ANALYSIS AND DESIGN OF MATRIX CONVERTERS FOR ADJUSTABLE SPEED DRIVES AND DISTRIBUTED POWER SOURCES

A Dissertation

by

HAN JU CHA

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

August 2004

Major Subject: Electrical Engineering
ANALYSIS AND DESIGN OF MATRIX CONVERTERS FOR ADJUSTABLE
SPEED DRIVES AND DISTRIBUTED POWER SOURCES

A Dissertation

by

HAN JU CHA

Submitted to Texas A&M University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

__________________________ _____________________________
Prasad N. Enjeti Shankar Bhattacharyya
(Chair of Committee) (Member)

__________________________ _____________________________
Hamid A. Toliyat Emil J. Straube
(Member) (Member)

Chanan Singh
(Head of Department)

August 2004

Major Subject: Electrical Engineering
ABSTRACT

Analysis and Design of Matrix Converters for Adjustable Speed Drives
and Distributed Power Sources. (August 2004)
Han Ju Cha, B.S., Seoul National University, Seoul, Korea;
M.S., Pohang Institute of Science & Technology, Pohang, Korea
Chair of Advisory Committee: Dr. Prasad N. Enjeti

Recently, matrix converter has received considerable interest as a viable alternative to the conventional back-to-back PWM (Pulse Width Modulation) converter in the ac/ac conversion. This direct ac/ac converter provides some attractive characteristics such as: inherent four-quadrant operation; absence of bulky dc-link electrolytic capacitors; clean input power characteristics and increased power density. However, industrial application of the converter is still limited because of some practical issues such as common mode voltage effects, high susceptibility to input power disturbances and low voltage transfer ratio. This dissertation proposes several new matrix converter topologies together with control strategies to provide a solution about the above issues.

In this dissertation, a new modulation method which reduces the common mode voltage at the matrix converter is first proposed. The new method utilizes the proper zero vector selection and placement within a sampling period and results in the reduction of the common mode voltage, square rms of ripple components of input current and switching losses.

Due to the absence of a dc-link, matrix converter powered ac drivers suffer from input voltage disturbances. This dissertation proposes a new ride-through approach to improve robustness for input voltage disturbances. The conventional matrix converter is
modified with the addition of ride-through module and the add-on module provides ride-
through capability for matrix converter fed adjustable speed drivers.

In order to increase the inherent low voltage transfer ratio of the matrix
converter, a new three-phase high-frequency link matrix converter is proposed, where a
dual bridge matrix converter is modified by adding a high-frequency transformer into
dc-link. The new converter provides flexible voltage transfer ratio and galvanic isolation
between input and output ac sources.

Finally, the matrix converter concept is extended to dc/ac conversion from ac/ac
conversion. The new dc/ac direct converter consists of soft switching full bridge dc/dc
converter and three phase voltage source inverter without dc link capacitors. Both
converters are synchronized for zero current/voltage switching and result in higher
efficiency and lower EMI (Electro Magnetic Interference) throughout the whole load
range. Analysis, design example and experimental results are detailed for each proposed
topology.
To my mother:
Jeong Hyea Kim,
for her sacrifice, trust, and for all the beautiful things she has taught me.

To my beloved family:
San Ra Kim,
Michael DongWon and Andy DongHyun
who are always deep in my heart.
ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude to Dr. Enjeti for his inspiring guidance and encouragement throughout the whole endeavor. I am fortunate to have worked with him and witnessed his dedication to research as well as teaching. I express my sincere appreciation to the other members of committee; Dr. Bhattacharyya, Dr. Toliyat, Dr. Straube and Dr. Singh. My thanks are also extended to the lab members at Texas A&M University.

Without my family’s sacrifice and support, this study would not have been possible. I would like to thank my mother, brothers and sister for their unconditional love and constant encouragement in all my endeavors.
TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION .. 1

1.1 AC/AC conversion ... 1
1.2 Indirect space vector modulation ... 3
 1.2.1 Indirect modulation principle 5
 1.2.2 Space vector modulation for the inverter stage 8
 1.2.3 Space vector modulation for the rectifier stage 14
 1.2.4 Indirect modulation for the entire matrix converter 19
 1.3 Review of previous works .. 25
 1.4 Research objectives .. 32
 1.5 Dissertation outline .. 33

II A NEW PWM STRATEGY TO REDUCE COMMON MODE
VOLTAGE... 35

 2.1 Introduction .. 35
 2.2 Common mode voltage in matrix converter 36
 2.3 PWM strategy ... 38
 2.4 Harmonic performance ... 41
 2.4.1 Output voltage ... 41
 2.4.2 Input current ... 43
 2.5 Simulation results ... 46
 2.6 Experimental results ... 48
 2.7 Conclusion .. 55

III RIDE-THROUGH CAPABILITY FOR INPUT VOLTAGE
DISTURBANCE.. 56

 3.1 Introduction .. 56
 3.2 Ride-through system in matrix converter 57
 3.2.1 Ride-through system configuration 58
 3.2.2 Ride-through strategy .. 59
 3.3 Simulation results ... 62
 3.4 Experimental results ... 64
 3.4.1 Hardware implementation .. 65
 3.4.2 Results using the ride-through module 66
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Ac/ac converter (a) indirect ac/ac converter (b) direct ac/ac converter</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Three phase matrix converter</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Matrix converter topology</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Switching constraints (a) short circuit between input phases (b) open circuit for output phase</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>The equivalent circuit for indirect modulation</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Transformation from equivalent circuit to matrix converter in phase A</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>Inverter stage from the equivalent circuit</td>
<td>9</td>
</tr>
<tr>
<td>1.8</td>
<td>Inverter voltage hexagon</td>
<td>11</td>
</tr>
<tr>
<td>1.9</td>
<td>Synthesis of reference voltage vector</td>
<td>11</td>
</tr>
<tr>
<td>1.10</td>
<td>Six sectors in the output voltages</td>
<td>13</td>
</tr>
<tr>
<td>1.11</td>
<td>Rectifier stage from the equivalent circuit</td>
<td>14</td>
</tr>
<tr>
<td>1.12</td>
<td>Rectifier current hexagon</td>
<td>16</td>
</tr>
<tr>
<td>1.13</td>
<td>Synthesis of reference current vector ($m_C = 1$)</td>
<td>17</td>
</tr>
<tr>
<td>1.14</td>
<td>Six sectors in input phase voltage</td>
<td>19</td>
</tr>
<tr>
<td>1.15</td>
<td>$V_1 - I_1$ pair during $d_{\beta\gamma}$</td>
<td>22</td>
</tr>
<tr>
<td>1.16</td>
<td>$V_6 - I_1$ pair during $d_{\alpha\gamma}$</td>
<td>22</td>
</tr>
<tr>
<td>1.17</td>
<td>$V_6 - I_2$ pair during $d_{\alpha\delta}$</td>
<td>23</td>
</tr>
<tr>
<td>1.18</td>
<td>$V_1 - I_2$ pair during $d_{\beta\delta}$</td>
<td>23</td>
</tr>
<tr>
<td>1.19</td>
<td>$V_0 - I_0$ pair during d_0</td>
<td>23</td>
</tr>
<tr>
<td>1.20</td>
<td>Space vector representation (a) 1st strategy (b) 2nd strategy</td>
<td>28</td>
</tr>
<tr>
<td>1.21</td>
<td>Operating modes during ride-through (a) charging mode (b) discharging mode</td>
<td>30</td>
</tr>
<tr>
<td>FIGURE</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>

2.1 Common mode voltage and leakage current path (a) three phase matrix converter (b) the model of the matrix converter for indirect modulation

2.2 Zero vector component (a) the optimized ISVPWM (b) the proposed ISVPWM

2.3 The per-carrier cycle rms value of the harmonic flux

2.4 The harmonic flux as a function of the modulation index (solid line : proposed PWM, dashed line : optimized PWM)

2.5 The per-carrier cycle rms value of the harmonic charge

2.6 The harmonic charge as a function of the modulation index under output power factor=0.9 (solid line : proposed PWM, dashed line : optimized PWM)

2.7 The harmonic charge as a function of the modulation index under output power factor=0.6 (solid line : proposed PWM, dashed line : optimized PWM)

2.8 Waveform of V_{cm} with $f_{out}=50Hz$, $m_V=0.83$ (a) the conventional ISVPWM (b) the proposed ISVPWM

2.9 Waveform of V_{cm} with $f_{out}=20Hz$, $m_V=0.33$ (a) the conventional ISVPWM (b) the proposed ISVPWM

2.10 Block diagram of 3kVA matrix converter

2.11 3 kVA laboratory prototype matrix converter

2.12 Waveforms with $f_{out}=50Hz$, $m_V=0.83$ (a) the conventional ISVPWM (b) the proposed ISVPWM (ch 3: V_{AB} and ch 4: V_{cm})

2.13 Waveforms with $f_{out}=20Hz$, $m_V=0.33$ (a) the conventional ISVPWM (b) the proposed ISVPWM (ch 3: V_{AB} and ch 4: V_{cm})

2.14 Harmonic spectrum of V_{cm} with $f_{out}=50Hz$, $m_V=0.83$ (a) the conventional ISVPWM (b) the proposed ISVPWM

2.15 Waveforms with $f_{out}=50Hz$, $m_V=0.83$ (a) the conventional ISVPWM (b) the proposed ISVPWM (ch 2: $I_{leakage}$ (0.5A/div), ch 4: V_{cm})
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.16</td>
<td>V_{cm} comparisons of conventional PWM and proposed PWM (a) peak value (b) rms value.</td>
</tr>
<tr>
<td>3.1</td>
<td>Matrix converter with ride-through module (SiA, SiB, SiC are add-on IGBTs).</td>
</tr>
<tr>
<td>3.2</td>
<td>Operating mode (a) normal mode (b) ride-through mode.</td>
</tr>
<tr>
<td>3.3</td>
<td>Control block diagram for the ride-through strategy.</td>
</tr>
<tr>
<td>3.4</td>
<td>Ride-through operation under no load torque (from top to bottom (a) input line voltage V_{ab} (b) motor phase current I_A (c) dc-link voltage V_{dc} (d) motor shaft speed [rpm]).</td>
</tr>
<tr>
<td>3.5</td>
<td>Ride-through operation under 100% load torque (from top to bottom (a) input line voltage V_{ab} (b) motor phase current I_A (c) dc-link voltage V_{dc} (d) motor shaft speed [rpm]).</td>
</tr>
<tr>
<td>3.6</td>
<td>Block diagram of 3kVA matrix converter with ride-through module.</td>
</tr>
<tr>
<td>3.7</td>
<td>3 kVA matrix converter with ride-through module.</td>
</tr>
<tr>
<td>3.8</td>
<td>Matrix converter module operation (ch2: input voltage V_{ab}, ch3: output current I_A [5A/div], ch4: output line-to-line voltage V_{AB}).</td>
</tr>
<tr>
<td>3.9</td>
<td>Ride-through module operation (ch2: input voltage V_{ab}, ch3: output current I_A [5A/div], ch4: output line-to-line voltage V_{AB}).</td>
</tr>
<tr>
<td>3.10</td>
<td>Waveforms at power disturbance (a) normal mode (b) ride-through mode (c) mode transition from ride-through mode to normal mode (ch1: STPI, ch2: output line-to-line voltage V_{AB}, ch3: input voltage V_{abs}, ch4: output current I_A [5A/div]).</td>
</tr>
<tr>
<td>3.11</td>
<td>Comparison during power interruption (a) without ride-through module (b) with ride-through module (ch1: STPI, ch2: output current I_A [5A/div]), ch3: input voltage V_{abs}, ch4: output line-to-line voltage V_{AB}).</td>
</tr>
<tr>
<td>3.12</td>
<td>Mode changes between normal mode and ride-through mode (ch1: STPI detector signal (0: normal mode, 1: ride-through mode), ch2: output frequency f_{OUT}, ch3: input voltage V_{abs}, ch4: output current I_A).</td>
</tr>
<tr>
<td>3.13</td>
<td>Modified voltage clamp circuit for ride-through capability.</td>
</tr>
<tr>
<td>4.1</td>
<td>(a) proposed 3φ/3φ high frequency link matrix converter (b) bidirectional switch configuration.</td>
</tr>
</tbody>
</table>
FIGURE

