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Based on the time domain boundary integral equation formulation of the linear
convective wave equation, a computational tool dubbed Time Domain Fast Acoustic
Scattering Toolkit (TD-FAST) has recently been under development. The time
domain approach has a distinct advantage that the solutions at all frequencies are
obtained in a single computation. In this paper, the formulation of the integral
equation, as well as its stabilization by the Burton-Miller type reformulation, is
extended to cases of a constant mean flow in an arbitrary direction. In addition,
a “Source Surface” is also introduced in the formulation that can be employed to
encapsulate regions of noise sources and to facilitate coupling with CFD simulations.
This is particularly useful for applications where the noise sources are not easily
described by analytical source terms. Numerical examples are presented to assess
the accuracy of the formulation, including a computation of noise shielding by a thin
barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding
experiments. Furthermore, spatial resolution requirements of the time domain
boundary element method are also assessed using point per wavelength metrics.
It is found that, using only constant basis functions and high-order quadrature for
surface integration, relative errors of less than 2% may be obtained when the surface
spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength-
squared (PPW2).

I. Introduction

In developing the next generation quieter aircraft, there is a critical need to accurately and efficiently
predict the acoustic scattering and shielding by the aircraft body, rigid as well as lined, from given
noise sources. Computation of acoustic wave propagation and interaction with solid or treated
surfaces is also important for the prediction of airframe noise. Recently, a computational tool dubbed
Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has been under development.10,11 It
is based on the time domain boundary integral equation formulation of the linear convective wave
equation. The time domain approach has a distinct advantage that the solutions at all frequencies
are obtained in a single computation. The boundary element method used for the solution of the
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boundary integral equation eliminates the need of a volume mesh that could be prohibitively large
for simulation of waves at high frequencies. To increase computational efficiency, numerical solution
of the boundary integral equation is accelerated by the use of GPU computing10 and the multi-level
Time-Domain Propagation and Distribution (TDPD) algorithm,10 which is based on the Cartesian
Non-uniform Grid Time Domain algorithm (CNGTDA).2,3, 15

In this paper, formulation of the time domain integral equation will be extended to cases of a
constant mean flow in a general direction. The formulation presented in ref.10 was restricted to a
mean flow aligned with the x-axis. The new time domain integral equation presented in the current
paper, as well as its stabilization by the Burton-Miller reformulation, will be given and validated
numerically where the mean flow can be in an arbitrary direction. In addition, to facilitate the
coupling of TD-FAST with time domain CFD simulations, a “Source Surface” is introduced in the
new formulation. Such a source surface can be employed to encapsulate a region of noise sources
that may be computed independently. This is particularly useful for applications where the noise
sources are not easily described by analytical source terms.
Following the formulation, an application of TD-FAST to the scattering and shielding of sound
by a thin barrier is presented. This example is motivated by the recent experimental results of
the F31A31 historical baseline open rotor noise shielding wind tunnel tests.18 However, in these
initial predictions, the open rotor is modeled as a point source to establish the problem geometry and
ultimately illustrate the effect of the source model on the scattered field. The source surface approach
is also used and the prediction methodology validated through comparisons with a known analytical
solution for sound diffraction. In addition, the accuracy and resolution of the boundary element
approach is further assessed by analyzing the computational errors using points-per-wavelength
metrics. Studies on spatial resolution can provide a practical guidance on required mesh density for
the range of frequencies to be included in the time domain computation.
The rest of the paper is organized as follows. In Section 2, formulation of the time domain boundary
integral equation for a constant mean flow in an arbitrary direction and its reformulation by the
Burton-Miller approach are presented. The new formulation also includes the possibility of source
surfaces. In Section 3, the validity of the time domain integral equation is verified by substituting
an analytical solution of the convective wave equation into the integral formulation. In Section
4, sound scattering and shielding by a thin barrier are computed in the time domain using TD-
FAST and the converted frequency domain results are compared with the analytical solution of the
scattered sound of a semi-infinite plate. In Section 5, points-per-wavelength requirements on the
accuracy of the boundary element method are discussed. Finally, concluding remarks are contained
in Section 6.

