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Abstract—This paper presents a preliminary study of a novel 
subspace-averaging direction of arrival estimation technique 
(SADE), which jointly utilizes both the noise and signal 
subspaces to estimate the direction of arrival (DOAs) instead of 
just the former in a wide range of Signal to Noise (SNR) 
scenarios. The work was carried out by exploiting the common 
noise subspace properties with a modified covariance matrix. To 
further reduce the computational load, this work employs a 
simple polynomial root solving technique to determine the 
DOAs. From the simulation results of varying snapshot values 
and under Additive White Gaussian Noise (AWGN), the SADE 
technique manages to attain 99.84% of the Cramer Rao Bound 
(CRB) at >15dB SNR. In addition, from the simulation of 
varying antenna array elements, when the number of elements 
is less than 8, the SADE technique performs with a Root Mean 
Squared Error (RMSE) of 9.5% of the true direction compared 
to 15.6% and 16.7% of root-MUSIC and ESPRIT respectively 
with the potential application such as in a low-cost intelligent 
transportation localization system that requires high DOA 
estimation accuracy without the need for high hardware costs.  

Index Terms—Antenna array, DOA, Direction of Arrival, 
Snapshots 

I.  INTRODUCTION 
Direction-of-Arrival (DOA) estimation of impinging 

signals on a sensor array is a commonly occurring research 
problem with applications in the field of radar, sonar, and 
many other wireless communication systems [1]-[5]. With the 
rise of technologically advanced Vehicle-to-Vehicle (V2V) 
and Vehicle-to-Everything (V2X) wireless communication, 
DOA estimation will play a key role in realizing V2V and 
V2X that enables vehicles to intercommunicate and localize 
with other vehicles and the environment around them using 
short-range wireless signals [5]-[6].  

Much effort has been made over the recent decades in 
developing high-resolution DOA estimators such as the 
Capon’s Method, Multiple Signal Classification (MUSIC), 
Estimation of Signal Parameters via Rotational Invariance 
Techniques (ESPRIT) and its many improved derivatives [7]-
[9]. To overcome this challenge, many improvements have 
been carried out to reduce the computational load and 
estimation accuracy such as the root-MUSIC and Unitary-
ESPRIT [5]. The most recent state-of-the-art technique was 
the use of machine learning to mimic the performance of the 

aforementioned estimators. Machine learning-based 
techniques to solve for DOA estimation are known to be 
computationally demanding and time-consuming which can 
be deemed unfeasible for real-world active application [15]-
[16]. Thus, these techniques present the pitfall in the lack of 
consideration of the signal subspace region that can be 
beneficial in determining a specific region for DOA 
estimation due to the robustness of the aforementioned 
subspace. Furthermore, it has been highlighted in past works 
of literature that the implementation of DOA algorithms is 
financially expensive due to high computational complexity 
where there is a need for a significantly high number of 
samples to accurately estimate the DOAs of interest.  
 The present paper aims at a preliminary attempt in 
developing a novel DOA estimation method for narrowband 
and short-range signal source environment called the 
Subspace-Averaging DOA Estimator (SADE). This is carried 
out by utilizing and averaging both the noise and signal 
subspaces concurrently to form a new covariance matrix 
which is a crucial data point for DOA estimation. The 
proposed DOA technique estimates exact DOA points at a 
range of SNR values (> 10 dB) while maintaining low 
computational complexity. The receiver is configured to 
process multiple DOA information impinging from different 
DOA position in space. The simulation results verify our 
proposed method and supersede existing DOA estimation 
techniques as an asymptotically unbiased estimator under 
static Additive White Gaussian Noise (AWGN) conditions.  
 This paper is outlined as follows. Section II presents the 
system model of a general DOA estimator. Section III 
introduces our proposed SADE technique. Section IV presents 
the simulation results under the environment of varying 
snapshots and antenna array elements. Finally, Section V 
concludes the paper with a conclusion and presents potential 
future works.  



