Validation of Cloud Parameters Derived from Geostationary Satellites, AVHRR, MODIS, and VIIRS Using SatCORPS Algorithms

P. Minnis¹, S. Sun-Mack², K. M. Bedka¹, C. R. Yost², Q.
Z. Trepte², W. L. Smith, Jr. ¹, D. Painemal², Y. Chen², R. Palikonda², X. Dong², B. Xi²

¹NASA Langley Research Center, Hampton, VA, USA ²SSAI, Hampton, VA, USA

International Cloud Working Group Mtg., Lille, France, 17-20 May 2016

Challenge of Validation

- Provide reliable uncertainty estimate of a given cloud parameter retrieved from satellite imagery
 - algorithm uncertainties rely on idealized model computations
 - need comparisons with independent measurements of known(?)
 certainty

Develop basis for algorithm improvement what are conditions giving rise to error? e.g., small Cu what is source of error? e.g., background, calibration...

INDEPENDENT MEASUREMENT SOURCES*

Platform • In situ	parameters CF, Zt, Zb, COD, Re, CWC, Habit, phase	pros most physical, integratable?	<u>CONS</u> sparse, 1 level at a time, µ-physics guys disagree☺
 surface or ship sites 	CF, Zt, Zb, COD, Re, CWC, Habit, phase, CWP	transmission or active sensors, diurnal cycle	spatially sparse, requires in situ valid, sometimes trouble with Zt
 other satellites 	CF, Zt, Zb, COD, Re, CWC, Habit?, phase, CWP	assess θ depend, same/different methods	same probs as target, mostly cloud top only

• Quality and number of parameters depend on instruments available!

• All measurements have their own uncertainties, which can be large

Langley (LaRC) Imager Cloud Retrievals Considered

Satellites / Imagers

- Aqua MODIS: CERES Ed4, 1 km subsampled 2x4 => 2.8 km
- SNPP VIIRS: CERES Ed1, 0.75 km subsampled 2x4 => 2.4 km
- GEOSats: GOES-E, GOES-W, Meteosat, MTSAT (4 km), Himiwari-8
- AVHRR: GAC 4 km, NOAA-18 JAJO

<u>Methodology</u>

- VISST: 0.65, 3.8, 11, 12 μm (daytime)
- SIST: 3.8, 11, 12 μm, or 3.8 & 11 μm (night SZA > 82°)
- SINT: 1.24, 3.8, 11, 12 µm (day over snow, MODIS & VIIRS)

Retrieval Methodologies

• Use updated VISST, SIST, & SINT from Minnis et al. (2011)

<u>Updates</u>

- Estimation of Ztop from Zeff for thick ice clouds (COD > 8)
 parameterization of Minnis et al. (GRL 2008)
- Use of regionally dependent lapse rate for boundary-layer Ztop
 parameterization of Sun-Mack et al. (2014)
- Rough ice crystal model (hexagonal columns)
 results of Yang et al. (TGRS, 2008)
- Multispectral retrievals of Re and COD
 - 1.24 and 2.1 µm Re from VISST
 - 1.24 COD from SINT over snow

LaRC Cloud Products*

Standard, Single-Layer VISST/SIST

0.65, 1.2, 1.6, 2.1 µm Reflectances 3.7, 6.7, 10.8 µm Temp 12 or 13.3 µm Temp **Broadband Albedo Broadband OLR Clear-sky Skin Temperature Icing Potential** Pixel Lat, Lon Pixel SZA, VZA, RAZ

Cloud

Mask, Phase **Optical Depth**, IR emissivity **Droplet**/Xtal effective radius Liquid/Ice Water Path **Effective Temp**, height, pressure **Top/ Bottom Pressure Top**/ Bottom Height Overshooting top (OT)

Multi-Layer, CIRT, CO₂ channel only (BTD11-12 for VIIRS)

Upper &

Multilayer ID (single or 2-layer) *lower cloud* effective temperature effective particle size height, top/base height

optical depth, thickness ice or liquid water path pressure

Minnis et al., SPIE 2008; TGRS 2011,

* Available parameters depend on sensor complement

Validation (Reference) Data

- Aircraft in situ data

 VOCALS T_{top}, Z_{top}, LWP, N_d
- Surface observations ARM sites
 - Azores (Xi et al., next talk)
 - MAGIC ship observations (ceilometer, sonde) T_{top} , Z_{base} , Z_{top} , ΔZ
- Satellite data, A-Train: CALIPSO, AMSR-E
 - CALIPSO Vertical Feature Mask (VFM) CF, phase
 - CALIPSO 5-km Cloud Layers Product (05kmCLay) COD, IWP
 - CALIPSO 333-m Cloud Layers Product (333mCLay) Z_{top}
 - pixel within 2.5 km & 15 min of CALIPSO 5-km center is match after parallax correction
 - AMSR-E/2 Level 2 Ocean Product (Wentz Algorithm) LWP (12 km)