II. Formulation of the time domain boundary integral equation

A. Time domain integral relations

We consider the convective wave equation for a constant mean flow U written as(
∂

∂t
+U · ∇

)2

p− c2∇2p = q(r, t) (1)

with homogeneous initial condition

p(r, 0) =
∂p

∂t
(r, 0) = 0, t = 0 (2)
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Here q(r, t) represents known source terms. In addition, we also assume that there could be a
“Source Surface” on which both p(r, t) and its normal derivative ∂p

∂n(r, t) are specified:

p(r, t) = f(r, t),
∂p

∂n
(r, t) = g(r, t), r ∈ S0 (3)

The source surface is introduced to conveniently encapsulate source regions and to facilitate the
coupling with CFD simulations. Therefore, the sources for a wave propagation and scattering
problem can be described as source terms on the right hand side of the wave equation (1), a given
solution on a specified surface (3), or both. The source surface will be denoted by S0 and the surface
of the scattering body will be denoted by Sb, as illustrated in Figure 1. On an acoustically hard
surface, we will have the following boundary condition:

∂p

∂n
(r, t) = 0, r ∈ Sb (4)

Figure 1. A schematic diagram showing the scattering body Sb and source surface S0.

The partial differential equation (1), together with the initial and boundary conditions, can be
converted into a time-domain boundary integral equation. For the special case of a mean flow U
that is in the direction of the x-axis, a derivation of the integral equation, through the free space
adjoint Green’s function, has been given in detail in ref.10 In what follows, we present the time
domain boundary integral equation for a constant mean flow in an arbitrary direction and for the
inclusion of the source surface.
The free space Green’s function of the adjoint equation is well-known6,9, 17,21 and can be written as

G̃(r, t; r′, t′) =
G0

4πc2
δ

(
t′ − t+ β · (r′ − r)− R̄

cα2

)
(5)

where

G0 =
1

R̄(r, r′)
, and R̄(r, r′) =

√
[M · (r − r′)]2 + α2|r − r′|2 (6)

in which

3 of 17

American Institute of Aeronautics and Astronautics



M =
U

c
, α =

√
1− (U/c)2 =

√
1−M2, β =

U

c2 − U2
=

U

c2α2
=
M

cα2
, U = |U |, M = |M |

(7)
with U being the constant velocity vector and c the speed of sound. The arguments for R̄(r, r′)
will be omitted when there is no misunderstanding for doing so.
As shown by Hu,10 the time domain boundary integral equation for acoustic scattering is the
following,

4πCsp(r
′, t′) =

1

c2

ˆ
V

1

R̄
q(r′, t′R)dr +

ˆ
S

[(
1−M2

n

)
G0

∂p

∂n
(rs, t

′
R)− ∂G0

∂n̄

(
p(rs, t

′
R) +

R̄

cα2

∂p

∂t
(rs, t

′
R)

)

−MnG0

(
MT · ∇p(rs, t′R) +

1

c

∂p

∂t
(rs, t

′
R)

)]
drs (8)

where S denotes the surfaces of both the scattering body and the possible source surface S0, i.e.,

S = Sb ∪ S0

and Cs denotes a constant whose value is as follows,

Cs =


1 r′ in the exterior of S
1
2 r′ on S (smooth points)

0 r′ in the interior of S

In (8), Mn and MT denote, respectively, the normal and tangential components of the mean flow
on surface S:

Mn = M · n, MT = M −Mnn

The retarded time t′R appearing in (8) is defined as

t′R = t′ + β · (r′ − r)− R̄

cα2
(9)

Also, denoted by an overbar, n̄ in (8) is a modified normal10 and defined as

n̄ = n−MnM , and
∂

∂n̄
=

∂

∂n
−Mn(M · ∇) = (n−MnM) · ∇

The modified normal derivatives are to be computed as follows,

∂R̄

∂n̄
=
∂R̄

∂n
−Mn(M · ∇R̄) = α2n · (r − r′)

R̄

and

∂G0

∂n̄
= − 1

R̄2

∂R̄

∂n̄
= −α2n · (r − r′)

R̄3
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On the source surface S0, both p(r, t) and ∂p
∂n(r, t) are known as specified in (3). On the scattering

surface Sb, either p(r, t) or ∂p
∂n(r, t), or a combination of the two, is assumed to be known. For

instance, if Sb is a solid surface, ∂p∂n is assumed to be zero and p on Sb is to be found by solving the
integral equation generated by letting r′ = r′s in (8).10