II. SYSTEM MODEL 

 
Figure 1: ULA Illustration 

Fig. 1 shows a general data model illustration of a simple 
linear array which will be the basis of our algorithm design 
[4]. Assume that N far-field narrowband signals are impinging 
on a Uniform Linear Array (ULA) of M(> N) sensors with an 
inter-element spacing, 𝑑 typically at !

"
 wavelength of its 

operating frequency. In this case, it is assumed that the signals 
are uncorrelated with noise. Under this assumption, the 
received signal at the array output for 𝑘#$ snapshot is 
expressed as [4]: 

 
𝐱(𝑘) = 𝐀𝑠(𝑘) + 𝐍(𝑘)			𝑘 = 1,2, … , K	 (1) 

 

Where K is the total number of snapshots, 𝒙(𝑘) is an M×M 
matrix of the received signal data consisting of signals and 
additive noise, 𝐍(𝑘) while 𝐀 ≜
[𝑎(𝜃%) 𝑎(𝜃") ⋯ 𝑎(𝜃&)] is an M×N matrix containing 
the signal arrival vector information which consists of the 
relative phase shifts at the array elements. In addition, 𝑎(𝜃) 
in A is the steering vector which is defined as 

𝒂(𝜃) = =1 𝑒'"()
*
!+ ,-. / ⋯ 𝑒'"((12%))

*
!+ ,-. /?

4
	 (2) 

 𝒔(𝑘) ≜ [𝑠%(𝑘) 𝑠"(𝑘) ⋯ 𝑠5(𝑘)]4 is an N × 1 vector 
of N incident signal source values and n(k) is an M× 1 vector 
of sensor noise values [4]. Finally, 𝜃 = {𝜃%, ⋯ 𝜃5} are the 
parameters of interest that contain the DOA information 
which is required to be estimated. The sample covariance 
matrix is then obtained by [5]: 
 

𝐑D 𝐱𝐱 =
1
KE𝐗𝐗7

8

9:%

	 (3) 

 

Where the variable K is denoted as the number of snapshot 
samples as before. The next stage is the Eigenvalue 
Decomposition (EVD) to obtain the signal and noise 
subspaces. The first 𝐷 highest eigenvalues of the covariance 
matrix represent the incoming signals. The (M − N) smallest 
eigenvalues represent noise. To that end, it is now possible to 
represent the signal, 𝐑𝐬 and noise subspaces, 𝐑𝐧 in vector 
form as: 
 

𝐑𝐬 = [𝑊% 𝑊" … 𝑊=]	 (4) 
 

𝐑𝐧 = [𝑊=>% 𝑊=>" … 𝑊1]	 (5) 
 
Where 𝑊 is the mth eigenvector of the Eigen-decomposed 
covariance matrix of 𝐑D 𝐱𝐱.  

III. THE PROPOSED DOA ESTIMATION METHOD – SADE 
The proposed method identifies and modifies the signal 

and noise subspaces within the received data. Then, the DOA 
is estimated using a polynomial solving technique to reduce 
computational complexity.  

Firstly, the modified received data signal, 𝐘 is defined as: 
 

𝐘 = 𝐈?𝐗∗	 (6) 
 
Where 𝐗∗ is defined as the complex conjugate of the received 
data signal 𝐗 and 𝐈? is an anti-diagonal identity matrix of size 
M×M represented as: 
 

𝐈𝐌 = P
0 … 1
⋮ ⋱ ⋮

1(?B?) ⋯ 0
T	 (7) 

 
Next, the reformulated secondary sample covariance matrix 
𝐑D 𝐲𝐲 is expressed as: 

𝐑D 𝐲𝐲 =
1
KE𝐘𝐘7

8

-:%

	 (8) 

 
To that end, the resultant sample covariance matrix 𝐑 is 
obtained as follows: 

𝐑 =
W𝐑D 𝐱𝐱 + 𝐑D 𝐲𝐲X

2 	 (9) 

 
From the equation, we can observe the noise components of 
both covariance matrices have equal values. This can be 
proven using the Expectation Value formula represented as 
[12]: 
 

𝐑DD = E[𝐘𝐘7] (10) 
𝐑DD = 𝐈?𝐀∗𝐑𝐬∗(𝐀∗)7𝐈? + 𝐑𝐧	 (11) 