Surface Example

In Situ µ-physics & Optical Properties VOCALS-REx (SE Pacific 2008) Painemal et al.(JGR,2012)

• C-130 flights during VOCALS: Re near top; τ & LWP from vertical profiles

- Painemal & Zuidema (JGR, 2011)

- GOES-10 4-km VISST retrievals, LWP = 5/9 τ * Re
 - Overestimate of Re typical, why?; probably drives Nd bias
 - Overall results provide some uncertainty guidance for assimilation

Cloud-Top Height & Temperature VOCALS-Rex, GOES vs in situ (SE Pacific 2008) Painemal & Minnis (JAS,2013)

- Ttop colder than air; seen in other marine Sc areas with MODIS data
 - drops colder than air?
- Heights very close with both techniques (lapse rate & new technique)
- 1 region, 1 satellite, 1 season

Surface Example

Cloud Heights & Temperatures, MAGIC vs GOES-15 (California-Hawaii, July 2013)

Preliminary Results

• Ttop close on average, but GOES mostly colder

- Ztop too high relative to Inv height
 - radar will clarify
- ∆Z parameterization too thick but generally proportional

- no Ci screening

• Zbase fairly close due to compensating errors

Satellite to Satellite

Mean Cloud Fraction, April 2013, day

CM Ed4 – Aqua 0.644

NPP VIIRS Ed1, 0.649

NOAA-19 AVHRR, 0.671

CALIPSO VFM - no 80 km, 0.684

Day periods different in polar regions

							. I		. I	. I.										
0.0 0.0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00

Fraction Correct Identification, VISST vs CALIPSO

DAY (SZA < 82°)	Aqua (July 2013)	VIIRS (July 2013)	NOAA-18 (JAJO 2008)	GEO* (10/08, 1/10)	
Land, Snow/Ice-free	0.885	0.858	0.851	0.854	
Ocean, Snow/Ice-free	0.907	0.878	0.873	0.859	
Global, Snow/Ice-covered	0.887	0.871	0.818		
NIGHT					
Land, Snow/Ice-free	0.873	0.856	0.861	0.859	
Ocean, Snow/Ice-free	0.912	0.883	0.893	0.867	
Global, Snow/Ice-covered	0.765	0.732	0.689		

- Aqua results best in all categories
 - results always best for ocean for all satellites
 - polar night worst case

Collocation of CALIPSO with other satellites not as good as Aqua

- Up to 15-min time difference

Regional Errors in Cloud Detection, Aqua vs CALIPSO, July 2013

Problem Areas

Clear scenes in mostly cloudy areas

Clouds over bright surfaces (deserts) & sparse cloud regions (trade Cu)

Cloud Phase, VISST vs CALIPSO

Single-layered clouds only

DAY (SZA < 82°)	Aqua (July 2013)	VIIRS (July 2013)	NOAA-18 (JAJO 2008)	GEO* (10/08, 1/10)	
Land, Snow/Ice-free	0.949	0.921	0.895	0.891	
Ocean, Snow/Ice-free	0.971	0.949	0.928	0.902	
Global, Snow/Ice-covered	0.914	0.897	0.786		
NIGHT					
Land, Snow/Ice-free	0.897	0.878	0.904	0.892	
Ocean, Snow/Ice-free	0.946	0.946	0.920	0.905	
Global, Snow/Ice-covered	0.876	0.911	0.875		

- Aqua results best in daytime
 - extra channels
- Aqua VIIRS & AVHRR results best in daytime
 - extra channels help less
 - GEO phase least accurate in snow-free categories

- Collocation of CALIPSO with other satellites not as good as Aqua
 - Up to 15-min time difference

NASA LANCLEY CLOUD AND RADIATION GROUP

Cloud Fraction & Phase Correct With Viewing Zenith Angle AVHRR (variable VZA) vs CALIPSO (near nadir)