B. Stable time domain integral equation by Burton-Miller type reformulation

Direct numerical solution of the boundary integral equation formed by (8), however, can lead to
numerical instabilities.7,16,20,21 For the time domain boundary integral equations, it has been found
that a Burton-Miller type reformulation can be effective in eliminating the instability.5,7, 8, 12 For
the convective wave equation, it was proposed10 that the Burton-Miller reformulation be formed by
a linear combination of the time and modified normal derivatives of the boundary integral equa-
tion. A theoretical justification was also presented10 where it was shown that under the proposed
reformulation of the Burton-Miller type, there will be no nontrivial solution for the interior domain.
For a general mean flow U considered here, by taking a combination of the time and modified
normal derivatives of the form

a
∂

∂t′
+ bc

∂

∂n̄′
(10)

where a and b are constants and c is the speed of sound, the Burton-Miller reformulation leads to
the following,

4πaCs
∂p(r′s, t

′)

∂t
+ 4πbc

∂Cs

∂n̄′
p(r′s, t

′) + 4πbcCs
∂p(r′s, t

′)

∂n̄′
= a

1

c2

ˆ
V

1

R̄

∂q

∂t
(r′s, t

′
R)dr +

b

c

∂

∂n̄′

ˆ
V

1

R̄
q(r′s, t

′
R)dr

+a

ˆ
S

[(
1−M2

n

)
G0

∂pn

∂t
(rs, t

′
R)−

∂G0

∂n̄

(
∂p

∂t
(rs, t

′
R) +

R̄

cα2

∂2p

∂t2
(rs, t

′
R)

)
−MnG0

(
MT · ∇

∂p

∂t
(rs, t

′
R) +

1

c

∂2p

∂t2
(rs, t

′
R)

)]
drs

+bc

ˆ
S

[(
1−M2

n

) ∂G0

∂n̄′
pn(rs, t

′
R) +

(
1−M2

n

)
G0

∂pn
∂n̄′

(rs, t
′
R)

]
dr

−bc
ˆ
S

[
∂2G0

∂n̄′∂n̄

(
p(rs, t

′
R) +

R̄

cα2

∂p

∂t
(rs, t

′
R)

)
+Mn

∂G0

∂n̄′

(
MT · ∇p(rs, t

′
R) +

1

c

∂p

∂t
(rs, t

′
R)

)]
drs

− b

α2

ˆ
S

∂G0

∂n̄

[(
M · n̄′

) ∂p
∂t

(rs, t
′
R) +

R̄

cα2

(
M · n̄′ − ∂R̄

∂n̄′

)
∂2p

∂t2
(rs, t

′
R)

]
drs

− b

α2

ˆ
S

MnG0

(
M · n̄′ − ∂R̄

∂n̄′

)(
MT · ∇

∂p

∂t
(rs, t

′
R) +

1

c

∂2p

∂t2
(rs, t

′
R)

)
drs (11)

We note that, unlike the previously presented derivation,10 the terms associated with the pressure
normal derivative ∂p

∂n are retained due to the inclusion of the source surface. For brevity, we have
used pn(rs, t) to denote the normal derivative of p on the surface point rs, i.e., pn(rs, t) ≡ ∂p

∂n(rs, t).
Its modified normal derivative that appeared in (11) is to be computed as

∂pn
∂n̄′

(rs, t
′
R) =

∂pn
∂t

(rs, t
′
R)
∂t′R
∂n̄′

=
∂pn
∂t

(rs, t
′
R)

[
β · n̄′ − 1

cα2

∂R̄

∂n̄′

]
=

1

cα2

∂pn
∂t

(rs, t
′
R)

[
M · n̄′ − ∂R̄

∂n̄′

]
Also, for a mean flow in a general direction, the double modified normal derivative of the G0 is to
be computed as the following:
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∂2G0

∂n̄′∂n̄
=

∂

∂n̄′

[
−α2n · (r − r′)

R̄3

]
=
α2

R̄3
[n · n′ −Mn′Mn] + 3α4 [n · (r − r′)] [n′ · (r′ − r)]

R̄5

To deal with the hyper-singularity brought about by the term ∂2G0
∂n̄′∂n̄ , we follow the method used by

Hu10 and note that

4π
∂Cs
∂n̄′

= − ∂

∂n̄′

ˆ
S

∂G0

∂n̄
drs = −

ˆ
S

∂G2
0

∂n̄′∂n̄
drs (12)

By replacing 4π ∂Cs
∂n̄′ in the second term on the left hand side of (11) with (12) and then moving it

to the right hand side, the hyper-singularity is reduced and we get the following second version of
the time domain boundary integral equation:

