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Abstract

This report describes the process of acquiring and using 3-D numerical model
weather data sets in NASA Langley’s Research Flight Deck (RFD). A set of soft-
ware tools implement the process and can be used for other purposes as well. Given
time and location information of a weather phenomenon of interest, the user can
download associated numerical weather model data. These data are created by
the National Oceanic and Atmospheric Administration (NOAA) High Resolution
Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks’
Matlab™ scripts to create the usable 3-D weather data sets. Each data set includes
radar reflectivity, water vapor, component winds, temperature, supercooled liquid
water, turbulence, pressure, altitude, land elevation, relative humidity, and water
phases. An open-source data processing program, wgrib2, is available from NOAA
online, and is used along with Matlab scripts. These scripts are described with
sufficient detail to make future modifications. These software tools have been used
to generate 3-D weather data for various RFD experiments.
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List of Acronyms, Symbols, and Abbreviations

AGL = Above Ground Level

CLWMR = Cloud Water Mixing Ratio
CICE = Cloud Ice Mixing Ratio
CMF/RFD = Cockpit Motion Facility’s Research Flight Deck
CONUS = Continental United States

DPT = Dew Point Temperature

FAA = Federal Aviation Administration
GRIB = Gridded Binary

GRLE = Grauple Mixing Ratio

HGT = Geopotential Height

HRRR = High Resolution Rapid Refresh
KMEM = Memphis International Airport
MET = Meteorological

MSL = Mean Sea Level

NetCDF = Network Common Data Form
NM = Nautical Mile

NOAA = National Oceanic and Atmospheric Administration
RFD = Research Flight Deck

RH = Relative Humidity

RRF = Radar Reflectivity

RUC = Rapid Update Cycle

RWMR = Rain Water Mixing Ratio

SLW = Super-cooled Liquid Water
SNMR = Snow Mixing Ratio

SPFH = Specific Humidity

TKE = Turbulent Parameter

TMP = Temperature

UGRD = N-S Component of Wind

UR = Corrected U-component of Wind
uTC = Coordinated Universal Time
VGRD = E-W Component of Wind

VR = Corrected V-component of Wind
VVEL = Vertical Velocity (Pressure)
VVMS = Vertical Velocity

WDIR = Wind Direction

WMAG = Wind Magnitude

Z = Geometric Height



1 Introduction

There is a need for 3-D weather or other reproducible weather data for flight sim-
ulation experiments conducted in NASA’s Cockpit Motion Facility Research Flight
Deck (CMF/RFD), or for other reproducible weather simulations. This is especially
true for experiments that require reproducibility across repeated runs or simulations
within the same experiment. A realistic weather data set should contain all of the
relevant data fields for a full immersion experience during the experiment. In a
simulation environment such as the RFD, weather data can be used as part of any
experiment.

The software tools described here are reported in [1] and [2]. This report serves
to document the software tools and provide the necessary information to make use
of other similar weather data sets.

NOAA runs the High Resolution Rapid Refresh (HRRR) numerical weather
model that ingests weather observations from a variety of instruments, and creates
numerous forecast products [3},4]. These products, or state variable weather fields,
consist of temperature, water vapor, pressure, winds, and water phases. All of the
products are generated every hour, including the hourly forecasts, or 1 hour, 2 hour,
etc., up to 15 hour forecasts. One note of distinction is the analysis output, or the
HRRR output at 0 hour. This is essentially an HRRR model run using all of the
most recent data (including results from past runs). This 0 hour run populates the
output grid with solutions to the state equations. A particular NOAA grid is used
that encompasses the Continental United States (CONUS) and includes about 50
altitude or pressure levels.

The following sections describe steps for converting NOAA HRRR weather data
into unique and separate data fields. Each step of the process is outlined along with
descriptions of the associated Matlab scripts. Sample figures of weather data are
also provided. Matlab scripts are listed in the appendices.

2 Overview of Process

Creation of a weather data set consists of a series of steps. This process, as depicted
in Figure [I| creates a set of weather data fields. In this report, a field is a vari-
able in 3-D, with dimensions latitude, longitude, and altitude. The process starts
by selecting a significant weather event, such as a meso-scale convective complex.
Ideally, this event occurs over the CONUS region of interest. For an RFD simula-
tion, a particular airport often defines the region of interest. As the range setting
of an on-board weather radar may be up to 300 nm, this region of interest must be
expanded beyond the airport to include geographic points that are at least 300 nm
distance from all possible aircraft locations. In addition, the user must select the
UTC time at which the significant weather is occuring.

This time and location information is then used to select the NOAA HRRR files
to download. Once acquired, the HRRR file(s), in GRIB2 format, are processed
by a series of Matlab scripts, each creating or adjusting the desired output weather
data fields.



3 Acquiring Weather Data

NOAA maintains an online archive of hourly analysis and forecast products for the
previous day up to the current time for each hourly run of the HRRR. The website
can be accessed via anonymous FTP via the URL: [ftp://ftp.ncep.noaa.gov/
pub/data/nccf/nonoperational/com/hrrr/prod/.

Accessing this website via a web browser will present a webpage with two folder
links. Each link is a dynamically changing folder with a name that corresponds
to the current date and previous date. The two date folder names have ”hrrr.”
prepended to the date string. Located within the previous date folder are various
GRIB2 files and other information files for the 24 hourly HRRR runs and all the
forecasts for each hour. The current day folder includes all those files from midnight
(UTC) up to the current hour. The only files of interest are those that have “.grib2”
as the extension.