4.2 Real implementation of the proposed matrix converter 77
4.3 Six modes of input phase voltages .. 78
4.4 PWM pattern generation (a) duty cycle in input phase voltage (b) 50%
duty square wave in the primary voltage \(V_P \) (c) fluctuated dc-link
voltage \(V_{dc} \) .. 80
4.5 (a) equivalent circuit model (b) phasor diagram when displacement
factor is 1.0 .. 84
4.6 Primary side 3\(\phi \)/1\(\phi \) matrix converter waveforms (\(f_{in} = 30 \) Hz)........... 85
4.7 Secondary side 1\(\phi \)/3\(\phi \) matrix converter waveforms (\(f_{out} = 60 \) Hz)........ 85
4.8 High frequency link waveforms at 60Hz input (ch2: \(V_p \), ch3: \(V_{ab} \),
ch4: \(V_{dc} \)) ... 87
4.9 Primary side waveforms at 60Hz input (ch2: \(I_a \) (10A/div), ch3: \(V_a \))..... 87
4.10 Input/out waveforms at 60Hz input (ch1: \(I_A \) (20A/div), ch2: \(I_a \)
(20A/div), ch3: \(V_A \), ch4: \(V_{dc} \)) ... 88
4.11 FFT results at 60Hz input (ch M1: \(I_a \), ch M2: \(I_A \))................................. 88
4.12 High frequency link waveforms at 400Hz input (ch1: mode, ch2: \(V_p \),
ch3: \(V_{ab} \), ch4: \(V_{dc} \)) ... 89
4.13 Input/out waveforms at 400Hz (ch1: \(I_A \) (20A/div), ch2: \(I_a \) (20A/div),
ch3: \(V_A \), ch4: \(V_a \)) ... 89
5.1 The proposed AC link based fuel cell power conditioner 93
5.2 The proposed 1\(\phi \)/3\(\phi \) direct converter for resident power system 94
5.3 The proposed 1\(\phi \)/3\(\phi \) direct converter for 3\(\phi \) utility interface 95
5.4 PWM patterns at \(\theta = 90^\circ \) and zero vector position 96
5.5 (a) equivalent circuit at ZCS turn-off and (b) \(I_S \) during inverter zero
vectors .. 99
5.6 3kVA direct matrix converter ... 101
5.7 ZVS turn on operation (ch1: \(SI \) gate signal, ch3: \(S_{4DS} \), ch4: \(S_{4GE} \))........ 102
5.8 ZCS operation with \(\theta = 270^\circ \), unbalanced load (ch2: \(I_s \) (5A/div),
ch3: \(V_s \), ch4: \(V_{UP} \)) .. 103
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9 Inverter output voltage under unbalanced load (ch2: I_A (10A/div), ch3: V_{AN}, ch4: V_{BN})</td>
<td>104</td>
</tr>
<tr>
<td>5.10 Snubber capacitor C_S initial charge (ch3: V_S, ch4: V_C)</td>
<td>105</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>10</td>
</tr>
<tr>
<td>1.2</td>
<td>16</td>
</tr>
<tr>
<td>1.3</td>
<td>24</td>
</tr>
<tr>
<td>2.1</td>
<td>38</td>
</tr>
<tr>
<td>2.2</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>79</td>
</tr>
</tbody>
</table>

1.1 Switch states and switching vectors for the inverter side
1.2 Switch states and switching vectors for the rectifier side
1.3 Switching sequence at current sector = S_0, voltage sector = S_0
2.1 Maximum common mode voltage according to output voltage vector
2.2 Nine step vector sequence (current hexagon : 1, voltage hexagon : 1)
2.3 Vector sequence of the proposed ISVPWM
4.1 Switch states and corresponding voltage V_p and V_{dc} according to mode of input phase voltages
CHAPTER I

INTRODUCTION

1.1 AC/AC conversion

Many parts of industrial application request ac/ac power conversion and ac/ac converters take power from one ac system and deliver it to another with waveforms of different amplitude, frequency, or phase. The ac/ac converters are commonly classified into indirect converter which utilizes a dc link between the two ac systems and direct converter that provides direct conversion. Indirect converter consists of two converter stages and energy storage element, which convert input ac to dc and then reconverting dc back to output ac with variable amplitude and frequency as shown in Fig. 1.1 (a). The operation of these converter stages is decoupled on an instantaneous basis by means of energy storage element and controlled independently, so long as the average energy flow is equal. Therefore, the instantaneous power flow does not have to equal the instantaneous power output. The difference between the instantaneous input and output power must be absorbed or delivered by an energy storage element within the converter. The energy storage element can be either a capacitor or an inductor.

However, the energy storage element is not needed in direct converter as shown in Fig. 1.1 (b) [1]. In General, direct converter can be identified as three distinct topological approaches. The first and simplest topology can be used to change the amplitude of an ac waveform. It is known as an ac controller and functions by simply chopping symmetric notches out of the input waveform. The second can be utilized if the output frequency is much lower than the input source frequency. This topology is called a cycloconverter, and it approximates the desired output waveform by synthesizing it.

This dissertation follows the style of *IEEE Transactions on Industry Applications*.
from pieces of the input waveform. The last is matrix converter and it is most versatile without any limits on the output frequency and amplitude. It replaces the multiple conversion stages and the intermediate energy storage element by a single power conversion stage, and uses a matrix of semiconductor bidirectional switches, with a switch connected between each input terminal to each output terminal as shown in Fig. 1.2

With this general arrangement of switches, the power flow through the converter can reverse. Because of the absence of any energy storage element, the instantaneous power input must be equal to the power output, assuming idealized zero-loss switches. However, the reactive power input does not have to equal the reactive power output. It
can be said again that the phase angle between the voltages and currents at the input can be controlled and does not have to be the same as at the output. Also, the form and the frequency at the two sides are independent, in other words, the input may be three-phase ac and the output dc, or both may be dc, or both may be ac [2]. Therefore, the matrix converter topology is promising for universal power conversion such as: ac to dc, dc to ac, dc to dc or ac to ac.

1.2 Indirect space vector modulation

In many ac drive applications, it is desirable to use a compact voltage source converter to provide sinusoidal output voltages with varying amplitude and frequency, while drawing sinusoidal input currents with unity power factor from the ac source, and having high power density and efficiency. In recent years, matrix converter has become increasingly attractive for these applications because they fulfill all the requirements, having the potential to replace the conventionally used rectifier - dc-link - inverter structures. Matrix converter is a single stage converter and they need no energy storage components except small input ac filters for elimination of switching ripples.

However, a practical industrial application is still limited and the modulation method for the matrix converter is also understood to limited engineering people because of the high level of complexity and limited materials to explain its operating principle easily. Meanwhile, the standard voltage source inverter (VSI) and its relevant space vector modulation (SVM) are well known to many engineering people due to the opposite reasons. Therefore, it would be a good approach to explain the operating principle of the matrix converter by adopting standard VSI topology and SVM concept.

The simplified 3φ-3φ matrix converter topology is shown in Fig. 1.3. Matrix converter consists of nine bidirectional switches and each output phase is associated with three switch set connected to three input phases. This configuration of bidirectional
Fig. 1.3 Matrix converter topology

switches enables to connect any of input phase \(a\), \(b\), or \(c\) to any of output phase \(A\), \(B\) or \(C\) at any instant. Since the matrix converter is supplied by the voltage source, the input phases must not be shorted and due to the inductive nature of the load, the output phases must not be open. These constraints are illustrated for the switch set connected to the output phase \(A\) in Fig 1.4.

If the switch function of a switch \(S_{ij}\) in Fig. 1 is defined as [3]

\[
S_{ij}(t) = \begin{cases}
1, & \text{\(S_{ij}\) closed} \\
0, & \text{\(S_{ij}\) open}
\end{cases} \quad i \in \{a, b, c\}, \quad j \in \{A, B, C\}
\]

the constraints can be expressed as

\[
S_{aj} + S_{bj} + S_{cj} = 1, \quad j \in \{A, B, C\}
\]

Fig. 1.4 Switching constraints (a) short circuit between input phases (b) open circuit for output phase
Regarding these two basic rules, the number of legal switch states reduces to $27 (3^3)$ and each switch state can be characterized by a three letter code. The three letter codes describe which output phase is connected to which input phase. For instance, the switch state named [aba] refers to the state where output phase A is connected to input phase a, output phase B is to input phase b and output phase C is to input phase a.

1.2.1 Indirect modulation principle

The object of the modulation strategy is to synthesize the output voltages from the input voltages and the input currents from the output currents. The three phase matrix converter can be represented by a 3 by 3 matrix form because the nine bidirectional switches can connect one input phase to one output phase directly without any intermediate energy storage elements. Therefore, the output voltages and input currents of the matrix converter can be represented by the transfer function T and the transposed T^\top such as

$$V_o = T \ast V_i$$

\[
\begin{bmatrix}
V_A \\
V_B \\
V_C
\end{bmatrix}
= \begin{bmatrix}
S_{aA} & S_{bA} & S_{cA} \\
S_{aB} & S_{bB} & S_{cB} \\
S_{aC} & S_{bC} & S_{cC}
\end{bmatrix}
\begin{bmatrix}
V_a \\
V_b \\
V_c
\end{bmatrix}
\]

(1.3)

$$I_i = T^\top \ast I_o$$

\[
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix}
= \begin{bmatrix}
S_{aA} & S_{bA} & S_{cA} \\
S_{bA} & S_{bB} & S_{bC} \\
S_{cA} & S_{cB} & S_{cC}
\end{bmatrix}
\begin{bmatrix}
I_A \\
I_B \\
I_C
\end{bmatrix}
\]

(1.4)

where V_a, V_b and V_c are input phase voltages, V_A, V_B and V_C are output phase voltages, I_a, I_b and I_c are input currents and I_A, I_B and I_C are output currents. The elements in the transfer matrix T_{ij} represent the switch function from the instantaneous input voltage V_i to the instantaneous output voltage V_j and have to be assigned values that assure output
voltages and input currents to follow their reference values. Defining a modulation strategy is actually filling in the elements of the transfer matrix. Although several modulation strategies have been proposed since Venturini announced a closed mathematical solution for the transfer function T in early 1980, the indirect space vector modulation is gaining as a standard technique in the matrix converter modulations.