4πaCs
∂p(r′s, t

′)

∂t
+ 4πbcCs

∂p(r′s, t
′)

∂n̄′
= a

1

c2

ˆ
V

1

R̄

∂q

∂t
(r′s, t

′
R)dr +

b

c

∂

∂n̄′

ˆ
V

1

R̄

∂q

∂t
(r′s, t

′
R)dr

+a

ˆ
S

[(
1−M2

n

)
G0

∂pn

∂t
(rs, t

′
R)−

∂G0

∂n̄

(
∂p

∂t
(rs, t

′
R) +

R̄

cα2

∂2p

∂t2
(rs, t

′
R)

)
−MnG0

(
MT · ∇

∂p

∂t
(rs, t

′
R) +

1

c

∂2p

∂t2
(rs, t

′
R)

)]
drs

+bc

ˆ
S

[(
1−M2

n

) ∂G0

∂n̄′
pn(rs, t

′
R) +

1

cα2

(
1−M2

n

)
G0

[
M · n̄′ − ∂R̄

∂n̄′

]
∂pn
∂t

(rs, t
′
R)

]
dr

−bc
ˆ
S

[
∂2G0

∂n̄′∂n̄

(
p(rs, t

′
R)− p(r′s, t′) +

R̄

cα2

∂p

∂t
(rs, t

′
R)

)
+Mn

∂G0

∂n̄′

(
MT · ∇p(rs, t

′
R) +

1

c

∂p

∂t
(rs, t

′
R)

)]
drs

− b

α2

ˆ
S

∂G0

∂n̄

[(
M · n̄′

) ∂p
∂t

(rs, t
′
R) +

R̄

cα2

(
M · n̄′ − ∂R̄

∂n̄′

)
∂2p

∂t2
(rs, t

′
R)

]
drs

− b

α2

ˆ
S

MnG0

(
M · n̄′ − ∂R̄

∂n̄′

)(
MT · ∇

∂p

∂t
(rs, t

′
R) +

1

c

∂2p

∂t2
(rs, t

′
R)

)
drs (13)

With the reduction of the singularity, equation (13) is in a form that can be readily used for boundary
element methods.
For numerical implementation of (13), we also note that

∂p(r′s, t
′)

∂n̄′
=
∂p(r′s, t

′)

∂n′
−Mn′M · ∇p(r′s, t′) = (1−M2

n′)pn(r′s, t
′)−Mn′MT ′ · ∇p(r′s, t′)

M · n̄ = M · (n−MnM) = Mn −MnM
2 = Mnα

2

Furthermore, the tangential derivative terms such as MT · ∇p(rs, t′R) can be found through the
spatial derivatives of the surface basis functions as detailed previously.10

III. Validation of time domain integral relation

To assess the validity of the time domain integral relation presented in (8) for a constant mean
flow in an arbitrary direction, we check the equation with a known exact solution of the convective
wave equation. The exact solution for the acoustic pressure of a point source will be used for this
validation. The pressure field of a point source located in r0 in a uniform mean flow U is

p(r, t) =
1

4πc2R̄(r, r0)
ψ

(
t+ β · (r − r0)− R̄(r, r0)

cα2

)
(14)

6 of 17

American Institute of Aeronautics and Astronautics



where ψ(t) is a given time function for the source point. Here, a simple Gaussian function will be
used,

ψ(t) = e−σ(t/m∆t)2

with m = 6 and σ = 1.42. For these parameters, the spectrum of the ψ(t), also a Gaussian, reduces
to a value that is 1000th of its peak at a frequency of 1/6∆t.
We consider a source surface formed by a cubic box centered at (0, 0, 0). The length of the box on
each side is unity. Thus, the dimension of the source box is [−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5]. The
location of the point source is chosen to be inside the box at r0 = (−0.25, 0, 0), so the analytical
solution (14) satisfies the convective wave equation for the entire domain exterior of the box and
hence the integral equation (8) with q = 0. By prescribing the point source solution (14) on the
surface of the cubic box, the integral equation (8) should reproduce the analytic solution for points
outside, as well as, on the surface of the cubic box.

Figure 2. Instantaneous contours plots of pressure computed by (8) at two selected instances. Solu-
tions for p and pn are given on the cubic source surface and values on the field plane are computed
by (8).