For example, a sample directory is hrrr.20160405. This directory (and link)
example is for HRRR runs generated on April 5, 2016. Within that folder resides
a set of GRIB2 and other files. The set is complete for the prior day’s folder, and
incomplete for the current day depending on when it is accessed.

An example file name is hrrr.t09z.wrfprsf00.grib2. This analysis file in-
cludes ”wrfprsf00“ as part of the file name. These are the pressure level based
forecast products generated at the beginning of HRRR runs. The UTC time for
this example run is the 7t09z* part of the file for weather events that occurred be-
tween 8:00 UTC to 9:00 UTC. NOAA collects weather observations up till the top
of each hour, then commences each HRRR run.
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Figure 1. Process Overview.
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The following website http://radar.weather.gov/ridge/Conus/full_loop.
php is a National Weather Service Enhanced Radar Image, that loops over the
previous hour. This imagery can be used to select the time when suitable weather
is impacting the CONUS region of interest.

The Lambert Conformal Projection is used by NOAA for the HRRR data grid.
Parameters for this projection are: central Latitude 38.5N, central Longitude 262.5W,
Pole Latitude 90N, Pole Longitude OW.

HRRR analysis and forecast files are provided for the CONUS domain, as de-
picted in Figure The domain includes 1800 x 1060 grid nodes over the region
with corners (SW-NW-NE-SE) at 21.13812N - 237.2805W, 47.84364N - 225.9014W,
47.84364N - 299.09863W, and 21.13812N - 287.71954W, and 50 pressure (altitude)
levels. Each grid node has approximately 3 km horizontal spacing, Finer spatial
resolution required by a simulated on-board aircraft radar display must be obtained
by interpolation. The Matlab scripts described here compute radar reflectivity fields
with 3 km spacing. In order to create an on-board aircraft radar image of convec-
tion, radar reflectivity must be spatially interpolated in 3-D into radar plan position
indicator (PPI) grid.
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Figure 2. HRRR Domain.

In addition, other files and folders reside in the two HRRR folders. These unused
products include: forecast files named “wrfprs01”, “wrfprs02”, etc.; files named
?wrfnat” defined at different altitude levels, mainly near the Earth; files with the
extension “.idx”; and subfolders named “bufrsnd”.

If the user requires 4-D weather data, 3-D data at multiple time instances, then
two or more GRIB2 files that are contiguous in time can be processed to create
the weather data fields. Weather data fields in 3-D can be interpolated in time to
provide the added dimension.
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4 Software Requirements

To process the GRIB2 files, the user must create the wgrib2 executable, make it
available to the user account processing the data, and make it accessible from the
Matlab graphical user interface environment. All of the Matlab scripts listed in
the Appendices were written for the Apple Mac under OS-X 10. In order to use
the scripts on a Microsoft Windows based system, the directory paths need to be
redefined by converting each forward slash to a backward slash. The location of the
wgrib2 executable must be made accessible via the appropriate system environment
variable.

4.1 Source Code wgrib2

At the website http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/, NOAA
hosts the source code, compile and usage instructions, and machine specific infor-
mation needed to create the wgrib2 executable. This software tool performs many
of the pre-processing operations needed to convert GRIB2 formatted HRRR data
into weather data fields.

Table 1. HRRR Weather Data Fields

Field Name Description Units
HGT Geopotential Height m
TMP Temperature K
DPT Dew Point Temperature K
RH Relative Humidity %
SPFH Specific Humidity kg /kg
VVEL Vertical Velocity (Pressure) Pa/s
UGRD N-S Component of Wind m/s
VGRD E-W Component of Wind ~ m/s
CLWMR Cloud Water Mixing Ratio  kg/kg
CICE Cloud Ice kg/m?
RWMR Rain Water Mixing Ratio kg /kg
SNMR Snow Mixing Ratio kg/kg
GRLE Grauple Mixing Ratio kg/kg

5 User Inputs

Processing files implemented in Mathworks’ Matlab™ are listed in the Appendices.
All processing is controlled by runhrrr.m, which calls other scripts. In this file, user
settings are made in lines 24 through 29. Input and output directories are specified
using the gribdir and hrrrdir string variables, respectively. Also, the region of
interest latitude and longitude are defined using targetlat and targetlong string
variables.


http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/

6 Extract Weather Data Fields

In Appendix[B] a listing of the Matlab script extract.mis given. This code produces
each of the weather data fields listed in Table [I} If needed, weather data fields RH,
CICE, SNMR, and DPT can be made available by editing line 6 in extract.m. All of
the state variable weather fields are provided for 50 pressure levels from 1013.2 mb
to 50 mb, or from the surface to about 21,000 m (70,000 ft).

The extract.m script begins by establishing locations of GRIB2 files, output
directory name, and the geographical location of the target region. In this example,
the Memphis International Airport (KMEM) at Memphis, TN is located approxi-
mately at 35N 270W. An approximate 600 km per side roughly square region with
Memphis at the center has coordinates ranging from 32° to 38° in Latitude and 266°
to 274° in Longitude. These values are input to the wgrib2 executable.

In the extract.m script, lines 64-147, a conditional section of code determines if
the file memetax.mat exists in the current directory, and if not then creates it. To do
this, three calls to wgrib2 are performed. The first call selects a HGT GRIB2 file. The
second call subselects the region of interest using the defined Latitude and Longitude
variables. Finally, the third call converts the output to NetCDF format. From this
NetCDF file, the script reads and creates the variables latitude, longitude, and
surface (above sea level), msl m, as 2-D matrices. Matlab does not recognize the
GRIB2 format but does have built-in commands to manipulate NetCDF files.