![Diagram of indirect modulation circuit](image)

Fig.1.5 The equivalent circuit for indirect modulation

The indirect space vector modulation (indirect SVM) was first proposed by Borojevic et al in 1989 where matrix converter was described to an equivalent circuit combining current source rectifier and voltage source inverter connected through virtual dc link as shown in Fig. 1.5. Inverter stage has a standard 3φ voltage source inverter topology consisting of six switches, $S_7 \sim S_8$ and rectifier stage has the same power topology with another six switches, $S_1 \sim S_6$. Both power stages are directly connected through virtual dc-link and inherently provide bidirectional power flow capability because of its symmetrical topology. Although this equivalent circuit has provided a strong platform to analyze and derive several extended PWM strategies specified in a certain application since then, it is still ambiguous for a beginner to grasp its operating principle. The operating principle of the indirect SVM will be illustrated with graphical approach.
The basic idea of the indirect modulation technique is to decouple the control of the input current and the control of the output voltage. This is done by splitting the transfer function T for the matrix converter in (1.3) into the product of a rectifier and an inverter transfer function.

$$T = I \ast R$$

where the matrix I is the inverter transfer function and the matrix R is the rectifier transfer function. This way to model the matrix converter provides the basis to regard the matrix converter as a back-to-back PWM converter without any dc-link energy storage. This means the well known space vector PWM strategies for voltage source inverter (VSI) or PWM rectifier can be applied to the matrix converter.

By substituting (1.5) into (1.3)

$$
\begin{bmatrix}
 V_A \\
 V_B \\
 V_C
\end{bmatrix} =
\begin{bmatrix}
 S_7 & S_8 \\
 S_9 & S_{10} \\
 S_{11} & S_{12}
\end{bmatrix}
\cdot
\begin{bmatrix}
 S_1 & S_3 & S_5 \\
 S_2 & S_4 & S_6
\end{bmatrix}
\cdot
\begin{bmatrix}
 V_a \\
 V_b \\
 V_c
\end{bmatrix}
$$

(1.6)

The above transfer matrix exhibits that the output phases are compounded by the product and sum of the input phases through inverter switches $S_{7} \sim S_{12}$ and rectifier switches $S_1 \sim S_6$. The first row of (1.6) represents how output phase A is built from the input phase a, b and c and this mathematical expression can be interpreted again in the graphical viewpoint. If the equivalent circuit is seen from the inverter output phase A, two switches S_7 and S_8 of phase A half bridge is directly connected to input phases a, b and c through six rectifier switches $S_1 \sim S_6$. Fig. 1.7 shows how the switch set of equivalent circuit can be transformed into the relevant switch set of the nine bidirectional
switched matrix converter in the case of phase A and gives an basic idea that the duty cycles of the matrix converter branch can be derived by multiplying the duty cycles of the corresponding rectifier and inverter switches in the equivalent circuit [4].

Therefore the indirect modulation technique enables well-known space vector PWM to be applied for a rectifier as well as an inverter stage. The following sections describe two independent space vector modulations for current source rectifier and voltage source inverter stages and then the two modulation results are combined to a modulation for the matrix converter.

1.2.2 Space vector modulation for the inverter stage

This section introduces a graphical interpretation of space vector PWM in the inverter stage. Consider the inverter part of the equivalent circuit in Fig. 1.5 as a stand alone VSI supplied by a dc voltage source, \(V_{DC} = V_{DC+} - V_{DC-} \) as shown in Fig. 1.7.

The power conversion is performed by way of the virtual dc-link \(V_{DC} \). The output voltages can be represented as the virtual dc-link voltage \(V_{DC} \) multiplied by the switch state of the inverter stage which is inverter transfer function \(I \). At the same time, the dc-link current \(I_{DC} \) can be derived by using the transposed \(I^T \) such as

Fig. 1.6 Transformation from equivalent circuit to matrix converter in phase A
Fig. 1.7 Inverter stage from the equivalent circuit

\[
\begin{bmatrix}
V_A \\
V_B \\
V_C
\end{bmatrix} = \begin{bmatrix}
S_7 & S_8 \\
S_9 & S_{10} \\
S_{11} & S_{12}
\end{bmatrix} \cdot \begin{bmatrix}
V_{DC+} \\
V_{DC-}
\end{bmatrix}
\]

(1.7)

\[
\begin{bmatrix}
I_{DC+} \\
I_{DC-}
\end{bmatrix} = \begin{bmatrix}
S_7 & S_9 & S_{11} \\
S_8 & S_{10} & S_{12}
\end{bmatrix} \cdot \begin{bmatrix}
I_A \\
I_B \\
I_C
\end{bmatrix}
\]

(1.8)

Then the output voltage space vector \(V_{OUT} \) and output current space vector \(I_{OUT} \) are expressed as space vectors using the transformation such as

\[
V_{OUT} = \frac{2}{3}(V_A + V_B \cdot e^{j\frac{2\pi}{3}} + V_C \cdot e^{j\frac{4\pi}{3}})
\]

(1.9)

\[
I_{OUT} = \frac{2}{3}(I_A + I_B \cdot e^{j\frac{2\pi}{3}} + I_C \cdot e^{j\frac{4\pi}{3}})
\]

(1.10)

The inverter switches, \(S_7 \sim S_{12} \) can have only eight allowed combinations to avoid a short circuit through three half bridges. The eight combinations can be divided into six nonzero output voltages which are active vector \(V_1 \sim V_6 \) and two zero output voltages which are zero vector \(V_0 \). Table 1.1 lists the possible switch states and the relevant voltage space vectors. In addition, the amplitude and angle of the output voltage space vectors are evaluated for six active vectors and two zero vectors.
The voltage space vector \(V_{[100]} \) indicates that output phase \(V_A \) is connected to positive rail \(V_{DC^+} \) and the other phase \(V_B, V_C \) are connected to negative rail \(V_{DC^-} \) and its vector magnitude is calculated from

\[
V_1 = \frac{2}{3} \left(V_A + V_B \cdot e^{\frac{2\pi}{3}} + V_C \cdot e^{\frac{4\pi}{3}} \right) \\
= \frac{2}{3} \left(\frac{2}{3} V_{DC} - \frac{1}{3} \cdot V_{DC} \cdot e^{\frac{2\pi}{3}} - \frac{1}{3} \cdot V_{DC} \cdot e^{\frac{4\pi}{3}} \right) \\
= \frac{2}{3} \cdot V_{DC} \cdot e^{\frac{\pi}{6}} \\
\]

The discrete seven space vectors can be configured as a hexagon in a complex plane shown in Fig. 1.8 and an arbitrary \(V_{OUT} \) within the hexagon can be synthesized by a vector sum out of seven discrete output voltage switching state vectors, \(V_0 \sim V_7 \).
The maximum amplitude of the reference vector is equal to the radius of inner circle of the hexagon whose radius is $\sqrt{3}/2 = 0.866$ times the amplitude of the active vectors. Then the reference output voltage is build by applying the well-known space vector modulation method based on the virtual dc-link, exactly as in a conventional VSI inverter.

![Inverter voltage hexagon](image)

Fig. 1.8 Inverter voltage hexagon

![Synthesis of reference voltage vector](image)

Fig. 1.9 Synthesis of reference voltage vector

Fig. 1.9 shows the reference voltage vector V_O^* within a sector of the voltage hexagon. The V_O^* is synthesized by impressing the adjacent active vectors V_α and V_β with the duty cycles d_α and d_β, respectively. If the output voltages are considered
constant during a short switching interval T_S, the reference vector can be expressed by the voltage-time product sum of the adjacent active vectors

$$ V_O^* = d_\alpha \cdot V_\alpha + d_\beta \cdot V_\beta $$ (1.12)

The duration of the active vectors determines the direction of V_O^* while the zero vector interval is used to adjust the amplitude of V_O^*. The duty cycle of the active vectors is calculated by

$$ d_\alpha = \frac{T_\alpha}{T_S} = m_V \cdot \sin\left(\frac{\pi}{3} - \theta_V\right) $$

$$ d_\beta = \frac{T_\alpha}{T_S} = m_V \cdot \sin(\theta_V) $$ (1.13)

$$ d_{0V} = \frac{T_{0V}}{T_S} = 1 - d_\alpha - d_\beta $$

where θ_V indicates the angle of the reference voltage vector within the actual hexagon sector. The m_V is the voltage modulation index and defines the desired voltage transfer ratio such as

$$ 0 \leq m_V \leq 1, \quad m_V = \frac{\sqrt{3} \cdot V_O^*}{V_{DC}} $$ (1.14)

where V_{DC} is the averaged value of virtual dc-link voltage and derived as follows. Since there is no energy storage in the converter, the averaged value of virtual dc-link voltage V_{DC} can be found on the basis that the input power flow and the dc power flow are equal at any instant. Fundamental components are considered for the calculation under balanced input voltage condition

$$ P_{DC} = P_{IN} $$

$$ V_{DC} \cdot I_{DC} = \frac{3}{2} \cdot V_{IN} \cdot I_{IN} \cdot \cos(\phi_{IN}) $$

$$ V_{DC} = \frac{3}{2} \cdot V_{IN} \cdot \frac{I_{IN}}{I_{DC}} \cdot \cos(\phi_{IN}) $$ (1.15)

$$ V_{DC} = \frac{3}{2} \cdot V_{IN} \cdot m_C \cdot \cos(\phi_{IN}) $$

where V_{IN} : the peak value of input phase voltage
I_{IN}: the peak value of input current

ϕ_{IN}: input displacement angle

The virtual dc-link voltage V_{DC} depends on the amplitude of input phase voltage, the current modulation index m_V and the input displacement angle ϕ_{IN}. Since the rectifier stage is usually operated with the condition $m_C = 1$ and unity input displacement angle $\phi_{IN} = 0$, the V_{DC} become simplified to

$$V_{DC} = \frac{3}{2} \cdot V_{IN}$$

The six sectors of the voltage hexagon in Fig. 1.8 correspond directly to the six 60° segments within a period of the desired 3ϕ output line voltages as shown in Fig. 1.10.