𝐑DD = 𝐈?𝐑𝐬∗𝐈?	 (12) 
 
Thus, we utilize both the noise and signal subspaces to 
determine the DOA. Lastly, we employ a simple root 



polynomial technique to determine the DOAs with the 
purpose and benefit of lower computational complexity. This 
essentially means that scanning the entire span of possible 
DOA angles is not required – significantly reducing the costs. 
The poles of the pseudo spectrum are the corresponding roots 
that lie closest to the unit circle. For example, an M-element 
ULA covariance matrix is of dimension M×M and will have 
2(M − 1) diagonals. Thus, each root can be written as [5][14]: 

𝑧- = |𝑧-|𝑒'EFG(H!)			𝑖 = 1,2, … ,2(M − 1)	 (13) 
 
Where 𝑧 = 𝑒'

"#
$ * IJK/! and arg(𝑧-) is the phase angle of 𝑧-. By 

comparing 𝑒'EFG(H!) and 𝑒'
"#
$ * IJK/!, the pth roots closest to the 

unit circle are mapped and converted into the estimated DOAs 
of interest by: 

𝜃-(L) =	𝑠𝑖𝑛2% b
𝜆
2𝜋𝑑 arg	W𝑧-(L)Xe	 (14) 

 
Where 𝜃-(L) are the estimated DOAs of interest. Note that the 
range of 𝑖 values are dependent on the number of signal 
source. For example, if there are 2 signal sources, then the 2 
roots closest to the unit circle are the estimated DOAs of 
interest and so forth. In this paper, as it is beyond the scope of 
this study, it is assumed that the number of signal sources is 
known.  In summary, our proposed SADE algorithm is 
summed up in Table 1.   
 

Table 1: Proposed SADE Algorithm 

SADE Algorithm 

Step 1. Obtain received signal data, 𝐗 

Step 2. Obtain primary sample covariance matrix, 𝐑D 𝐱𝐱 

Step 3. Obtain secondary sample covariance matrix, 
𝐑D 𝐲𝐲 

Step 4. Construct subspace-averaged covariance 
matrix, 𝐑 

Step 5. Perform EVD to obtain signal and noise 
subspaces, 𝐑𝐬 & 𝐑𝐧 

Step 6. Perform polynomial rooting and determine 
DOAs, 𝜃-(L) 

IV. SIMULATION RESULTS 
The proposed SADE technique was implemented using 

MATLAB R2020b. It is assumed that the signal source is 
uncorrelated and only AWGN was considered for simplicity. 
The SADE algorithm is compared to ESPRIT and Root-
MUSIC – a relatively similar but simple subspace DOA 
estimation technique for demonstration comparison and 
presentation of the key benefits of using a subspace-averaging 
based technique as the sample covariance matrix by 

leveraging on both the signal and noise subspaces instead of 
just the latter. The element spacing is half the operating 
frequency’s wavelength. In this section, some key factors will 
be observed and discussed.  

To evaluate the performance of our technique, we 
modelled a simple scenario where only a single far-field signal 
source is impinging onto the antenna array at 50° for ease of 
comparison. In our study, we focus on the performance of 
varying antenna array elements and snapshot values across 
SNR values. 

A. Varying the Number of Snapshots  
In this section, we observe our proposed SADE technique 

under varying snapshots against Root-MUSIC and ESPRIT. 
In this scenario, we assume that the number of the antenna 
array element is 𝑀 = 4. The Cramer-Rao Bound (CRB) is 
also provided as an indicator of the statistical performance of 
our estimators. With reference from Fig. 2 to Fig. 4 there is 
clear indication and consistency across any value of snapshot 
that at low SNR value (< 15dB), the RMSE for SADE is 
approximately 23.01% higher than that of Root-MUSIC and 
ESPRIT respectively. However, as the SNR value 
approached >15dB, SADE presents a significantly lower 
RMSE when compared to the latter. At 30 dB SNR, SADE 
manages to attain closer to the CRB with an RMSE of 
approximately 99.84% accurate, when compared to Root-
MUSIC and ESPRIT against the CRB value. Since the 
number of elements in this performance study is relatively 
small, the noise and signal subspace eigenvalues are 
inherently significant at high SNR. Furthermore, as SADE 
utilizes both the noise and subspace subspaces, the 
eigenvalues from both of these subspace components allows 
higher estimation resolution. This effect has an inversely 
proportional impact when the number of elements increases 
which are discussed in the next section.  