An example of the selected domain outlined by latitude and longitude is
illustrated in Figure The shape of this region as determined by the Lambert
projection as shown in the figure.

The extract.m script continues by creating a fourth output data field, pressure
levels. This one dimensional array is extracted from the same HGT GRIB2 file,
with four calls to wgrib2. Again, the first call extracts the HGT variable, the second
subselects the first 36 of 50 pressure levels, the third subselects the region of interest,
and the fourth converts to NetCDF format. The resulting pressure level array,
plevel, is one-dimensional. All temporary files are deleted.

The Lambert projection applies to each output data grid. Subsequent Matlab
scripts perform additional processing, including modification of the wind direction
for this Lambert projection, as described in Section Aeronautical charts also
use the Lambert projection, though at different reference parallels. No conversion
from this NOAA Lambert projection to any other, such as the Lambert projection
used in FAA Aeronautical Charts, is performed.

In the extract.m script, lines 151-221, each iteration of the FOR loop, processes
a different GRIB2 file from the specified input directory. Each file is processed by
the FOR loop, lines 162-219, to generate each of the weather data fields in separate
files. All generated output files have the same name as the input GRIB2 file with
the appropriate weather variable appended at the end.

The weather data files are generated using four calls to wgrib2. The first call
selects from the input GRIB2 file the weather variable field of interest into a tempo-
rary GRIB2 file. This temporary file is then used in the second call to down select
the 36 of 50 pressure levels of interest. The output is a temporary file that is used in
the third call to down select the region of interest. Finally, the fourth call converts
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the output to NetCDF format.

The GRIB2 default numbering convention for pressure levels start at the top of
atmosphere down to the surface. A subroutine called reversez.m reorders each 3-D
pressure level with the opposite direction. No changes in the other two dimensions
(Latitude and Longitude) are performed. At this stage, the wgrib2 processing of
GRIB?2 files is complete.

All temporary GRIB2 and NetCDF files are deleted. The output data files are
all moved to the defined output directory and are in the Matlab “.mat” format.
This concludes the description of the extract.m script. All subsequent processing
is performed using other Matlab scripts. Note that the GRIB2 units are all SI, as
are all subsequent output weather data fields.

7 Modifications to Weather Data Fields

Once the state variable weather fields in the GRIB2 files are extracted into separate
3-D files, certain modifications and additional calculations need to be performed.
These include adjustments for altitude, wind velocity, and wind direction.

7.1 Altitude Modification

The Matlab script hgtcorr.m performs the altitude modification. Appendix [C] lists
the hgtcorr.m script to convert geopotential pressure height to an altitude above
mean sea level. This is performed by adding the location specific land elevation,



ms1l m, to the HGT variables. The result remains in units of meters. The output file
has a “Z” appended to the file name.

7.2 Vertical Wind Modification

Appendix [D] lists the vvelcorr.m script that converts the units of the vertical ve-
locity variable as output from the GRIB2 files. Vertical velocity, VVEL, has units of
Pa/s and must be converted to vertical wind velocity, VVMS, in units of m/s using
the equation:

VVMS =(Rs*VVEL%T)/(g9z * P) (1)

where Rg is the specific gas constant for dry air, T is temperature, gz is gravity,
and P is pressure. The equation is applied at all altitudes. The 3-D output file has
“VVMS” at the end of the file name.

7.3 Horizontal Wind Modification

Appendix |[E|is a listing of the script windsrot2d that modifies the Lambert projec-
tion to true North-based winds. The HRRR model north direction is only parallel to
true north at the center of the Lambert conic projection, thus the wind components
must be rotated based on their domain location. This modification takes as input
the UGRD and VGRD fields. The output files have either “UR” or “VR” appended
for the modified U-component or V-component of winds, respectively.

The algorithm for horizontal wind modification is derived from information
on the Rapid Update Cycle (RUC) Frequently Asked Questions website http:
//ruc.noaa.gov/RUC.faq.html [5]. On the website, an algorithm for the wind
modification is implemented in FORTRAN code.

8 Derived Weather Fields

8.1 Radar Reflectivity

The script to generate radar reflectivity fields, genrrf.m is listed in Appendix
This script implements the equations for estimating radar reflectivity from state
variables as derived in [6]. The output weather data field is designated with RRF,
and has units dbZ.

This script implements Equations 2 - 6 from Daniels, et. al. (2013) [1], where
radar reflectivity, Z, is the sum of reflectivities for rain, snow, and graupel.

8.2 Turbulence Parameter

HRRR model grid is too coarse for a turbulence field. The length scales of turbulence
that impact aircraft dynamics are much shorter, typically on the order of 100 to 500
m. An alternative approach is to scale the intensity of a stochastic process (such as
a Dryden Turbulence Model) with a measure of HRRR convection.

10


http://ruc.noaa.gov/RUC.faq.html
http://ruc.noaa.gov/RUC.faq.html

Appendix[G]is a listing of tke.m, a script that computes a turbulance parameter
specifically for use in the RFD. As noted in [2], a turbulence parameter, T,, was used
to scale the random values from the Dryden Turbulence model [7]. This parameter
is computed from the relation 7}, = v1Zr + 2, where Zp is radar reflectivity and
scale factor v; and amplitude adjustment o were determined empirically to pro-
duce the desired CMF/RFD ride quality. This equation yields turbulence linearly
proportional with radar reflectivity. While turbulence is often experienced far from
convection, it also occurs within convective regions.