![Voltage Hexagon](image)

Fig. 1.10 Six sectors in the output voltages

The synthesis of the output phase voltages for a switching cycle within the voltage sector S_0 is chosen as an example. Since V_a is V_6 and V_β is V_1 in the voltage sector S_0 in Fig. 1.8, the mean value of the output voltages and dc-link current can be written as follows

$$
\begin{bmatrix}
V_A \\
V_B \\
V_C
\end{bmatrix} = d_\alpha \cdot V_6 + d_\beta \cdot V_1 = \left(d_\alpha \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} + d_\beta \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \cdot \begin{bmatrix} V_{DC+} \\ V_{DC-} \end{bmatrix}
$$

(1.16)
\[
\begin{bmatrix}
I_{DC^+} \\
I_{DC^-}
\end{bmatrix} = \left(d_\alpha \cdot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} + d_\beta \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}\right) \cdot \begin{bmatrix}
I_A \\
I_B \\
I_C
\end{bmatrix}
\] (1.17)

1.2.3 Space vector modulation for the rectifier stage

This section introduces a graphical interpretation of space vector PWM in the rectifier stage. Likewise the case of inverter stage, the rectifier part of the equivalent circuit in Fig. 1.5 can be assumed to a stand alone current source rectifier (CSR) loaded by a dc current source, \(I_{DC}\) as shown in Fig. 1.11.

In the indirect space vector modulation, all quantities are referred to virtual dc link and the virtual dc-link is built by chops of the input voltages. The input currents can be represented as the virtual dc-link current \(I_{DC}\) multiplied by the switch state of the rectifier stage which is rectifier transfer function \(R\). At the same time, the dc-link voltage \(V_{DC}\) can be derived by using the transposed \(R^T\) such as
\[
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix} =
\begin{bmatrix}
S_1 & S_2 \\
S_3 & S_4 \\
S_5 & S_6
\end{bmatrix}
\begin{bmatrix}
I_{DC+} \\
I_{DC-}
\end{bmatrix}
\] (1.18)

\[
\begin{bmatrix}
V_{DC+} \\
V_{DC-}
\end{bmatrix} =
\begin{bmatrix}
S_1 & S_3 & S_5 \\
S_2 & S_4 & S_6
\end{bmatrix}
\begin{bmatrix}
V_a \\
V_b \\
V_c
\end{bmatrix}
\] (1.19)

Then the input current space vector \(I_{IN}\) and input voltage space vector \(V_{IN}\) are expressed as space vectors using the transformation such as

\[
I_{IN} = \frac{2}{3}(I_a + I_b \cdot e^{\frac{2\pi}{3}} + I_c \cdot e^{\frac{4\pi}{3}})
\] (1.20)

\[
V_{IN} = \frac{2}{3}(V_a + V_b \cdot e^{\frac{2\pi}{3}} + V_c \cdot e^{\frac{4\pi}{3}})
\] (1.21)

The rectifier switches, \(S_1 \sim S_6\) can have only nine allowed combinations to avoid a open circuit at the dc link rails. The nine combinations can be divided into six nonzero input currents which are active vector \(I_1 \sim I_6\) and three zero input currents which are zero vector \(I_0\). Table 1.2 lists the possible switch states and the relevant current space vectors. In addition, the amplitude and angle of the input current space vectors are evaluated for 6 active vectors and 3 zero vectors.

\(I_1\) [ab] indicates that input phase \(a\) is connected to the positive rail of the virtual dc-link \(V_{DC+}\) and input phase \(b\) is to the negative rail \(V_{DC-}\). Its vector magnitude is calculated from

\[
I_1 = \frac{2}{3}(I_a + I_b \cdot e^{\frac{2\pi}{3}} + I_c \cdot e^{\frac{4\pi}{3}})
\]

\[
= \frac{2}{3}(I_{DC} - I_{DC} \cdot e^{\frac{2\pi}{3}} + 0 \cdot e^{\frac{4\pi}{3}})
\]

\[
= \frac{2}{\sqrt{3}} I_{DC} \cdot e^{-\frac{j\pi}{6}}
\] (1.22)
Table 1.2 Switch states and switching vectors for the rectifier side

| Type | Vector | $S_{1} S_{3} S_{5}$ | I_a | I_b | I_c | $|I_{in}|$ | $\angle I_{in}$ | V_{DC} |
|------|--------|---------------------|-----|-----|-----|----------|---------------|--------|
| I_{1}[ab] | $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ | I_{DC+} | I_{DC-} | 0 | $\frac{2}{\sqrt{3}} I_{DC}$ | $-\frac{\pi}{6}$ | V_{ab} |
| I_{2}[ac] | $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ | I_{DC+} | 0 | I_{DC-} | $\frac{2}{\sqrt{3}} I_{DC}$ | $\frac{\pi}{6}$ | -V_{ca} |
| I_{3}[bc] | $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ | 0 | I_{DC+} | I_{DC-} | $\frac{2}{\sqrt{3}} I_{DC}$ | $\frac{\pi}{2}$ | V_{bc} |
| I_{4}[ba] | $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ | I_{DC-} | I_{DC+} | 0 | $\frac{2}{\sqrt{3}} I_{DC}$ | $\frac{5\pi}{6}$ | -V_{ab} |
| I_{5}[ca] | $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ | I_{DC-} | 0 | I_{DC+} | $\frac{2}{\sqrt{3}} I_{DC}$ | $\frac{5\pi}{6}$ | V_{ca} |
| I_{6}[cb] | $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ | 0 | I_{DC-} | I_{DC+} | $\frac{2}{\sqrt{3}} I_{DC}$ | $-\frac{\pi}{2}$ | -V_{bc} |
| Zero | I_{0}[aa][bb][cc] | $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ | $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ | $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ | 0 | 0 | 0 | 0 |
Fig. 1.13 Synthesis of reference current vector \((m_C = 1)\)

The discrete seven space vectors can be configured as a hexagon in a complex plane shown in Fig. 1.12 and an arbitrary \(I_{IN}\) within the hexagon can be synthesized by a vector sum out of seven discrete input current switching state vectors, \(I_0\sim I_6\).

Fig. 1.13 shows the reference input current vector \(I^*_I\) within a sector of the current hexagon. The \(I^*_I\) is synthesized by impressing the adjacent switching vectors \(I_\gamma\) and \(I_\delta\) with the duty cycles \(d_\gamma\) and \(d_\delta\), respectively. If the input currents are considered constant during a short switching interval \(T_S\), the reference vector can be expressed by the current-time product sum of the adjacent active vectors

\[
I^*_I = d_\gamma \cdot I_\gamma + d_\delta \cdot I_\delta
\]

The duration of the active vectors determines the direction of \(I^*_I\) while the zero vector interval is used to adjust the amplitude of \(I^*_I\). The space vector modulation (SVM) for rectifier is completely analogous to the SVM for inverter. The inverter subscript \(\alpha, \beta\) and \(m_V\) are replaced with the subscript \(\gamma, \delta\) and \(m_C\) for rectifier, respectively. Thus, the duty cycle of the active vectors are written as

\[
d_\gamma = \frac{T_\gamma}{T_S} = m_C \cdot \sin\left(\frac{\pi}{3} - \theta_C\right)
\]

\[
d_\delta = \frac{T_\delta}{T_S} = m_C \cdot \sin(\theta_C)
\]

\[
d_{0C} = \frac{T_{0C}}{T_S} = 1 - d_\gamma - d_\delta
\]
where θ_C indicates the angle of the reference current vector within the actual hexagon sector. The m_C is the current modulation index and defines the desired current transfer ratio such as

$$0 \leq m_C \leq 1, \quad m_C = \frac{I^*_l}{I_{DC}}$$

(1.25)

The current modulation index m_C is often fixed to unity and the voltage modulation index m_V is variable according to a required overall voltage transfer gain. In addition, I_{DC} is the averaged value of virtual dc-link current and derived as follows. Since there is no energy storage in the converter, the averaged value of virtual dc-link current I_{DC} can be derived on the basis that the output power flow equals the dc power flow at any instant. Fundamental components are considered for the calculation together with balanced output load current condition such as

$$P_{DC} = P_{OUT}$$

$$V_{DC} \cdot I_{DC} = \frac{3}{2} \cdot V_{OUT} \cdot I_{OUT} \cdot \cos(\varphi_{OUT})$$

$$I_{DC} = \frac{3}{2} \cdot I_{OUT} \cdot \frac{V_{OUT}}{V_{DC}} \cdot \cos(\varphi_{OUT})$$

(1.26)

$$I_{DC} = \frac{\sqrt{3}}{2} \cdot I_{OUT} \cdot m_V \cdot \cos(\varphi_{OUT})$$

where V_{OUT}: the peak value of output phase voltage

I_{OUT}: the peak value of output current

φ_{OUT}: output load displacement angle

The virtual dc-link current I_{DC} depends on the amplitude of output load current, the voltage modulation index m_C and the output load displacement angle φ_{OUT}. Under steady state, I_{DC} is assumed to be constant. The rectifier has to generate a dc-link voltage from the input voltages. At the same time, the rectifier has to assure the input currents to be sinusoidal with a controllable displacement angle with respect to the input voltage system. In other words, the input currents should be synchronized to the input voltage.
system with a desired displacement angle. Therefore the sectors of the current hexagon in Fig. 1.12 can be mapped directly to the six 60° segments of input phase voltage within a period of the given 3φ input phase voltages as shown in Fig. 1.14.

The synthesis of the input current for a switching cycle within the current sector S_0 is chosen as an example. Since $I_γ$ is I_1 and $I_δ$ is I_2 in the current sector S_0, the mean value of the input currents and dc-link voltage can be written as follows

\[
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix} = d_γ \cdot I_1 + d_δ \cdot I_2 = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix} \cdot \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
0 & 0 \\
1 & 0
\end{bmatrix} \cdot \begin{bmatrix}
I_{DC+} \\
I_{DC-}
\end{bmatrix}
\]

(1.27)

\[
\begin{bmatrix}
V_{DC+} \\
V_{DC-}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix} \cdot \begin{bmatrix}
V_a \\
V_b \\
V_c
\end{bmatrix}
\]

(1.28)

1.2.4 Indirect modulation for the entire matrix converter

Although the duty cycles and relevant switching vectors are derived from rectifier stage and inverter stage in the previous sections, respectively, these are only meaningful in the equivalent circuit of matrix converter or dual bridge matrix converter [5]. Therefore, two independent space vector modulations should be merged into one
modulation method for the nine bidirectional switched matrix converter and this section introduces how the switch states of rectifier and inverter stage is transformed into the corresponding switch state in the matrix converter with graphical illustration.