- Matches constrained to ±15 min window, limits angular range
 greater range possible with GEO data
- Very small changes in accuracy with VZA up to 40°
 - hint that it will decrease for VZA > 40°

NASA LANGLEY CLOUD AND RADIATION GROU

Top: Oct 2008 Middle: Jan 2010 Bottom: Apr 2013

Cloud **Top Altitude, GEOSat vs CALIPSO** water phase, nighttime, opaque

Cloud Top Altitude, Aqua MODIS vs CALIPSO, July 2013 ice phase, nighttime, opaque with & without height correction

Distribution of Cloud Height Differences (Satellite – CALIPSO) All clouds (use highest for multilayered pixels), 60° - 60°S

Distribution of Cloud Height Differences (Satellite – CALIPSO) Single-layered or single phase pixels

Cloud LWP (VISST vs Satellite µ-wave Radiometer)

MAGC

- ARM Mobile Facility (AMF2): radars, lidars, microwave and visible radiometers, sondes, and aerosol probes
- Nine months of measurements
 - Oct-Jan 2012-2013, May-Sept 2013, 6 days/leg
 - L.A.-Honolulu: More than 30 transects

Dataset

MAGIC data:

- <u>Clouds</u>: microphysics from a Cimel sun-photometer (Chiu et al. 2013 ACP): cloud optical depth (τ) and effective radius (r_e)
- Three-channel microwave liquid water path (Cadeddu et al., 2013, AMT)
- Cloud radar and radiosondes: cloud height and temperature
- Satellites:
 - CERES Ed4 1-km Terra/Aqua MODIS retrievals
 - Daytime GOES-15: 4-km pixel, every 30 min, SZA < 60°
 - C-MODIS & GOES liquid water path (LWP): adiabatic-like assumption: LWP=5/9. ρ_w . r_e . τ
 - Satellite microwave liquid water path from AMSR2 (0.25°x 0.25°)

Satellite vs Satellite: AMSR2-MODIS

- Afternoon pass ~ 1:30 pm, overcast scenes
- AMSR2, Wentz algorithm at 0.25° x 0.25°
- LWP estimates based on 3.7 μm and 2.1 μm effective radius

- AMSR2 MODIS 2.1µm: r=0.89, bias=5.5 g/m² (9.3%)
- AMSR2 MODIS3.7µm: r=0.85, bias=0.81 g/m² (1.3 %), nearly unbiased!!

Ship-based data: Cloud microphysics and liquid water path

- LWP: Ship-based 3-channel μ-wave radiometer
- Cloud optical depth (τ): sun-photometer (Chiu et al., 2012)

• Cloud effective radius? Comparison is uncertain, groundbased r_e is less robust than τ .

Cloud temperature and height

- C-MODIS cloud temperature vs inversion temperature (radiosonde)
- C-MODIS cloud height (linear fit from Painemal et al. 2013, T_{top} and SST) and k-band radar (three months)
- CTT r=0.96, bias=0.4K
- CTH, r=0.89, bias=37 m

Ice cloud optical depth, non-opaque, no snow/ice Aqua CM vs CALIPSO, July 2013

Ice water path, non-opaque, no snow/ice, Aqua CM vs CALIPSO, July 2013

Concluding Remarks

Many approaches are available for validating satellite cloud retrievals

- land sea, air, and space; theoretical
- essential for quantifying errors and guiding improvements
 - need large number of comparisons to cover the variables
 - need algorithm uncertainties
- careful comparisons and understanding of reference datasets are

critical

- need to quantify uncertainties in reference datasets to fully assess satellite errors
- many other techniques available but not discussed here
 - closure, angle dependencies, etc.

Current versions of VISST & SIST algorithms produce relatively consistent results across platforms

- validation comparisons indicate Ed4 MODIS yields highest accuracy
 - must account for angular dependence in comparisons
- need continued improvement in several areas
 - cloud detection of thin cirrus, tropical Cu, night
 - height determination: 2-chan SIST, day thin cirrus, ML
 - formula for LWP: depends on type?
 - new scattering phase function

Distribution of Cloud Height Differences (Satellite – CALIPSO) All clouds (use highest for multilayered pixels), 60° - 60°S

Distribution of Cloud Height Differences (Satellite – CALIPSO) Single-layered pixels, 60° - 60°S

Cloud Detection vs CALIPSO COD 60° - 60°S

- MODIS mask more sensitive than AVHRR
 - bias: -0.7% to +10%
 - STD: up to 100%
- Cloud detection more difficult at night