The aerodynamic model has a turbulence transition height of 2500 ft AGL.
When the aircraft model descends below transition altitude, the turbulence motion
will start to fade out until reaching 50 ft. The CMF/RFD motion base actuators
do not produce turbulence for aircraft altitudes below 50 ft.

8.3 Aircraft Icing

Supercooled liquid water (SLW) is assumed to be an indicator of aircraft icing.
The Matlab script, genslw.m, listed in Appendix computes this weather data
field. SLW mixing ratio has units kg/kg and are estimated using the following the
following relation:

CLWMR+ RWMR  for 273.15 — 20 < T < 273.15
SLW =<0 for T > 273.15 (2)
0 for T < 273.15 — 20

9 Script Summary

All the Matlab scripts that are used to generate relevant weather data fields are
listed in Table [2| along with input and output files. All input and output files have
an “.mat” extenstion, with the exception of the GRIB2 files. These scripts are
expected to be run in the order listed in the Table 2 Running extract.m creates
the output file memmetax.mat that is used as input in all subsequent scripts. After
all processing is complete, the new weather data fields (one per file) listed in Table
with the associated units, will exist in the user specified output directory.

10 Conclusions

This report documents a process and describes necessary code to implement a set
of algorithms that create a 3-D weather data set. A referencable basis for the
implemented equations is provided. This data set consists of weather data fields that
can be used for simulation purposes. This report also provides usage details for the
user to create customized weather data fields. An extension of this process includes
the creation of 4-D weather in the simulation environment. Using the outlined
process, four different weather data sets were created for use in the CMF/RFD.

11



Table 2. Matlab Script Summary
Script Name  Input Files Output Files
extract.m GRIB2 HGT, TMP, CICE, SPFH
VVEL, UGRD, VGRD, ABSV,
CLWMR, RH, RWMR, SNMR,
GRLE, memmetax

hgtcorr.m HGT Z
vvelcorr.m Z, VVEL, TMP VVMS
windsrot2d.m UGRD, VGRD UR, VR, WMAG, WDIR
genrrf.m TMP, SPFH, GRLE,
RWMR, CLWMR RRF
tke.m UR, VR, VVMS TKE
genslw.m TMP, CLWMR,
RWMR, VVMS SLW

Table 3. Resulting Weather Data Fields

Field Name Description Units
Z Geometric Height AGL m
VVMS Vertical Velocity m/s
UR Corrected U-component of Wind m/s
VR Corrected V-component of Wind m/s
WMAG Wind Magnitude m/s
WDIR Wind Direction degrees
RRF Radar Reflectivity dBZ
TKE Turbulence Parameter %
SLW Supercooled Liquid Water kg/kg
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Appendix A
runhrrr.m listing

% run_hrrr.m
% wrapper for wgrib2 to extract wvariable from a grib2 file

% grib2 files at:
%ftp .ncep.noaa. gov/pub/data/nccf/nonoperational /com/hrrr/prod/

run hgtcorr.m to create Z files , add msl

and vvelcorr.m to convert from pressure tendency to wvelocity
use winds2d.m to compute wind mag and dir

then windsrot2d.m to correct winds from Lambert to true north
and genrrf.m to compute radar reflectivity

tke.m generates the turbulence fields

genslw.m creates the SLW field (aircraft icing)

N N N N N XN

setenv ( 'DYLD LIBRARY PATH’, ’/usr/local/bin/’);

% Windows version :
Y%gribdir="C:\ Users\ tsdaniel\ Documents\ VSST\HRRR\ ’;
%gribdir="/Users/tsdaniel /Documents/HRRR/March2016MCC1/20160308/;

% User settings:

% Linuz or Mac version:
gribdir="/Users/tsdaniel /Documents /HRRR/March2016MCC2/20160324/ ’;
hrrrdir=’/Users/tsdaniel /Documents /HRRR/ ’;

% need target airport lat long

% memphis is 270,35, given as strings with spaces and colon
targetlat=".32:38_";

targetlong=".266:274_";

% end of user settings
NG=length (gribdir );
datestr=gribdir (NG-4:NG—1);
outdir=[gribdir , 'mat/’];

% create this dir

textout=["mkdir.’,outdir |;

if exist(outdir,’dir’) =7
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system (textout );
else
% error(’%s directory already exists ', outdir)
disp(’Overwriting_existing._.directory._contents.’);
end

ext="x.grib2’;
gribfiles=strcat (gribdir ,ext);
fd=dir (gribfiles );

NF=length (fd);

% HRRR data fields have 40 pressure levels, only need first
% 36 counting from the ground up to get to “4O0Kft, also given
% as string with spaces

% don’t change NP without changing options?2 and options4 in extract.m

NP=36;

% executable string
gbx="wgrib2.7;

disp ( 'HRRR.processing _started ’)
extract

hgtcorr

vvelcorr

windsrot2d

genrrf

tke

genslw

disp ( 'HRRR.processing.complete ’)
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Appendix B

extract.m listing

% extract.m

%

% variables to extract from grib2 files

allvars={"hgt’; ’tmp’; grle
“absv’; 'rwmr’; ’clwmr’

matchvar=upper(allvars);

9y

;7spfh 7 7vvel 75 Tugrd 7 Cvgrd ;...