 

 
Figure 2: SNR-RMSE for K Number of Snapshots = 10 



 
Figure 3: SNR-RMSE for K Number of Snapshots = 100 

 
Figure 4: SNR-RMSE for K Number of Snapshots = 1000 

B. Varying the Number of Array Elements 
In this section, we observed the performance of our SADE 

algorithm under varying antenna array elements. For 
simplicity, we omit the CRB and observe closely and 
specifically on the SNR-RMSE performance among the 3 
estimators. We also set a fixed snapshot value K = 1000 for 
consistent comparison. In the case where M = 4 is 
demonstrated in Fig. 4, we observe that the RMSE of SADE 
is significantly lower when compared to the other DOA 
techniques across the wide range of SNR values. Fig. 4 shows 
that RMSE for SADE obtains lower RMSE when compared 
to root-MUSIC and ESPRIT as the SNR gets higher. 
However, as the number of elements increase, the 
performance of SADE decays when compared to root-
MUSIC. This is because the signal subspace 𝐸, as the number 
of antenna array increases, the noise subspace, 𝐸. are 
significantly higher in value when compared to the signal 
subspace	(𝐑𝐧 ≫ 𝐑𝐬).  Therefore, the averaging technique 
loses estimation performance as the eigenvalues in the signal 
subspace approaches insignificant values. Thus, conducting a 
subspace-averaging technique would result in poorer 
performance. This trend is observed from Fig. 5 and Fig. 6 
where SADE performs slightly worse than Root-MUSIC but 

higher accuracy when compared to ESPRIT. When the 
number of elements is less than 8, the SADE has an average 
RMSE of 9.5% when compared to root-MUSIC and ESPRIT 
at 15.6% and 16.7% respectively when compared to the true 
signal source DOA. 

 
Figure 5: SNR-RMSE for Antenna Elements M = 6 

 
Figure 6: SNR-RMSE for Antenna Elements M = 16 

V. CONCLUSION  
The proposed subspace-averaging DOA estimation 

technique, SADE was presented to significantly improve the 
performance of an estimator without the expense of 
computational costs and improve estimation accuracy based 
on the RMSE results. From the simulation results of varying 
snapshot values and under Additive White Gaussian Noise 
(AWGN), the SADE technique manages to attain 99.84% of 
the Cramer Rao Bound (CRB) at >15dB SNR. In addition, 
from the simulation of varying antenna array elements, when 
the number of elements is less than 8, the SADE technique 
performs with a Root Mean Squared Error (RMSE) of 9.5% 
of the true direction compared to 15.6% and 16.7% of root-
MUSIC and ESPRIT. A key potential application for the 
SADE algorithm would be in a Wi-Fi-based wireless 
communication system such as in an intelligent transportation 
environment or roadside to vehicular wireless links like in V2I 
or V2X applications where small antenna size is key to its 



mobility [13]. Another potential application would be in an 
Unmanned Aerial Vehicle (UAV) localization where the 
antenna size must be small to accommodate weight and flight 
optimization without the loss of localization accuracy.  

ACKNOWLEDGMENT 
The authors would like to acknowledge and express 

sincere appreciation to the Singapore Economic Development 
Board (EDB) and RFNet Technologies Pte Ltd for financing 
and providing a good environment and facilities to support the 
project. 

REFERENCES 

 
[1] C. Uysal and T. Filik, "Contactless respiration rate estimation using 

MUSIC algorithm," 2017 10th International Conference on Electrical 
and Electronics Engineering (ELECO), Bursa, 2017, pp. 606-610. 

[2] Â. M. C. R. Borzino, J. A. Apolinário, and M. L. R. de Campos, 
"Robust DOA estimation of heavily noisy gunshot signals," 2015 IEEE 
International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), South Brisbane, QLD, 2015, pp. 449-453. 