In Figure 2, instantaneous pressure contours computed by (8) are shown, for a mean flow M =
(0.3, 0.3, 0). Each face of the source surface is discretized by 10 × 10 elements. The solution at a
surface point rs is discretized using spatial and temporal basis functions as

p(rs, t) =

Nt∑
n=0

N∑
i=1

uni φi(rs)Ψ(t− tn) (15)

where N is the total number of surface elements and Nt is the total number of time steps. For the
results shown here, second-order surface basis functions are used for φi(rs). Ψ(t− tn) denotes the
temporal basis function for time node tn = n∆t. The time step used for the current example is
∆t = 0.02. Further details for the time basis function can be found in Hu.11

For a comparison between the numerical and analytical solutions, the values of pressure along
y = −1 are plotted in Figure 3 at two chosen instances, t = 1.68 and t = 2.48. Excellent agreements
are seen, which validates the integral equation (8) formulated for a constant mean flow in a general
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direction. The time history of pressure at two coordinates, (−2,−1, 0) and (0.75,−1, 0), are also
shown in Figure 4, that again matches well with the exact value.

Figure 3. Value of p along field line y = −1 at two instances as shown.

Figure 4. Values of p as functions of time at two locations as shown.

IV. Assessment of acoustic shielding by a thin barrier

In this section, we present an application of TD-FAST to the problem of acoustic shielding by a
thin barrier. Recent NASA wind tunnel tests18 provide motivation for the selection of this case.
While the ultimate goal is to couple the TD-FAST with time dependent CFD simulations and to
predict the scattered field from the F3A31 Historical Baseline blade set in the 9x15 tunnel, initial
predictions using a point source may be useful in setting up the problem geometry and illustrating
the effect of source model on the scattered field. Based on reports of measured data, results up to
a shaft order (SO) of 100 have been presented. This would essentially set an upper (model scale)
frequency limit of approximately 10 kHz. One of the advantages of the time domain formulation
used in the current paper is that scattering and shielding at all frequencies within the range of
numerical resolution can be found at once in one single time domain computation. We will assess
the accuracy of our numerical solution by comparing with an analytical solution.
Figure 5 shows the experimental setup and a geometrical modeling of the open rotor, the barrier,
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and microphone locations. For our computation, the noise source is modeled by a broadband point
source, as given by (14), located at (x, y, z) = (0.84, 0, 0). The point source is introduced in the
scattering computation through the source surface as described in the previous section. The source
surface is formed by a rectangular box of dimension 0.8×0.4×0.4 and discretized by 1400 elements,
with 30, 10 and 10 elements in x, y and z directions, respectively. In this example, the unit for
spatial coordinates is meters.
The surface of the barrier facing the source region is located at z = −0.625 and the thickness
of the barrier is 0.07. In the AFT configuration, the barrier extends from x = 0.84 to x = 4.04
in the x direction. For the experimental results,18 the wind tunnel floor and ceiling are treated
surfaces. However, the floor and ceiling are not included in the current predictions. Therefore, to
reduce the effect of diffracted sound from the top and bottom edges of the barrier, the barrier in the
computation is extended in the vertical y direction to be -6 and 6 for the lower and upper edges,
respectively (the experimental barrier extends from −1.37 < y < 1.37). A total of 91,022 elements
are used with constant basis functions.
An observer line is included in the computation that coincides with the microphone traverse track
in the experimental setup. The coordinates for the observer line are (x, 0,−1.524), −4.5 ≤ x ≤ 3.0.
Field values on the observer line are computed using the integral relation (8) when solutions on the
scattering surface are found.

Figure 5. Schematics for the setup of barrier, source surface and an observer line.

In Figure 6, snapshots of the time domain solution are shown. To help visualize the solution by
the time domain integral equation, values of pressure on a field plane, at y = 0, are also computed
and shown, in addition to the field line (drawn as the black line) that represents the microphone
traverse track.
Solution time histories obtained with TD-FAST at three selected points are shown in Figure 7. The
signals diffracted by the leading edge, trailing edge, and the top and bottom edges of the barrier
are easily recognized and clearly separated as shown.
A distinct advantage of the time domain approach is that the frequency domain solutions at all
frequencies within the time stepping resolution can be found through Fourier transform. Examples
of contours of pressure at four selected frequencies are shown in Figure 8.
To help assess the accuracy of the numerical solution by TD-FAST, we compare the numerical
solution with a known analytical solution of point source diffraction by a thin barrier. Spherical
wave diffraction by a rigid half plane has been investigated previously14 and the solution, as well
as other commonly used formulae for predicting sound diffraction by a thin barrier, reviewed.1,13

For completeness, the analytical solution and its numerical evaluation are discussed further in
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Figure 6. Instantaneous contours of pressure, showing the barrier, source surface and the observer
line.