}; % ’dpt’; ’cice’; 'snmr’; rh’;};

% process one wvar in first file to get lat lon data,
% check if memmetar is there, else make it
if exist ([hrrrdir , 'memmetax.mat’],’ file’) =2

bufferl="templ.grib2’;
buffer2="temp2.grib2’;
buffer3="temp3.nc’;

fname=fd (1).name;

filename=strcat (gribdir ,fname);

% variable name is part of file name

varname=allvars (1);

onm=strcat (datestr ,fname(1:4),’_’ ,fname (6:9) ,...

Y 9

_7,char(varname));

then do all...

optionsl=[’_—match_:HGT: surface: _—grib_out.’,bufferl ];

options2=[’_—set_grib_type.same_—small_grib’ ...
targetlong ,targetlat , buffer2];

options3=[’_—nc_nlev._36_—netcdf_’, buffer3];

commandl=[gbx filename optionsl |;

command2=[gbx bufferl
command3=[gbx buffer2

[statusl , varlistl] =
[status2, varlist2]| =

[status3 , varlist3] =

% clean up

options2 |;
options3 |;

system (commandl ) ;

system (command?2 ) ;
system (command3 ) ;
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delete (bufferl );
delete (buffer2);

% % output lat long plevels and other files
% read from netcdf file: lat long msl
latitude=ncread (buffer3 ,’latitude ’);
longitude=ncread (buffer3 , ’longitude ’);
msl_-m=ncread (buffer3 , ”HGT _surface’);

delete (buffer3)

% nmow get pressure levels
bufferl="templ.grib2’;
buffer2="temp2.grib2’;
buffer3=’temp3.grib2’;
buffer4d="temp4.nc’;

optionsl=[’_—match_:HGT: .—grib_out.’,bufferl |;

% these are specific pressure
options2=[’_—for._5:41_—grib_out.’,buffer2 |;

once

levels in the wrfprs file

% creates a netcdf file in 4—D {time;level;lat;long}

options3=[’_—set_grib_type.same_.—small_grib’

targetlong ,targetlat , buffer3];

optionsd=[’_—nc_nlev._36_—netcdf.’, bufferd];

commandl=[gbx filename optionsl ];
command2=[gbx bufferl options2];
command3=[gbx buffer2 options3];
command4=[gbx buffer3 options4];
[statusl , varlistl] = system (commandl);
[status2, varlist2] = system (command?2);
[status3 , varlist3] = system (command3);
[status4 , varlist4d] = system (command4);

% clean up

delete (bufferl );
delete (buffer2);
delete (buffer3)

plevel=ncread (bufferd , "plevel ’);
% flip top bottom

17
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plevel=plevel (end: —1:1);
%

save memmetax latitude longitude plevel msl.m
delete (bufferd);

else
load ([ hrrrdir , ’'memmetax.mat’ | ) ;
end
% nmow use lat lon data to get geo correct specific wx fields

for ii=1:NF % for each of the different events/times

bufferl="templ.grib2’;
buffer2="temp2.grib2’;
buffer3=’temp3.grib2’;

9

buffer4d="temp4.nc’;

fname=fd (ii ).name;
filename=strcat (gribdir ,fname);

% for each of the wvars at each event/time
for jj=1:length(allvars)

% variable name is part of file name
varname=allvars (jj);
onm=strcat (datestr ,fname(1:4),’_" ,fname (6:9) ,...

) )

_’ ,upper(char (varname)));

currvar=char (matchvar(jj));
vbl= sprintf(’’":%s:’’’ currvar);

optionsl=[’_—match.’, vbl,’_.—grib_out.’,bufferl ];

% these are specific pressure levels in the wrfprs file
options2=[’_—for._5:41_—grib_out.’,buffer2 |;

% creates a netcdf file in 4J—D {time;level;lat;long}

options3=[’_—set_grib_type.same_—small_grib’ ...
targetlong ,targetlat , buffer3];

optionsd=[’_—nc_nlev.36_—netcdf.’, bufferd];
commandl=[gbx filename optionsl |;

command2=[gbhx bufferl options2];
command3=[gbhx buffer2 options3];

18



136

141

146

151

156

161

€en

end

command4=[gbx buffer3

[statusl , varlistl
[status2, varlist2
[status3, varlist3
[status4 , varlist4

]
]
]
]

options4 |;

commandl );

command?2
command3
command4

system
system
system
system

)
);
).
)

I

e N W N N

7

varg=ncread (buffer4d , currvar);

% flip this 3-D wvariable top bottom
outvar=reversez (varg);

outstr=[currvar ,’.=_outvar;’];

eval(outstr);

savestr=[’'save.’ onm,

eval(savestr)

'.’, currvar |;

movename=[onm, ’.mat’ |;
movefile (movename, outdir );

% clean up

delete(bufferl
delete (buffer2
delete (buffer3
delete (buffer4

I

)
E
).
)

?

)

d % of var loop

% of event loop

B.1 Subroutine reversez.m listing

function a=reversez(b)

ts

N N N X

-

d 5/15/2012

,,pl=size(b);

a=b (:,:,p:—1:1);

return

reverses the page order of a 3D matriz
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Appendix C
hgtcorr.m listing

% hgtcorr.m

% Converts pressure altitude to geometric altitude

% size wariables used in all subsequent processing scripts
[nlong, nlat]=size(latitude); % determine size

npl=length(plevel );

% create list of all HGT mat files in mat dir
cdm=dir (strcat (outdir , "«hgt .mat’));

for ii=1:NF % start loop

evalstr=[’load.’, outdir, cdm(ii ,1).name]; % load data
eval(evalstr);