The simultaneous output voltage and input current SVM for the matrix converter can be obtained by employing the inverter stage SVM sequentially in two virtual dc-link amplitudes determined by the rectifier SVM. The virtual dc-link voltage V_{DC} is established by the two input line voltages determined by input current vectors I_γ and I_δ during d_γ and d_δ, respectively. Then, two output voltage vectors V_α and V_β are applied to synthesize the desired output voltage from the two virtual dc-link amplitude inside each switching period T_S. When the V_α and V_β is applied to the first current vector I_γ, two new vectors, $V_\alpha - I_\gamma$ pair and $V_\beta - I_\gamma$ pair, are created and duty cycle of new vectors becomes $d_{\alpha\gamma}$ and $d_{\beta\gamma}$, respectively as defined in (1.29). When the V_α and V_β is applied to the second current vector I_δ, two new vectors, $V_\alpha - I_\delta$ pair and $V_\beta - I_\delta$ pair, are created and duty cycle of new vectors becomes $d_{\alpha\delta}$ and $d_{\beta\delta}$, respectively. The four duty cycles for new active vector pair can now be derived from the product of inverter duty cycles in (1.13) and rectifier duty cycles in (1.24)

$$d_{\alpha\gamma} = d_\alpha \cdot d_\gamma = m_V \cdot \sin\left(\frac{\pi}{3} - \theta_V\right) \cdot \sin\left(\frac{\pi}{3} - \theta_C\right) = \frac{T_{\alpha\gamma}}{T_S}$$

$$d_{\alpha\delta} = d_\alpha \cdot d_\delta = m_V \cdot \sin\left(\frac{\pi}{3} - \theta_V\right) \cdot \sin(\theta_C) = \frac{T_{\alpha\delta}}{T_S}$$

$$d_{\beta\gamma} = d_\beta \cdot d_\gamma = m_V \cdot \sin(\theta_V) \cdot \sin\left(\frac{\pi}{3} - \theta_C\right) = \frac{T_{\beta\gamma}}{T_S}$$

$$d_{\beta\delta} = d_\beta \cdot d_\delta = m_V \cdot \sin(\theta_V) \cdot \sin(\theta_C) = \frac{T_{\beta\delta}}{T_S}$$

(1.29)

During the remaining part of the switching period T_S, zero vector is applied

$$d_0 = 1 - d_{\alpha\gamma} - d_{\alpha\delta} - d_{\beta\gamma} - d_{\beta\delta} = \frac{T_0}{T_S}$$

(1.30)

and the output line voltages are equal to zero. The three zero vector combinations, which are [aaa], [bbb] and [ccc], is allowed by connecting all three output terminals to the same
input terminal. During the zero vector interval, the all input currents equal zero and the output load currents are freewheeling through the matrix converter switches.

Since both the inverter and the rectifier hexagons contain six sectors, there are 6 x 6 = 36 combinations or operating modes. For instance, if the reference output voltage \(V_O^* \) and input current \(I_I^* \) are both in the sector \(S_0 \) at a particular instant, output voltage can be directly synthesized by combining (1.16) and (1.28) such as

\[
\begin{bmatrix}
V_A \\
V_B \\
V_C
\end{bmatrix} = \left(d_{\alpha} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} + d_{\beta} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right) \cdot \left(d_{\gamma} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + d_{\delta} \cdot \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \right) \cdot \begin{bmatrix} V_a \\
V_b \\
V_c
\end{bmatrix}
\]

\[
\begin{bmatrix}
V_A \\
V_B \\
V_C
\end{bmatrix} = \left(d_{\alpha} \cdot d_{\gamma} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} + d_{\alpha} \cdot d_{\delta} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \right) + \left(d_{\beta} \cdot d_{\gamma} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} + d_{\beta} \cdot d_{\delta} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \cdot \begin{bmatrix} V_a \\
V_b \\
V_c
\end{bmatrix}
\]

\[
\begin{bmatrix}
V_A \\
V_B \\
V_C
\end{bmatrix} = \left(d_{\alpha} \cdot d_{\gamma} \begin{bmatrix} V_b \\ V_b \\ V_a \end{bmatrix} + d_{\alpha} \cdot d_{\delta} \begin{bmatrix} V_a \\ V_a \\ V_c \end{bmatrix} + d_{\beta} \cdot d_{\gamma} \begin{bmatrix} V_c \\ V_c \\ V_a \end{bmatrix} + d_{\beta} \cdot d_{\delta} \begin{bmatrix} V_a \\ V_a \\ V_a \end{bmatrix} \right)
\]

(1.31)

The input phase currents, for the same condition, are synthesized by combining (1.17) and (1.27) such as

\[
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix} = \left(d_{\gamma} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} + d_{\delta} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \right) \cdot \left(d_{\alpha} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + d_{\beta} \cdot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \right) \cdot \begin{bmatrix} I_A \\
I_B \\
I_C
\end{bmatrix}
\]

\[
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix} = \left(d_{\alpha} \cdot d_{\gamma} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + d_{\alpha} \cdot d_{\delta} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) \cdot \left(d_{\beta} \cdot d_{\gamma} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} + d_{\beta} \cdot d_{\delta} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) \cdot \begin{bmatrix} I_A \\
I_B \\
I_C
\end{bmatrix}
\]

\[
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix} = \left(d_{\alpha} \cdot d_{\gamma} \begin{bmatrix} -I_B \\ I_B \\ 0 \end{bmatrix} + d_{\alpha} \cdot d_{\delta} \begin{bmatrix} I_A \\ 0 \\ 0 \end{bmatrix} \right) + \left(d_{\beta} \cdot d_{\gamma} \begin{bmatrix} -I_A \\ I_A \\ 0 \end{bmatrix} + d_{\beta} \cdot d_{\delta} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right) \cdot \begin{bmatrix} I_A \\
I_B \\
I_C
\end{bmatrix}
\]

(1.32)

Fig. 1.15 ~ 1.19 show a graphical representation of the switch states of the equivalent circuit and its original matrix converter when \(V_O^* \) is in the voltage sector \(S_0 \) of the inverter hexagon and \(I_I^* \) is also in the current sector \(S_0 \) of the rectifier hexagon.
Therefore the active voltage vectors V_{α}, V_{β} become $V_{6}[101]$, $V_{f}[100]$ and the active current vectors I_{γ}, I_{δ} become $I_{1}[ab]$, $I_{2}[ac]$. Fig. 1.15 shows voltage – current vector pair, $V_{1} – I_{1}$ and this switching combination is kept on for the duty ratio $d_{\beta\gamma}$ determined by (1.29). During this interval $d_{\beta\gamma}$, current vector $I_{1}[ab]$ is applied in the rectifier stage and it results in $V_{DC+} = V_{a}$ and $V_{DC-} = V_{b}$. With simultaneous application of $V_{f}[100]$, output voltages become $V_{A} = V_{DC+}$, $V_{B} = V_{DC-}$ and $V_{C} = V_{DC-}$. Therefore, the voltage – current vector pair $V_{1} – I_{1}$ is realized with the switching combination $V_{A} = V_{a}$, $V_{B} = V_{b}$ and $V_{C} = V_{b}$ which is denoted by [abb]. Likewise, Fig. 1.16, 1.17 and 1.18 illustrates switching combinations [aba], [aca] and [acc] for $V_{6} – I_{1}$ pair, $V_{6} – I_{2}$ pair and $V_{1} – I_{2}$, respectively.
Fig. 1.17 $V_6 - I_2$ pair during $d_{a\delta}$

Fig. 1.18 $V_1 - I_2$ pair during $d_{\beta\delta}$

Fig. 1.19 $V_0 - I_0$ pair during d_0
Finally, zero vector [ccc] for $V_0 - I_0$ pair is employed to minimize the total number of switching transitions of the matrix converter as shown in Fig. 1.19.

The next step is to decide how the four active vectors are ordered within the switching period T_S and which of zero vector is used among [aaa], [bbb] or [ccc]. Among the possible combinations of switching sequence, a criterion which restricts the switching transition to be only once during each vector change is usually used to minimize total switching losses. Further, the zero vector is also selected from a criteria where the number of “Branch Switch Overs” (BSO) in the matrix converter is minimized. Aalborg university proposed the four rules that assure the minimum number of switching transitions which is called as “optimized indirect SVM” as follows [6]

- The input vector sequence is always $\gamma\delta0$.
- When the sum of the current and voltage hexagon sector is odd, the output vector sequence must be $\alpha\beta\alpha0$.
- When the sum of the current and voltage hexagon sector is even, the output vector sequence must be $\beta\alpha\alpha\beta$.
- When the input hexagon sector is odd, the output zero vector must be 000. Otherwise it must be 111.

The switching sequence of the optimized indirect SVM is listed in Table 1.3 for the same example.

<table>
<thead>
<tr>
<th>$\beta\gamma$</th>
<th>$\alpha\gamma$</th>
<th>$\alpha\delta$</th>
<th>$\beta\delta$</th>
<th>0</th>
<th>$\beta\delta$</th>
<th>$\alpha\delta$</th>
<th>$\alpha\gamma$</th>
<th>$\beta\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>abb</td>
<td>aba</td>
<td>aca</td>
<td>acc</td>
<td>ccc</td>
<td>acc</td>
<td>aca</td>
<td>aba</td>
<td>abb</td>
</tr>
<tr>
<td>$T_{\beta\gamma}/2$</td>
<td>$T_{\alpha\gamma}/2$</td>
<td>$T_{\alpha\delta}/2$</td>
<td>$T_{\beta\delta}/2$</td>
<td>T_0</td>
<td>$T_{\beta\delta}/2$</td>
<td>$T_{\alpha\delta}/2$</td>
<td>$T_{\alpha\gamma}/2$</td>
<td>$T_{\beta\gamma}/2$</td>
</tr>
<tr>
<td>$V_1 - I_1$</td>
<td>$V_6 - I_1$</td>
<td>$V_6 - I_2$</td>
<td>$V_1 - I_2$</td>
<td>$V_0 - I_0$</td>
<td>$V_1 - I_2$</td>
<td>$V_6 - I_2$</td>
<td>$V_6 - I_1$</td>
<td>$V_1 - I_1$</td>
</tr>
</tbody>
</table>
The matrix converter has been established as an alternative for the present standard VSI converters for adjustable speed drive applications. In contrast to VSI converters, the matrix converter is a direct type of power converter without any internal energy storage. The matrix converter consists of a matrix of bidirectional switches connecting each input terminal to each output terminal directly and the output voltage of the matrix converter is formed by successively impressing chops of the sinusoidal input voltages to the output terminals. The indirect space vector modulation is usually employed for the matrix converter operation and it decouples the control of the input current and the control of the output voltage. The indirect modulation is calculated by splitting the nine bidirectional switched power topology into the equivalent back-to-back PWM converter without dc-link energy storage elements. Then, two adjacent current vectors and their duty cycles are derived to synthesize a reference input current vector from the equivalent current source rectifier and two adjacent voltage vectors and their duty cycles are calculated to synthesized a reference output voltage vector from equivalent voltage source inverter. Then, four active vectors and one zero vector are generated by merging the voltage and current vectors together with their duty cycles. Finally a sequence of the above five vectors is applied to the nine bidirectional switches of the matrix converter. The operating principle of the indirect space vector modulation has been investigated with mathematical and graphical view.