Figure 7. Time history of pressure at three locations on the observer line, A, B and C, as noted in
Figure 6.

Figure 8. Frequency domain solutions converted from the time domain simulation, at ω = 5π, 10π,
15π, and 20π, from left to right.
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the Appendix. Figure 9 shows the comparison of the numerical and analytical solutions at six
frequencies, ω = π, 2π, 5π, 10π, 15π and 20π. For the analytical solution, diffraction effects from
both the leading and trailing edges are included. The agreements are in general very good. The
minor discrepancies, which are seen increasing at higher frequencies, could be due to the finite
thickness of the barrier.

Figure 9. Comparison with the analytical solution at the frequencies as shown.
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V. Assessment of spatial resolution of the boundary element method

A detailed analysis on the accuracy and resolution of the temporal basis function Ψ(t − tn) used
for the solution of the time domain boundary integral equation has been carried out.11 While the
most commonly used temporal basis functions are usually formulated using the Lagrange interpo-
lation polynomials, it was shown previously11 that the coefficients for the basis polynomials can be
optimized, in exchange for a lowered formal order of accuracy, to extend the temporal resolution in
the frequency space. In this section, we present a study on the spatial resolution of the boundary
element method with respect to the spatial basis function φi(rs) in (15).
We consider the scattering and shielding of an acoustic point source by a flat plat, as shown in
Figure 10. The plate has a dimension of [−0.5, 0.5] × [−0.5, 0.5] × [−0.1, 0.1]. The point source is
located at (x, y, z) = (0, 0, 1). To study the spatial resolution of the boundary element method, a
series of computations are carried out where the number of elements used in the computation is
increased. For convenience of discussion, the top and bottom surfaces of the plate, at z = −0.1 and
0.1, respectively, are discretized by NxNy elements, where Nx and Ny are the number of elements
in the x and y directions, respectively. The number of elements in the z direction will be denoted
by Nz.

Figure 10. Frequency domain solutions of scattering by a flat plate, converted from the time domain
solution at ω = 5π, 10π and 15π, from left to right.

Figure 10 shows contour plots of the frequency domain solution converted from the time domain
simulations, computed using Nx = Ny = 80 and Nz = 16. The frequency domain solutions along
a field line of coordinates (x, 0,−2.5), −2.5 ≤ x ≤ 2.5, are shown in Figure 11 as the number of
elements used in the computation increases from 20x20x4 to 80x80x16.

Figure 11. Frequency domain solution along y = −1. The number of elements used are as noted.
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Using the solution computed by 80x80x16 as the reference solution, the relative errors in L2 norms
are plotted in Figure 12 as a function of points per wavelength used in the computation. Here two
metrics are used for the evaluation of spatial resolution, namely, points-per-wavelength (PPW) and
points-per-wavelength-squared (PPW2), which are defined as

PPW =
2πneNx

kLx
(16)

PPW 2 =
4π2 × (total degrees of freedom)

k2 × (surface area)
=

4π2ne [2NxNy + 2(Nx +Ny)Nz]

k2 [2LxLy + 2(Lx + Ly)Lz]
(17)

where ne is the number of nodes per element and k = ω/c is the wavenumber, and Lx, Ly and Lz are
the length of the sides of the plate in x, y and z directions, respectively. The points-per-wavelength
metric measures the resolution along one direction on the surface, while the points-per-wavelength-
squared measures the resolution over the entire surface.
Results in Figure 12 show that, quite surprisingly, the relative error measured in L2 norm becomes
as small as 2% when PPW is only 5, or when PPW2 is only 25, with only constant basis functions
(ne = 1) being used. We should also point out that, although the basis functions used are of zeroth
order, the integrations over each element are computed by high-order Gauss quadrature on a 6x6
grid.10

Figure 12. Left: relative error vs. Points-per-wavelength; Right: relative error vs. Points-per-
wavelength-squared

For another case, relative errors of the scattering by a sphere are shown in Figure 13. The sphere is
centered at (x, y, z) = (0, 0, 0) with a radius of 0.5, and a point source is located at (x, y, z) = (0, 0, 1).
Constant elements are used. By comparing the computational solution along a field line (x, 0,−2.5),
−2.5 ≤ x ≤ 2.5, with the exact solution, the relative error vs. the points-per-wavelength-squared is
plotted. Again, a similar trend is observed, as the relative error is reduced to less than 2% when
PPW2 is 25 or more. It appears that the use of constant elements keeps the overall problem size
small while the high-order integration helps maintain accuracy. Further investigation of the spatial
resolution of boundary element method is to be conducted in future studies.