Z=zeros(nlong , nlat, npl); % allocate new matriz

% make mnew file name
filename=strcat (cdm(ii ,1).name(l:end—7),’Z.mat’);

for jj=1:npl % add elevations
Z(:,:,3])=HGT(:,:,jj)+msl.m;

end

% save as new output file

evalstr=[’save.’ filename 6 ’_Z7|;

eval(evalstr)

movefile (filename , outdir)

end % end of N loop
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Appendix D

vvelcorr.m listing

NN KR X

RN N N N N X K

vvelcorr.m
vertical wvelocity correction
data from HRRR has pressure tendency

Run this after extract and after hgtcorr

uses temperature, vvel, Z

Converts pressure tendency (Pa/s)
to spatial wvelocity (m/s)
use version of hydrostatic eqn

W=—-wRs T/ P gZ

need gravity at altitude
gZ= g0 ( Re / Re + Z )"2

% some constants

Re=6375000; % effective FEarth radius in m
g0=9.80665; % gravity at surface

Rs=287.04; % specific gas constant for dry air

% convert pressure to Pa
plevel _pa=plevel x100;

% create list of Z mat files in mat dir

zfi

les=dir (strcat (outdir , ’«Z.mat’));

% create list of wvel mat files in mat dir

vii

les=dir (strcat (outdir , ’«vvel .mat’));

% create list of tmp mat files in mat dir
tfiles=dir (strcat (outdir , ’s«tmp.mat’));

for

ii=1:NF % start loop
% load Z data
evalstr=[’load.’, outdir, zfiles(ii,1).name];

eval(evalstr);

% load V data
evalstr=[’load.’, outdir, vfiles(ii,1).name];

21



43

48

53

58

63

68

end

eval(evalstr);

% load temperature data
evalstr=[’load.’, outdir, tfiles(ii,1).name];
eval(evalstr);

VVMS=zeros (nlong, nlat, npl); % allocate space

% compute gravity (Z)
gZ= g0 .x ( Re ./ (Re+Z ))."2;

% make new file name
filename=strcat (zfiles (ii ,1).name(l:end—5), VVMS. mat’);

% compute spatial velocity
for jj=Il:nlong
for kk=1:nlat
for pp=1:npl

VVMS(jj ,kk,pp)=Rs.*VVEL(jj ,kk,pp).«IMP(jj ,kk,pp)...

/(8Z(jj .kk,pp) .x plevel_pa(pp));
end
end
end

% save as nmew output file
evalstr=[’save.’ filename , ’_VVMS’ |;

eval(evalstr)

movefile (filename , outdir)

% end of N loop
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Appendix E

windsrot2d.m listing

% winds2d.m
% compute horizontal wind mag and dir

%
%
%

0

From Stan Benjamin, http://ruc.noaa.gov/RUC. faq.html

FORTRAN code to implement wind correction for RUC data

Cx %
Ch

PARAMETER ( ROTCON_P 0.422618 )
PARAMETER ( LON.XX P = —95.0 )
ROTCON_P R WIND ROTATION CONSTANT, = 1 FOR POLAR STEREO
AND SIN(LAT-TAN_P) FOR LAMBERT CONFORMAL

Cxx LONXX_P R MERIDIAN ALIGNED WITH CARTESIAN X—AXIS(DEG)
Cxx LAT. TANP R LATITUDE AT LAMBERT CONFORMAL PROJECTION
Cx % IS TRUE (DEG)
PARAMFETER ( LAT-TANP = 25.0 )
do j=1,ny_p
do i1=1,nxz_p

sinz2 = sin(angle2)

cosz?2 = cos(angle2)
do k=1,nzp_p

ut = u(i,j,k)

vt = v(i,j,k)

R N R X AT X T R ¥ aF ¥ K K ¥ K NV R KR K N N KR ¥

un(i,j, k) = cosxlxut+sinz2x vt
on(i,j,k) =sinx2%«ut+cosx2x vt
end if

end do

end do

% implmented here for HRRR instead of RUC...
% create list of all mat files in mat dir
ufiles=dir (strcat (outdir , "sugrd .mat’));

vfiles=dir (strcat (outdir, "«vgrd.mat’));

% start loop
for ii=1:NF

% load data

23

angle2 = rotcon_px(olon(i,j)—lon_xzx_p)x0.017453
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evalstr=[’load.’, outdir, ufiles(ii,1).name];
eval(evalstr);
evalstr=[’load.’, outdir, vfiles(ii,1).name];
eval(evalstr);

% make new file name

filenamel=strcat (ufiles (ii ,1) (
filename2=strcat (ufiles (ii ,1).name(
filename3=strcat (ufiles (ii ,1) (
filenamed=strcat ( (ii ,1) (

1:end—8), WMAG. mat " ) ;
1:end—8), "WDIR.mat ) ;
l:end—8), ’UR.mat’);
ufiles 1:end—8), ’VR.mat " );
WMAG = sqrt (UGRD. 2 + VGRD."2);

WDIR = atan2d (VGRD, UGRD);

% these two wariables are defined from GRIB outputs:
%  die. wgrib2 —grid

% Lat{D,1,2} = latitude where the Lambert conformal
% cone is tangent to the surface of the earth

LatD = 38.5;

%elonv = LoV = longitude of the center of the projection
LoV = 262.5;

% elonl — longitude of lower left point of grid (1,1)
% east longitude used throughout;
elon=237.28;

deg_to_radians = 0.0174533;
% theta is degrees to rotate winds from RUC coords

% rotate direction appropriately for the RUC grid x/

% this means that S winds near the E coast need to pick up
% an W component wrt true N. So rotate the wind vectors
% clockwise (+) mnear the E coast.

