., [20]) and the con-

fining pressure beneath the 30-40 km of lunar crust 

[21] would be sufficient to prevent the loss of Cl by 

degassing.  

Therefore, in order to explain the fractionated Cl 

isotopic composition of urKREEP, we envisage a sce-

nario in which, during the latter stages of LMO crystal-

lization (>95 %), a large bolide(s) punctured the lunar 

crust [22] to a depth sufficient to bring KREEP-rich 

material to lower pressures, drastically decreasing the 

solubility of Cl in the residual LMO magmatic liquids 

and enabled degassing of metal chlorides [14, 23], 

leading to the fractionation of Cl isotopes. If such an 

event was restricted to the nearside of the Moon, i.e., 

the Procellarum KREEP Terrane, then one would ex-

pect rocks from outside of this region to have relatively 

unfractionated Cl isotope compositions.  
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