1.3 Review of previous works

A brief review about the matrix converter technology is given in this section. This section summarizes devices for bidirectional switches, their specific commutation technique, modulation methods and compensation method for the influence of unbalanced power grid by surveying literatures.
Devices

The switches in a matrix converter must be bidirectional, that is, these must be able to block voltages of either polarity and be able to conduct current in either direction. These can be realized by a combination of the available unidirectional switches and diodes or new devices which are able to withstand voltage in both directions. The first is an IGBT matrix module announced in EUPEC [7]. Collector connected eighteen IGBT and eighteen anti-parallel FRDs are all placed in a single ECONMAC case. This ensures a compact design of the entire converter and a low stray inductance in the power stage, and thereby the switching losses and stress. The second is an development of reverse blocking IGBT (RB-IGBT). The RB-IGBT was employed for matrix converter applications [8] and it decreases one of semiconductor devices per load phase path. This may create conditions to increase the efficiency of the matrix converters above the diode-bridge VSI, because the conduction losses are produced only by a single RB-IGBT per phase. The first commercial RB-IGBT was reported to be available on the market in 2000 and then Fuji semiconductor announced RB-IGBT in 2003 [9]. It is expected that when the RB-IGBT device becomes available for mass production, it will minimize the device count and the conduction losses in a matrix converter, while the control circuits will remain the same.

Commutation

Three phase matrix converter power circuit is a 3 by 3 matrix of bidirectional switches and this structure results in the absence of passive free wheeling paths for the load. This makes the matrix converter hard to handle the commutation behavior. To achieve a safe commutation, a specific sequence must enable a commutation without short circuiting the input voltages or breaking the load current. A current commutation technique that does not break the above two rules was first proposed in [10] and named the semi-soft commutation method or four-step commutation method, which means that
half of the switch performs natural commutation. A simple logic circuit, a switch sequencer, was introduced to implement the necessary steps required for the current type four-step commutation method [11]. The relative magnitude of the converter input voltage also was used but it does not exhibit the semi-soft switching properties [12]. Another idea was a two-step commutation which also uses input voltage magnitude [13]. It was developed in order to reduce the number of steps and the complexity of the commutation control unit. However, these commutation techniques rely on the accurate measurement of the either output current or the input voltage and these may lead to commutation failure with in accuracies, especially at relatively low magnitudes. These problems were mitigated by the use of extra snubbing components. Therefore, new ideas were reported to remove the sign detection circuit and thereby reduce the costs of the converter. Gate drive level intelligence was employed to determine the current direction by measuring device voltages [14] and new method eliminating extra voltage measuring circuit was presented to avoid the critical switching patterns in a critical area [15]. Another approach was to employ dual bridge matrix converter together with new modulation technique [5]. Complicated commutation problem was avoided by making zero current switching of the rectification stage possible when the inversion stage produces zero voltage vector.

Protection and clamp circuit

Similar to standard VSI, the matrix converter needs to be protected against overvoltage and overcurrent. The protection issues for matrix converters have received increased attention in order to build a reliable prototype. A clamp circuit was first reported for protection purposes. It consists of a B6 type fast recovery diode rectifier and a capacitor, and provides safe shutdown of the converter during faulty situations such as overcurrent on the output side or voltage disturbances on the input side [16], [17]. Input filter capacitors was shared to clamp the inductive current and it showed a potential for reducing the component count [18]. Another approach was to dissipate the energy of
inductive currents in the varistors and in the semiconductors by employing active gate
drivers [19].

Input voltages disturbance

The matrix converter performance is more affected by unbalance and distortion of the
input voltage system because this direct power conversion implies instantaneous power
transfer. Reference [20] showed matrix converter generates low-order harmonics in the
output voltage when unbalanced supply voltages are present because input grid condition
is immediately reflected on the load side. Therefore, research works have been directed
to investigate and compensate for these effects of input voltage disturbance. In [6],
balanced and sinusoidal output voltages were produced even when the input voltages are
unbalanced. It is achieved by measuring the instantaneous value of two line-to-line
voltages and correcting the modulation index in the inversion stage with respect to the
virtual dc-link voltage. The same approach was extended to the veturini modulation
method under three-phase simultaneous voltage sag or swells [21]. In [22]-[24], the
input current harmonic content and the limits of the voltage transfer ratio were
determined analytically for different operation conditions. It also showed that the input

![Space vector representation](image)

Fig. 1.20 Space vector representation (a) 1st strategy (b) 2nd strategy
current harmonic content is strongly dependent on the input current modulation strategy employed to control the matrix converter. The first strategy calculates the input current vector in phase with the line-to-neutral voltage vector in every instant. Fig. 1.20 (a) shows the input current vector i_i keeps a constant displacement angle ϕ_i with respect to input voltage vector e_i, which consists of the time phasors of positive symmetrical component e_{ip} and positive symmetrical component e_{in}^*. When ϕ_i is set to zero, this strategy leads to an instantaneous unity input power factor. The second strategy modulates the input current vector dynamically around the direction of the line-to-neutral voltage vector as shown in Fig. 1.20 (b). Due to the opposite angular velocity of vectors e_{ip} and e_{in}^*, the direction of the current vector i_i with respect to e_i is not constant. In this case, the input current vector harmonics spectrum consists of the positive and the negative sequence fundamental only, providing unbalanced but sinusoidal input line currents. This strategy does not lead to an instantaneous unity input power factor but it is unity power factor on the basis of a fundamental period average.

In [25], the input unbalanced problem was overcome by taking into account the input/ output power balance equation. It was implemented in max-mid-min modulation method which mainly used in Japan and improved input current waveform quality without output performance degradation. In [26], a direct feed-forward unbalance control method was proposed for dual-bridge matrix converter topology. It first detects the input voltages and then adjusts the switching function of the line side converter. However, the input currents are slightly distorted and it is effective only if the locus of the output voltage vector can fit inside the input voltage locus.

Ride-through capability

Ride-through capability is a desired characteristic in modern drive. A common solution is to decelerate the drive during power loss, receiving energy from the load inertia to feed the control electronics and to magnetize the motor. This is achieved by
maintaining a constant voltage in the dc-link capacitor. However, matrix converters are an array of controlled bidirectional switches without dc-link capacitor and these are very susceptible to voltage disturbance such as voltage sags, swells and momentary power interruption.

Reference [27] presented a new ride-through strategy in case of short-term power interruption. The strategy takes control of the drive when a power outage occurs, disconnecting the motor from the grid and recovering the energy stored in the inertia into dc capacitor in the clamp circuit. This can be done by turning off all the bidirectional switches, while the clamp circuit takes over the conduction of the motor currents in Fig. 1.21 (b), or by applying a zero voltage vector when all motor terminals are connected to the same phase of the power grid in Fig 1.21 (a). By applying a zero vector “bbb” in case of Fig 1.21 (b), the induction motor current increases together with the energy stored in the leakage inductance. The stator flux stops moving, but the rotor flux is still moving due to the rotor rotation. When the rotor flux starts to lead the stator flux, the electromagnetic torque changes sign and the increase of energy in the leakage inductance is based on the mechanical energy conservation. Disconnecting all the active switches shown in Fig. 1.21 (b) causes the conduction of the clamp circuit diodes. The stator current decreases and the energy stored in the leakage inductance goes to the clamp capacitor. By alternating the two operating modes during power outage, it is possible to control the motor currents and to transfer energy from the rotor inertia to the

![Diagram](image_url)
clamp capacitor. When normal grid condition is reestablished, the controller restarts the drive and reaches the frequency set point.

Reference [28] presented an alternative strategy to ride through voltage sags for matrix converter fed ASDs. It enables the matrix converters to effectively ride through voltage sags and enforces constant volts/hertz operation through voltage sags, assuring a minimum motor speed reduction.

Modulation technique

The first modulator was proposed by Venturini and he used a complicated scalar model that gave a maximum voltage transfer ratio of 0.5 [29]. An injection of a third harmonic of the input and output voltage was proposed in order to fit the reference output voltage in the input voltage system envelope, and the voltage transfer ratio reached the maximum value of 0.86 [30],[31]. Next, several indirect modulations were proposed. The main idea of the indirect modulation is to consider the matrix converter as a two-stage transformation converter: a rectifier stage to provide a constant virtual dc-link voltage during the switching period by mixing the line-to-line voltages and an inverter stage to produce the three output voltages. This separation allows know PWM strategies to be implemented in both the rectifier and the inverter stage. The first attempt for indirect modulation was reported in [17] and employed classical PWM modulation strategy. Space vector modulation (SVM) which is a standard modulation in voltage source inverter was also employed in the indirect modulation and named indirect space vector modulation (ISVM) [3][6][32]. It also reached the highest limit of the voltage transfer ratio (0.86). The detailed indirect space vector modulation theory is presented in section 1.2. Another PWM method was implemented in the indirect modulation structure and is mainly used in Japan [33][34]. This minimizes the commutation losses because the number of commutations per switching period is reduced and the voltage change at each commutation is also decreased.
1.4 Research objectives

In spite of several advantages of the matrix converter, industrial application of matrix converter is still very limited because of some practical issues like common mode voltage effects, high susceptibility to input power disturbances and low voltage transfer ratio. In order to extend the horizon of matrix converter into several distributed power sources application, the objective of this research work is to propose several new matrix converter topologies together with control strategies to provide a solution about the above issues.

The first objective of this research is to propose a PWM strategy to reduce common mode voltage, which is reported as a main source of early motor winding failure and bearing deterioration. The common mode voltage generating mechanism is investigated in the matrix converter fed ASD and switching losses, harmonic performance of the modulation scheme are analyzed. To validate the theoretical analysis, 230V, 3kVA matrix converter is developed.

The second objective is to improve robustness for input voltage disturbances such as voltage sags, swells and short term power interruption. A ride-through module together with new control strategy is proposed to provide ride-through capability to matrix converter fed ASD during power outage. The operating principle and the ride-through module performance are verified with an abrupt power outage and then recovery generated by a programmable AC power source.

The third objective is to extend the linear range of voltage transfer ratio of matrix converter more than 0.87. The dual bridge matrix converter is modified with the addition of a transformer and thereby a new three-phase high-frequency link matrix converter is proposed together with new PWM strategy. The high-frequency link converter is targeted for a variable speed constant frequency (VSCF) system such as wind-turbine and micro-turbine. The converter operations are ensured by using 60 Hz or 400Hz synchronous generators.
The final objective is to apply the direct ac/ac conversion concept to dc/ac conversion area. A soft switching direct converter is proposed and evaluated in fuel cell domestic use application which is emerging as a prominent distributed power source. Analysis, design examples and experimental results are detailed.

1.5 Dissertation outline

The contents of this dissertation are organized in six chapters in the following manner. Chapter I introduces ac/ac conversion and matrix converter as an advanced direct ac/a converter. The operating principle of indirect space vector modulation is discussed by graphical and mathematical method. Then, a review of the previous work in the area of matrix converter is addressed. Finally, research objectives are presented.

In Chapter II, a PWM strategy is presented to reduce common mode voltage at the matrix converter output. The detailed analysis of harmonic performance for input current and output voltage is discussed and simulation results are investigated to show the feasibility of the proposed scheme. Using 3kVA matrix converter, experimental results are provided.

In Chapter III, a ride-through module is presented to provide ride-through capability into the matrix converter during input power disturbance. Operating modes and control strategy are discussed. Using the ride-through module incorporated in 3kVA matrix converter, experimental results are shown.