VI. Conclusions

In this paper, a formulation for the time domain boundary integral equation has been extended
to cases where the constant mean flow can be in an arbitrary direction. In addition, the current
formulation is written in a way that a source surface can be naturally included. Introduction
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Figure 13. Relative L2 norm of errors for scattering by a sphere.

of source surfaces greatly increases the flexibility of TD-FAST and creates a convenient interface
for coupling with CFD simulations. The accuracy of the new formulation has been assessed by
comparing the computed and analytical solutions for fundamental configurations with very good
agreement. Furthermore, spatial resolution of the time domain boundary element method has been
assessed using points per wavelength metrics. It is found that, using only constant basis function
and high-order quadrature for surface integration, relative errors measured by the L2 norm can be
less than 2% when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-
per-wavelength-squared (PPW2).
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Appendix

For completeness, the analytical solution for spherical sound diffraction by a semi-infinite plate is
given below.
The diffraction problem has been solved under the assumption of zero mean flow14 and further details
have been provided in various references.1,13 Let a coordinate system (X,Y, Z) be introduced with
the origin set on a point at the leading edge, the Z coordinate along the edge of the plate and
the X coordinate in the direction of the plate perpendicular to Z, as shown in Figure 14. The Y
coordinate is in the direction opposite of the source point.
Let the cylindrical coordinates of the source and observer points be (rs, θs, zs) and (ro, θo, zo),
respectively. Define

R1 =
√
r2
s + r2

o − 2rsro cos(θs − θo) + (zs − zo)2

R2 =
√
r2
s + r2

o − 2rsro cos(θs + θo) + (zs − zo)2

and

R′ =
√

(rs + ro)2 + (zs − zo)2
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Figure 14. A schematic diagram showing the coordinates of the source and observer points. For the
analytical solution, the plate is assumed to be infinitely thin.

Further, let K be the wave number and, following Li et al.,13 define respectively the direct, reflected
and diffracted sound as

pd(X,Y, Z,K) =
eiKR

4πR1

pr(X,Y, Z,K) =
eiKR2

4πR2

pD(X,Y, Z,K) =
iKsign(ζ1)

4π

ˆ ∞
|ζ1|

H
(1)
1 (KR1 + µ2)√
µ2 + 2KR1

dµ+
iKsign(ζ2)

4π

ˆ ∞
|ζ2|

H
(1)
1 (KR2 + µ2)√
µ2 + 2KR2

dµ

where

ζ1 = sign(|θs − θo| − π)
√
K(R′ −R1), ζ2 = sign(θs + θo − π)

√
K(R′ −R2)

Then, the sound pressure at the observer point point (ro, θo, zo) is:
If θs < θo ≤ 2π:

po(X,Y, Z,K) = pd + pr + pD (18)

If θs − π < θo < 3π − θs:

po(X,Y, Z,K) = pd + pD (19)

If θo < θs − π:

16 of 17

American Institute of Aeronautics and Astronautics



po(X,Y, Z,K) = pD (20)

The integrals can be evaluated by numerical quadrature and asymptotic expansion of the Hankel
function.
In the presence of a mean flow in the direction of the x axis, M = (M1, 0, 0), the solution in the
physical coordinates of (x, y, z) at a wave number k can be found by making use of the Prandtl-
Glauert transformation:

(X,Y, Z) = (
1√

1−M2
1

x, y, z), T =
√

1−M2
1 t+

M1

c
√

1−M2
1

x

Then, the frequency domain solution with the mean flow effect can be found to be

p(x, y, z, k) =
1√

1−M2
1

po(X,Y, Z,K)e−ikM1(x−xs)/(1−M2
1 )

where xs is the x coordinate of the source point and po(X,Y, Z,K) is that computed by (18)-(20)
with

K =
k√

1−M2
1
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