rotcon = sin(LatDxdeg_to_radians);
dlon = LoV — elon;
while (dlon > 180)

dlon = dlon — 360;
end
while (dlon < —180)

dlon = dlon 4+ 360;
end
theta = — rotconx*(dlon);
wdnu=WDIR+57.2958 + theta + 180. + 0.5;
if (wdnu > 360)

24



wdnu = wdnu— 360;

end
89 if (wdnu < 0)
wdnu = wdnu +360;
end
WDIR=wdnu ;
94
URWMAG. * cos (WDIR ) ;
VRAWMAG. * sin (WDIR ) ;
% save as mew output files
99 evalstr=[’save.’, filenamel ,” WMAG’ |;
eval(evalstr)
evalstr=[’save.’, filename2 ,’ ZWDIR’ |;
eval(evalstr)
evalstr=[’save.’, filename3 ,  _UR’];
104 eval(evalstr)
evalstr=[’save.’, filenamed ,’_VR’];
eval(evalstr)
movefile (filenamel , outdir)
109 movefile (filename2 ,outdir)
movefile (filename3 ,outdir)
movefile (filename4 ,outdir)

end % end of N loop
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Appendix F

genrrf.m listing

% genrrf.m

% compute radar reflectivity in dBZ

%

% from RIP} code for dbzcalc.f,

%  Mark Stoelinga (stoeling@atmos.washington.edu)

% switches for computing. ..
in0s=0;
in0g=0;
inOr =0;

% assume frozem particles that are at a temperature above
% freezing are assumed to scatter as a liquid particle
iligskin=1; % 0 is off, 1 is on

celkel =273.15; % need to check this

%  Constant intercepts
Rdry=287; % dry air gas constant J/K/kg

rn0_r = 8.¢e6; % m’—4
rn0_s = 2.e7; % m’°—4
rn0_g = 4.e6 ; % m’—4

% Constants used to calculate wvariable intercepts
rl=1.e—15;

ron=8.e6 ;
ron2=1.el10;
son=2.e7;
gon=>5.e7;
ron_min = 8.e6;

ron_qr0 = 0.00010;

ron_delqr0 = 0.25xron_qr0;
ron_constlr = (ron2—ron_min)*0.5;
ron_const2r = (ron2+4ron_min )*0.5;
gamma_seven = 720.;

rhowat = 1000; % water density kg m™—3
rho r = 1000.: % 1000. kg m'—3

rho_s = 100.; % kg m"—3

rho_g = 400.; % kg m"—3

alpha = 0.224;
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1.el8 * (1./(pixrho_r))"

factor.r = gamma_seven
factor_s = gamma_seven

* (rho_s/rhowat) "2
factor.g = gamma_seven

* (rho_g/rhowat) "2

alpha;

* Kk X X %

alpha;

factorb_s=factor_s;
factorb_g=factor_g;

% create pressure field

PR=zeros(nlong, nlat, npl); % pressure aka prs

for ii=1:npl
PR(:,:,ii)=repmat(plevel_pa(ii),[nlong nlat]);
end
% create list of all needed mat files in mat dir
tfiles=dir (strcat (outdir , ’s«tmp.mat’));
qfiles=dir (strcat (outdir , "«spfh .mat’));
cfiles=dir (strcat (outdir , "«clwmr.mat’));
rfiles=dir(strcat (outdir , "srwmr.mat’));
gfiles=dir (strcat (outdir, "«grle.mat’));
for ii=1:NF % start loop, first load data
% TMP aka tmk
evalstr=[’load.’, outdir, tfiles(ii,1).name];
eval(evalstr);
% SPFH aka qup
evalstr=[’load.’, outdir, qfiles(ii,1).name];
eval(evalstr);
% CLWMR aka qsn
evalstr=[’load.’, outdir, cfiles(ii,1).name];
eval(evalstr);
% RWMR aka qra
evalstr=[’load.’, outdir, rfiles(ii,1).name];
eval(evalstr);
% GRLE aka qgr
evalstr=[’load.’, outdir, gfiles(ii,1).name];
eval(evalstr);
% compute virtual temp for density
VT = virtual (TMP,SPFH);

% compute density

rhoair = PR ./ (Rdry .x VT); % air density

27

1.75;
1.e18 % (1./(pi*rho_.s))"1.75

1.e18 % (1./(pi*rho_g))"1.75



87 % fine where ice/snow/graupel is becoming water
lqdex=find (IMP > celkel );

% make new file name
filename=strcat (tfiles (ii ,1).name(l:end—8),  RRF.mat’);
92
% compute rrf
% Calculate wvariable intercept parameters if wanted
if (inOs==1) % N_0s as in Thompson et al.

temp_c = aminl(—0.001, TMP-celkel );
97 sonv = aminl (2.0e8, 2.0e6xexp(—0.12xtemp_c));
else

sonv = rn0_s;
end

102 if (in0g==1) % N_0Og as in Thompson et al.

gonv = gon;

if (GRLE>rl)
gonv = 2.38.x(pi.*rho_g./(rhoair.*GRLE))."0.92;
gonv = max(1l.e4, min(gonv,gon));

107 end

else
gonv = rn0_g;

end

112 if (inOr==1) % N_Or as in Thompson et al.
ronv = ron2;
if (RWMB> rl)
ronv = ron_constlr.xtanh((ron_qrO-RWMR)./ron_delqr0)...
4+ ron_const2r;
117 end
else
ronv = rn0_r;
end