In Chapter IV, a high-frequency link matrix converter is proposed. The detailed analysis of converting variable frequency input to fixed frequency output by way of high-frequency link is shown. Experiment is conducted by using 3kVA high-frequency link matrix converter and 60Hz, 400Hz synchronous generator.

Chapter V presents soft switching direct converter for residential fuel cell power system. Zero current and zero voltage switching are analyzed and ensured by
synchronizing with inverter stage operation. Experimental results are provided by using 1kVA direct converter along with PEM fuel cell.

Chapter VI summarizes the contributions of this research work in the matrix converter with distributed power sources. Finally, some suggestions are included for future work.
CHAPTER II

A NEW PWM STRATEGY TO REDUCE COMMON MODE VOLTAGE*

2.1 Introduction

The common mode voltage produced by a modern power converter has been reported as a main source of early motor winding failure and bearing deterioration [35] [36] [37]. Furthermore, the presence of high frequency and large magnitude of common mode voltage at the motor neutral point have been shown to generate high frequency leakage current to ground path as well as induced shaft voltage [35]. Although several methods to reduce common mode voltage have been proposed [36] [37], these methods are designed for three phase PWM rectifier-inverter system. Analyzing of common mode voltage effects for matrix converter fed adjustable speed drives has not been presented in the literature.

This chapter proposes a new modulation strategy which can limit the common mode voltage to one-third of input line-to-line voltage and is applicable to three phase matrix converter. The advantages of the proposed method are:

- It eliminates the common mode voltage corresponding to peak input phase voltage and the magnitude is reduced by 34 % compared to the conventional modulation scheme and exhibits better harmonic spectrum for common mode voltage.
- It reduces the switching loss by 5% compared to the optimized ISV-PWM because it uses a lower commutation voltage at zero vector switching transition and maintains the switching numbers over one sampling period [38][39]
- It reduces square rms of ripple components of input current by 2 ~ 10%, which

- depends on output power factor.
- It can be implemented via software without additional hardware. All of the above advantages are realized without any reduction in input/output voltage gain. Simulation and experimental results are shown to demonstrate the advantages of the new PWM approach.

2.2 Common mode voltage in matrix converter

![Diagram of matrix converter](image)

Fig. 2.1 Common mode voltage and leakage current path (a) three phase matrix converter (b) the model of the matrix converter for indirect modulation
Fig. 2.1 (a) shows a three phase matrix converter connected to an induction motor. The voltage and current at the input side of the converter is denoted by a, b, c while the output side is denoted by A, B, C. \(V_{cm} \) indicates the potential between the motor neutral point and ground and \(Z_L \) represents the stray impedance between the motor neutral point and ground. Therefore, the presence of common mode voltage \(V_{cm} \) in the motor neutral point contributes to generate high frequency leakage current \(I_{cm} \) through stray impedance \(Z_L \). In order to investigate the common mode voltage generation mechanism, its equivalent circuit is employed together with same notation as shown in Fig 2.1 (b). The common mode voltage \(V_{cm} \) at the motor neutral point is derived as follows

\[
\begin{align*}
V_A - V_{cm} & = RI_A + L \frac{dI_A}{dt} \\
V_B - V_{cm} & = RI_B + L \frac{dI_B}{dt} \\
V_C - V_{cm} & = RI_C + L \frac{dI_C}{dt}
\end{align*}
\] (2.1)

where \(V_A, V_B, V_C \) are matrix converter output voltage with respect to ground and \(R \) and \(L \) are per phase equivalent resistance and inductance of the induction motor, respectively. Assuming \(I_A + I_B + I_C \approx 0 \) since \(I_{cm} \approx 0 \) and adding the above equations, we have

\[
V_{cm} = \frac{V_A + V_B + V_C}{3}
\] (2.4)

As explained in section 1.3 in detail, output phase voltages \(V_A, V_B, V_C \) are obtained by eight output voltage vectors \((V0 \sim V7, \text{see Table 2.1})\) based on the virtual dc-link potential \(V_{pn} \) and the \(V_{pn} \) which is the difference between the imaginary dc link positive rail \(V_p \) and negative rail \(V_n \) is determined by eight input current vectors \((I0 \sim I7, \text{see Table 2.2})\). Therefore, the common mode voltage \(V_{cm} \) for a certain output voltage vector has a range of values because the virtual dc-link potential \(V_{pn} \) is not constant but fluctuates to track the peak of input line voltages. Table 2.1 lists the maximum common mode voltage for the difference output voltage vector cases and exhibits that \(V_{pn} \) at zero vectors \(V0 \) or \(V7 \) have 50% higher than \(V_{pn} \) at active vectors \(V1 \sim V7 \).
Table 2.1. Maximum common mode voltage according to output voltage vector

<table>
<thead>
<tr>
<th>Output voltage vector</th>
<th>V_{cm} (maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V7 (111)</td>
<td>$\sqrt{3}/2 \cdot V_{\text{phase_peak}} = V_{\text{line_peak}}/2$</td>
</tr>
<tr>
<td>V0(000)</td>
<td>$-\sqrt{3}/2 \cdot V_{\text{phase_peak}} = -V_{\text{line_peak}}/2$</td>
</tr>
<tr>
<td>V2(110), V4(011), V6(101)</td>
<td>$V_{\text{phase_peak}} \sqrt{3} = V_{\text{line_peak}}/3$</td>
</tr>
<tr>
<td>V1(100), V3(010), V5(001)</td>
<td>$-V_{\text{phase_peak}} \sqrt{3} = -V_{\text{line_peak}}/3$</td>
</tr>
</tbody>
</table>

Where $V_{\text{phase_peak}}$ is the peak value of input phase voltage, $V_{\text{line_peak}}$ is the peak value of input line-to-line voltage.

It is assumed that input displacement factor is unity in the above derivation and the imaginary dc link V_{pn} tracks a maximum or medium valued input line-to-line voltage at the instant of switching period.

2.3 PWM strategy

When the conventional indirect space vector PWM (ISVPWM) is applied, the maximum common mode voltage is $V_{\text{phase_peak}}$ when the two zero vector V7 or V0 are selected in the inverting stage modulation and an input phase voltage with peak value is connected to imaginary dc link positive or negative rail in the rectifying stage modulation. These states occur because a zero vector is usually selected from criteria where the number of switching of the matrix converter is minimized and the zero vector component traces along the envelope of input phase voltage with maximum value. For example, when the reference input current vector I_i^* is in current switching hexagon sector 1 and the reference output voltage vector V_o^* is in voltage switching hexagon sector 1, Table 2.2 represents the nine-step vector sequence used in conventional method [3] [40] and the center placed zero vector is determined to be bbb to satisfy the minimum switching criteria.
Table 2.2 Nine step vector sequence (current hexagon : 1, voltage hexagon : 1)

<table>
<thead>
<tr>
<th>γβ</th>
<th>γα</th>
<th>δα</th>
<th>δβ</th>
<th>0</th>
<th>δβ</th>
<th>δα</th>
<th>γα</th>
<th>γβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>aac</td>
<td>acc</td>
<td>bcc</td>
<td>bbc</td>
<td>bbb</td>
<td>bcc</td>
<td>acc</td>
<td>aac</td>
<td>aac</td>
</tr>
</tbody>
</table>

Fig. 2.2 (a) shows the phase voltage component of zero vector under the optimized ISV-PWM [40] with unity displacement power factor and shows the magnitude of phase voltage component ranges from 0 to $\frac{\sqrt{3}}{2} V_{\text{phase_peak}}$. Since the matrix converter is able to use 3 different kinds of zero vectors such as aac, bbb and ccc, a proper selection of zero vector leads to the decrease in the common mode voltage magnitude. If a phase voltage with medium value within an input current switching hexagon sector is chosen as a zero vector, the maximum magnitude of common mode voltage is reduced to $\frac{1}{2} V_{\text{phase_peak}}$ from $\frac{\sqrt{3}}{2} V_{\text{phase_peak}}$ and Fig. 2.2 (b) shows the input phase voltage component of zero vector under the proposed ISV-PWM. In other words,
zero vector \textit{aaa} is used instead of \textit{bbb} when the value of phase \textit{b} is greater than phase \textit{a}. But the switching numbers within a sampling period and total switching losses increase under the above method. Therefore, a proper zero vector placement is required according to which input phase voltage is chosen as a zero vector component and the following guidelines are derived to satisfy both common mode voltage reduction and minimum number of switching.

- The input phase voltage with the medium value is chosen as a zero vector component. (represented in Fig. 4 (a) and (b) with arrows)
- The position of zero vector depends on θ_R, the angle of the reference current space vector I_i^* within the actual hexagon sector.
- When $0 \leq \theta_R \leq \pi/6$, the zero vector is placed on the center.
- When $\pi/6 \leq \theta_R \leq \pi/3$, the zero vector is placed on the both sides.
- When the sum of the input and output hexagon sectors is even, the output vector sequence must be $\beta\alpha\alpha\beta$
- When the sum of the input and output hexagon sectors is odd, the output vector sequence must be $\alpha\beta\beta\alpha$
- The input vector sequence is $\gamma\delta$

Table 2.3 shows the vector sequence of the proposed ISVPWM under the above 7 rules. Moreover, since the square rms of ripple current in three phase load depends on the placement of the zero vector in a sampling period [41] and the proposed method

<table>
<thead>
<tr>
<th>condition</th>
<th>Switching sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Even, $0 \leq \theta_R \leq \pi/6$</td>
<td>$\gamma\beta \quad \gamma\alpha \quad \delta\alpha \quad \delta\beta \quad 0 \quad \delta\beta \quad \delta\alpha \quad \gamma\alpha \quad \gamma\beta$</td>
</tr>
<tr>
<td>Even, $\pi/6 \leq \theta_R \leq \pi/3$</td>
<td>$0 \quad \gamma\beta \quad \gamma\alpha \quad \delta\alpha \quad \delta\beta \quad \delta\alpha \quad \gamma\alpha \quad \gamma\beta \quad 0$</td>
</tr>
<tr>
<td>Odd, $0 \leq \theta_R \leq \pi/6$</td>
<td>$\gamma\alpha \quad \gamma\beta \quad \delta\beta \quad \delta\alpha \quad 0 \quad \delta\alpha \quad \delta\beta \quad \gamma\beta \quad \gamma\alpha$</td>
</tr>
<tr>
<td>Odd, $\pi/6 \leq \theta_R \leq \pi/3$</td>
<td>$0 \quad \gamma\alpha \quad \gamma\beta \quad \delta\beta \quad \delta\alpha \quad \delta\beta \quad \gamma\beta \quad \gamma\alpha \quad 0$</td>
</tr>
</tbody>
</table>
distributes zero vector equally within a sampling period, it does not increase ripple components of input/output current.

2.4 Harmonic performance

In this section, harmonic performance of the proposed PWM strategy is analyzed by calculating harmonic flux of the output voltage and harmonic charge of the input current. The both harmonic components are compared with the conventional PWM strategy.