[3] R. K, H. F and M. M A, "A comprehensive analysis and performance 
evaluation of different direction of arrival estimation algorithms," 2012 
IEEE Symposium on Computers & Informatics (ISCI), Penang, 2012, 
pp. 256-259. 

[4] D. M. Vijayan and S. K. Menon, "Direction of arrival estimation in 
smart antenna for marine communication," 2016 International 
Conference on Communication and Signal Processing (ICCSP), 
Melmaruvathur, 2016, pp. 1535-1540. 

[5] M. Muhammad, M. Li, Q. H. Abbasi, C. Goh and M. Imran, 
"Performance Evaluation for Direction of Arrival Estimation Using 4-
Element Linear Array," 2019 13th European Conference on Antennas 
and Propagation (EuCAP), Krakow, Poland, 2019, pp. 1-5. 

[6] A. Abdelbari and B. Bilgehan, "A Novel DOA Estimation Method of 
Several Sources for 5G Networks," 2020 International Conference on 
Electrical, Communication, and Computer Engineering (ICECCE), 
Istanbul, Turkey, 2020, pp. 1-6, doi: 
10.1109/ICECCE49384.2020.9179306. 

[7] P. Handel, P. Stoica, and T. Soderstrom, “Capon method for doa 
estimation: accuracy and robustness aspects,” in IEEE Winter 
Workshop on Nonlinear Digital Signal Processing, Jan 1993, pp. 1–5. 

[8] W. ke Nie, D. zheng Feng, H. Xie, J. Li, and P. fei Xu, “Improved 
music algorithm for high resolution angle estimation,” Signal 
Processing, vol. 122, pp. 87 – 92, 2016. 

[9] A. . van der Veen, M. C. Vanderveen, and A. J. Paulraj, “Joint angle 
and delay estimation using shift-invariance properties,” IEEE Signal 
Processing Letters, vol. 4, no. 5, pp. 142–145, May 1997. 

[10] P. Stoica and K. C. Sharman, “Novel eigenanalysis method for 
direction estimation,” IEEE Proceedings F - Radar and Signal 
Processing, vol. 137, no. 1, pp. 19–26, Feb 1990. 

[11] A. B. Gershman and P. Stoica, “Mode with extra-roots (modex): a new 
doa estimation algorithm with an improved threshold performance,” in 
1999 IEEE International Conference on Acoustics, Speech, and Signal 
Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), vol. 5, 
March 1999, pp. 2833–2836 vol.5. 

[12] M. M. Gunjal and A. A. B. Raj, "Improved Direction of Arrival 
Estimation Using Modified Music Algorithm," 2020 5th International 
Conference on Communication and Electronics Systems (ICCES), 
COIMBATORE, India, 2020, pp. 249-254, doi: 
10.1109/ICCES48766.2020.9137982. 

[13] W. Shieh, W. Lee, S. Tung, P. Lu, T. Wang, and S. Chang, “Design of 
infrared electronic-toll-collection systems with extended 
communication areas and performance of data transmission,” IEEE 
Transactions on Intelligent Transportation Systems, vol. 12, pp. 25-35, 
March 2011. 

[14] M. Muhammad, M. Li, Q. H. Abbasi, C. Goh and M. Imran, "Direction 
of Arrival Estimation using Root-Transformation Matrix 
Technique," 2019 IEEE International Symposium on Antennas and 
Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, 
USA, 2019, pp. 1369-1370, doi: 
10.1109/APUSNCURSINRSM.2019.8889249. 

[15] A. Khan, S. Wang and Z. Zhu, "Angle-of-Arrival Estimation Using an 
Adaptive Machine Learning Framework," in IEEE Communications 
Letters, vol. 23, no. 2, pp. 294-297, Feb. 2019, doi: 
10.1109/LCOMM.2018.2884464. 

[16] M. Chen, Y. Gong and X. Mao, "Deep Neural Network for Estimation 
of Direction of Arrival With Antenna Array," in IEEE Access, vol. 8, 
pp. 140688-140698, 2020, doi: 10.1109/ACCESS.2020.3012582. 