122 % Total equivalent reflectivity factor (z_e, in mm 6 m"—3) is
% the sum of z_e for each hydrometeor species:
z_e = factor.r .x (rhoair.«RWMR)."1.75 ./ ronv .75
% rain
+ factorb_s .x (rhoair.*CLWMR)."1.75 / sonv " .75
% snow
+ factorb_g .x (rhoair.xGRLE)."1.75 / gonv .75; % graupel
127
% correct for melting ice/snow/graupel
if (iligskin==1 )
factorb_s=factor_s/alpha;

28



factorb_g=factor_g/alpha;

132 z_e(lqdex) = ...
factor_.r .x (rhoair(lqdex).*RWMR(lqdex))."1.75...
./ ronv .75 ... % rain
+ factorb_s .x (rhoair(lgdex).*CLWMR(lqdex)). 1.75...
/ sonv .75 ... % snow
137 + factorb_g .x (rhoair(lqdex).*GRLE(lqdex)). " 1.75...

/ gonv " .75; % graupel
end

% Adjust small values of Z_e so that dBZ is mno lower than —20
142 z.e =max(z_e,.01);

% Convert to dBZ
RRF = 10. * logl0(z_e);

147 % save as new output file
evalstr=[’save.’  filename ,’ _RRF’|;
eval(evalstr)

movefile (filename ,outdir)
152

end % end of N loop
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Appendix G
tke.m listing

% tke.m
% compute tke per mass from winds

%

% create list of all mat files in mat dir
ufiles=dir (strcat (outdir, "sur.mat’));
vfiles=dir (strcat (outdir, "svr.mat’));
wfiles=dir (strcat (outdir, ’svvms.mat’));

% create averaging filter
h=omnes (3);

% start loop
for ii=1:NF

% load data

evalstr=[’load.’, outdir, ufiles(ii,1).name];
eval(evalstr);
evalstr=[’load.’, outdir, vfiles(ii,1).name];
eval(evalstr);
evalstr=[’load.’, outdir, wfiles(ii ,1).name];

eval(evalstr);

% allocate

URDM=zeros (nlong ,nlat ,npl)
VRDME=zeros (nlong , nlat ,npl)
VVMSME=zeros (nlong , nlat , npl

)
?
);

% make new file name

filenamel=strcat (ufiles (ii ,1).name(l:end—7),’  TKE.mat’);

% compute local means

for ik=1:npl  %for each level
URDM(:,:,ik) = filter2 (h,UR(:,:,ik));
VRDM(: ,:,ik) = filter2 (h,VR(:,:,ik)
VVMSM(: ,:,ik) = filter2 (h,VVMS(:,:,ik));

end

% compute gusts by removing mean

URDP=UR-URDM;
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end

VRDP=VR-VRDM;
VVMSP=VVMS-VVMSM;

% compute tke from gusts
TKE=(URDP."2 + VRDP."2 + VVMSP."2)/2;

% save as nmew output file

evalstr=[’save.’, filenamel , . TKE’|;
eval(evalstr)

% movefile (filenamel , matdir)
movefile (filenamel ,outdir)

% end of N loop
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Appendix H
genslw.m listing

% genslw.m
% compute super cooled liquid water

%
celkel =273.15;

% create pressure field

PR=zeros(nlong, nlat, npl); % pressure aka prs
for ii=1:npl

PR(:,:,ii)=repmat(plevel_pa(ii),[nlong nlat]);
end

% create list of all needed mat files in mat dir
tfiles=dir (strcat (outdir, "s«tmp.mat’));
%qfiles=dir (strcat (outdir, s« spfh.mat’));
cfiles=dir (strcat (outdir , "xclwmr.mat’));
rfiles=dir(strcat (outdir , srwmr.mat’));
%ifiles=dir (strcat (outdir, s cice.mat’));
vfiles=dir (strcat (outdir , "«vvms.mat’));

for ii=1:NF % start loop

% load data

% TMP  aka tmk

evalstr=[’load.’, outdir, tfiles(ii,1).name];
eval(evalstr);

% SPFH aka qup

%evalstr=["load ’, outdir, qfiles(ii,1).name];
%eval (evalstr );

% CLWMR aka qsn

evalstr=[’load.’, outdir, cfiles(ii,1).name];
eval(evalstr);

% RWMR aka qra

evalstr=[’load.’, outdir, rfiles (ii ,1).name];
eval(evalstr);
% CICE

%evalstr=["load ’, outdir, ifiles (ii,1).name];
Yeval (evalstr );

% VVMS

evalstr=[’load.’, outdir, vfiles(ii,1).name];
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end

eval(evalstr);

% make mew file name
filename=strcat (tfiles (ii ,1).name(l:end—8),’ SLW.mat’);

[nr,nc,npl=size (IMP);
SLW=zeros (nr ,nc,np);
buffer=ones(nr,nc,np);

% compute slw from all sources of water and some ice
%  SLW = CLWMR + RWMR + SPFH + 0.5 x CICE;

SLW = CLWMR + RWMR;

SLW(ITMP > celkel) = 0; % too warm

SLW(TMP < celkel —25) = 0; % too cold

% buffer (VVIMS < 0) = 0.5; % downwind scavenged by graupel
ISLW=SLW .x buffer; % but only by half

ISLW(SLW < 0) = 0; % error check

% save as new output file
evalstr=[’save.’ filename , ’.SLW’|;
eval(evalstr)

movefile (filename ,outdir)

% end of N loop
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