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Acronyms

 Common mode conducted emissions (CMCE) 

 Conducted emissions (CE)

 Electric field per unit current (E/I)

 Electromagnetic interference (EMI)

 Equipment under test (EUT)

 Radiated emissions (RE)
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Introduction (1 of 3)

 Due to the time- and resource-consuming nature of the test for radiated 
emissions, electric field (RE02/RE102), it is often prohibitive to perform 
early diagnostics by performing the test or even an abbreviated version of it

 Fortunately, it is possible to perform a much simpler, cheaper test – a 
common mode conducted emissions (CMCE) test – which will give useful 
predictions for much less expenditure of time and money

 The CMCE measurement can be easily performed in the hardware 
development lab in order to provide an early indication of whether the 
Equipment Under Test (EUT) will pass the RE102 test before the EUT is 
taken to a full EMI test facility
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Introduction (2 of 3)

 At frequencies below 200 MHz, a significant portion of the radiated energy 
originates from uncontrolled common mode currents on cables connected 
to the unit

 In this demonstration, a controlled current is applied to a 1 m wire 5 cm 
above a ground plane, and the resulting electric field is measured
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Introduction (3 of 3)

 The transfer function of electric field per unit current (E/I) is determined
 Presented as a tool for predicting radiated electric fields from a simple measurement 

with a clamp-on current probe before the product ever leaves the development 
laboratory

 |E/I| correspondence is evaluated at frequencies > 30 MHz
 Per MIL-STD-461, RE102 below 30 MHz is measured with rod antenna, which 

responds to potential, not current

 Product development engineers are encouraged to perform these measurements in 
order to facilitate diagnosis of potential problems as early as possible in the 
product's development cycle
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First, a bit of theory...
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A Very Sick Integral

 For a wire of any finite length, a precise calculation of the electric field at distance r 
would require a very complex integral

 Distance to measurement point must be varied with location of dl along the wire

 Relative phase of each field contribution must be considered

 Vector contributions of Er and Eθ

 Etc., etc., etc.
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Simplifying Assumptions for |E/I| Envelope

 Measurement is in traditional definition of “far field”
 βr > 1 (f > 48 MHz for r = 1 m; generally OK for f > 30 MHz )
 1/βr term dominates
 1/(βr)2 and 1/(βr)3 terms may be neglected

 Cable behaves as a point source for estimating worst-case envelope
 All current carrying elements are assumed to be at the same distance r from 

the measurement point
 The electric field contributions from all current-carrying elements are 

assumed to be in phase at the measurement point
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Transmission Line Current Model

 Transmission line current has horizontal and vertical components

 Resulting electric field will have horizontal and vertical components
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|E/I| Envelope for Wire 5 cm Above Ground Plane

 Math in backup charts, but here's the bottom line:
 Horizontal polarization

• For cables of l > 1 m (typical on most spacecraft), |E/I| is essentially independent of wire length above 48 MHz (βl > 1)

• For most spacecraft, RE102 is mainly a concern for f > 200 MHz
• High frequency asymptote determined largely by interaction of cable with ground plane (details in backup slides)

 Vertical polarization
• |E/I| is essentially independent of wire length for f > 30 MHz
• Equivalent to |E/I| for horizontal polarization for wire of l = 1 m
• High frequency asymptote determined by monopole formed between cable and ground plane (details in backup slides)
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|E/I| Measured vs. Predicted
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Current Measurement Helpful Hint

 For f > 30 MHz, cables of l > 1 m will exhibit standing waves

 Current will NOT be constant along length
 Note that |E/I| is based on integrated, i.e. average, current along cable

 Traditional approach
 Place spectrum analyzer in max hold mode
 Physically scan probe along length of cable
 Relatively quick and easy, but this will give the peak current on cable, not 

average
 Will overestimate current and electric field

 Recommended approach
 Measure current at many locations along wire
 Take average
 If measuring in dB, convert to numeric first
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Summary

 Radiated emissions and conducted emissions "joined at the hip"

 |E/I| transfer function envelope provides useful tool for predicting radiated 
emissions early in product development cycle

 The current probe is your friend; measure those common mode currents 
early and often
 Easy and useful measurement to make in hardware development lab before 

taking product to EMI facility
 Don't have to fight RF background, room resonances, etc.
 Identify specific sources of potential problems as early as possible

 Control those common mode currents
 Provide the desired low impedance path (e.g. shield, ground plane, etc.) and 

make them flow where you want them to
 Let nature do the work

 When you control common mode currents, you go a long way toward 
controlling radiated emissions and most other EMI problems

RE

CE
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Backup
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Electric Field as Function of Current
(Electrically Short Cable, Hertzian Dipole Model)
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Transmission Line Currents

LΔz

CΔz

V(z)

I(z)

V(z + Δz)

I(z + Δz)
dId Δz

l
lIz

l
IdzzI

l
I

l
l

H β
ββ

β
β sinsincos1

0
0

0
0 0 === ∫

1
0

=
ENV

H

I
I

lI
I

ENV

H

β
1

0

=

βl < 1:

βl > 1:

( ) ( ) ( )zzIzIzzdI d ∆+−=∆

( ) ( ) ( ) ( ) zI
dz

zdI
z

zzIzIzdI d ββ sin0−==
∆

∆+−
=

( )1coscossin 00000 −==−= ∫ lIzIzdzII ll

V ββββ

2
0

=
ENV

V

I
I

I(z) = I0e –j βz

I(z) = I0cosβz

Vertical:Horizontal:



17To be presented by John McCloskey and video recorded at the 2016 IEEE International Symposium on Electromagnetic Compatibility, Ottawa, Canada, July 26, 2016.

Horizontal (Wire) Current
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Vertical (Displacement) Current
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Response and Envelope of sin(x)/x

Envelope of |sin(x)/x|:
1 for x < 1

1/x for x > 1

Response of |sin(x)/x|:
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Horizontal E-Field (No Ground Plane Attenuation)
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Ground Plane Attenuation Horizontal Polarization Only)
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Ground Plane Attenuation (Gain, Really)
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|EH/I0| with Ground Plane Attenuation
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Vertical:  |EV/I0|
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MIL-STD-461 RE102 Limits
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Equivalent CMCE Limits
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