2.4.1 Output voltage

![Fig.2.3 The per-carrier cycle rms value of the harmonic flux](image)

Fig.2.3 The per-carrier cycle rms value of the harmonic flux
To evaluate the output voltage quality of the proposed modulation strategy, the harmonic flux λ_h on a per-carrier cycle is usually employed [42]. The harmonic flux in the Nth carrier cycle is calculated by:

$$
\lambda_h = \int_{NT_s}^{(N+1)T_s} (V_k - V_0^*) \, dt
$$

(2.5)

In (2.5), V_k is the output voltage vector of the kth state and it changes according to the selected switching sequence. To compare the performance characterization between the proposed ISV-PWM and optimized ISV-PWM, the per-carrier harmonic flux error λ_h is normalized to the product of the peak value of input phase voltage and half of the switching period as below:

$$
\lambda_n = \frac{4}{\sqrt{3} \cdot T_s \cdot V_{phase-peak}} \lambda_h
$$

(2.6)

The normalized per-carrier cycle rms value of the harmonic flux λ_{nRMS}^2 can be calculated by

$$
\lambda_{nRMS}^2 = \int_0^1 \lambda_n^2 \, dd
$$

(2.7)

Fig. 2.4 The harmonic flux as a function of the modulation index (solid line : proposed PWM, dashed line : optimized PWM)
Fig. 2.3 shows the per-carrier cycle rms value of the harmonic flux as a function of the input current angle θ_R and output voltage angle θ_I for the proposed ISV-PWM. The contours are plotted for modulation index M of 0.95. Evaluating the waveform quality and harmonic losses, the per fundamental cycle rms value $\lambda_{nf,RMS}^2$ is obtained by integrating over the entire surface as below:

$$\lambda_{nf,RMS}^2 = \frac{1}{4\pi^2} \int_{0}^{2\pi} \int_{0}^{2\pi} \lambda_n^2 d\theta_R d\theta_I$$ (2.8)

Fig. 2.4 shows the per fundamental cycle rms value $\lambda_{nf,RMS}^2$ as a function of the modulation index M where M is $2/\sqrt{3} m_v$. The proposed modulation strategy shows worse harmonic performance in the entire linear modulation range and the mean value of harmonic flux increases by 6% compared to the optimized ISV-PWM. It should be noted that input displacement power factor is unity in the above evaluation.

2.4.2 Input current

Likewise the output voltage harmonic component derivation, the error between the desired input current and the chosen current space vector result in a high frequency harmonic input current. The evaluation of the input current quality uses the same idea and procedure for the output voltage case [42] but the concept of harmonic charge $q = I \cdot t$ (current-time product) is employed instead of harmonic flux $\lambda = V \cdot t$ (voltage-time product) [43]. The harmonic charge q_h in the Nth carrier cycle is calculated by:

$$q_h = \int_{NT_s}^{(N+1)T_s} (I_k - I_{k*}) dt$$ (2.9)

In (2.9), I_k is the matrix converter input current vector of the kth state and the magnitude of the per-carrier harmonic charge is a function of the input current angle θ_R, output voltage angle θ_I, the modulation index M and the output power factor pf. The per-carrier harmonic charge error q_h is normalized to the product of the peak value of output current and half of the switching period as below
Fig. 2.5 The per-carrier cycle rms value of the harmonic charge

\[q_n = \frac{4}{\sqrt{3} \cdot T_s \cdot I_{output-peak}} \cdot q_n \]

(2.10)

The normalized per-carrier cycle rms value of the harmonic charge \(q_{nRMS}^2 \) can be calculated by

\[q_{nRMS}^2 = \int_0^1 q_n^2 dd \]

(2.11)

Fig. 2.5 show the per-carrier cycle rms value of the harmonic charge as a function of the input current angle \(\theta_R \) and output voltage angle \(\theta_I \) for the proposed ISV-PWM. The contours are plotted for modulation index M of 0.95 and output power factor pf of 0.9. Evaluating the waveform quality and harmonic losses, the per-fundamental cycle rms value \(q_{nfRMS}^2 \) is obtained by integrating over the entire surface as below:

\[q_{nfRMS}^2 = \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} q_n^2 d\theta_R d\theta_I \]

(2.12)

Fig. 2.6 and Fig. 2.7 show the per fundamental cycle rms value \(q_{nfRMS}^2 \) as a function of the modulation index with output power factor 0.9 and 0.6, respectively. The
Fig. 2.6 The harmonic charge as a function of the modulation index under output power factor=0.9 (solid line: proposed PWM, dashed line: optimized PWM)

Fig. 2.7 The harmonic charge as a function of the modulation index under output power factor=0.6 (solid line: proposed PWM, dashed line: optimized PWM)
proposed strategy shows better input harmonic performance and the mean value of harmonic charge is reduced by 2% and 10% for output power factor 0.9 and 0.6, respectively. It can be seen the distortion of input current is dependent on the output power factor.

2.5 Simulation results

Fig. 2.8 waveform of V_{cm} with $f_{out} = 50$Hz, $m_V = 0.83$ (a) the conventional ISVPWM (b) the proposed ISVPWM
To illustrate the advantages obtained by the proposed ISV-PWM, the system of Fig. 2.1 (a) has been simulated with three phase balanced R-L load (42 Ω, 10 mH) and 208V, 60 Hz utility. Fig. 2.8 (a) shows V_{cm} when the conventional ISV-PWM is used with $f_{out} = 50$Hz, $m_V = 0.83$ and the peak value of V_{cm} reaches 147 V corresponding to $\sqrt{3}/2 \ V_{phase_peak}$ by zero vector operation. Fig. 2.8 (b) shows V_{cm} when the proposed ISV-PWM is used with same condition and the peak value of V_{cm} decreases to 98 V.
corresponding to $1/\sqrt{3} V_{\text{phase_peak}}$ by active vector operation because the peak value of V_{cm} by zero vector is limited to $1/2 V_{\text{phase_peak}}$ from $\sqrt{3}/2 V_{\text{phase_peak}}$ as presented in Fig. 2.2 (a) and (b). The reducing effect of common mode voltage leads to the reduction of the induced motor shaft voltage and possible degradation to its bearings [35]. Fig. 2.9 (a) and (b) show V_{cm} under $f_{out} = 20\text{Hz}$, $m_v = 0.33$ with the conventional ISV-PWM and with the proposed ISV-PWM, respectively and the V_{cm} decreases by 34 % regardless of modulation index m_v and output frequency f_{out} of matrix converter.

2.6 Experimental results

To validate the theoretical analysis and simulation, a 230V, 3kVA matrix converter prototype (Fig. 2.11) was developed. Fig. 2.10 shows the block diagram of the matrix converter. The prototype consists of a DSP board using TMS320LF2407, a FPGA board and Analog board for 4 step commutation and several functional digital logics programmed in Altera EPM7128S, a Gate driver & 6 isolated power supply board.

Fig. 2.10 Block diagram of 3 kVA matrix converter
Fig. 2.11 3 kVA laboratory prototype matrix converter

and a power board containing Eupec IGBT Matrix module (FM35R12KE3), voltage and current sensors and snubbers.

In the experiment, 208V, 2 HP general purpose induction machine is operated with constant voltage-frequency ratio and switching frequency is 2 kHz. For comparison of the conventional ISV-PWM and the proposed ISV-PWM, the waveforms of the common mode voltage V_{cm} are presented and repeated with various motor speeds in Fig. 2.12 (motor speed = 400 rpm) and Fig. 2.13 (motor speed = 1000 rpm). As shown in Fig. 2.12 (a) and 2.13 (a), there exists the common mode voltage pulses whose magnitude is $23V_{\text{phase _peak}}$ when the conventional ISV-PWM is applied. The proposed method makes the common mode voltage pulse whose magnitude is $\sqrt{3}/2 V_{\text{phase _peak}}$ be eliminated, restricting the common mode voltage pulse within a level of $(1/\sqrt{3}) V_{\text{phase _peak}}$, as presented in Fig. 2.12 (b) and 2.13 (b) regardless of motor speed. The occurrence and duration of common mode voltage whose magnitude is $\sqrt{3}/2 V_{\text{phase _peak}}$ become larger as motor speed decreases, so the proposed method has greater common mode voltage.
Fig. 2.12 Waveforms with $f_{out} = 50\text{Hz}$, $m_V = 0.83$
(a) the conventional ISVPWM
(b) the proposed ISVPWM (ch 3:V_{AB} and ch 4: V_{cm})
Fig. 2.13 Waveforms with $f_{out} = 20\text{Hz}$, $m_V = 0.33$
(a) the conventional ISVPWM
(b) the proposed ISVPWM (ch 3: V_{AB} and ch 4: V_{cm})
Fig. 2.14 Harmonic spectrum of V_{cm} with $f_{out} = 50$Hz, $m_V = 0.83$
(a) the conventional ISVPWM
(b) the proposed ISVPWM
Fig. 2.15 Waveforms with $f_{out} = 50\text{Hz}$, $m_V = 0.83$
(a) the conventional ISVPWM
(b) the proposed ISVPWM (ch 2: $I_{\text{leakage}} (0.5\text{A/div})$, ch 4: V_{cm})
reducing effect in the low speed region like Fig. 2.13 (b). Fig. 2.14 (a) and (b) show harmonic spectrum of V_{cm} for $f_{out}=50\text{Hz}$, $m_V = 0.83$ with the conventional ISV-PWM and the proposed ISV-PWM. The proposed method shows better harmonic spectrum for V_{cm}.

Fig. 2.16 V_{cm} comparisons of conventional PWM and proposed PWM
(a) peak value
(b) rms value
than the conventional method by decreasing the magnitude of common mode voltage. Fig. 2.15 (a) and (b) show the leakage current I_{cm} of the motor with conventional ISV-PWM and proposed ISV-PWM respectively, under $f_{out} = 50$Hz, $m_V = 0.83$. The peak value and RMS value are reduced by 17% and 13% when the proposed ISV-PWM is applied.

Fig. 2.16 (a) and (b) shows the comparison in peak and rms value of common mode voltage V_{cm} for various output frequency, respectively. The proposed method achieves the V_{cm} reducing effect as much as about 50V in peak value regardless of output frequency compared to conventional ISV-PWM. A comparison of the rms value of V_{cm} shows the V_{cm} reduction of the proposed method varies according to output frequency from 11% at 60 Hz and 42% at 10 Hz and it has greater rms common mode voltage reducing effect in the lower output frequency range due to the required longer zero vector interval at that range.

2.7 Conclusion

In this chapter, a new modulation strategy for matrix converter has been proposed. The proposed method has eliminated the common mode voltage components corresponding to maximum-valued input phase voltage and reduced the magnitude of peak common mode voltage by 34%. It has been accomplished by choosing a medium-valued phase voltage as a zero vector component and placing the zero vector in the center or on the both sides of sampling period. Also the voltage transfer ratio has been shown to be unaffected by the proposed scheme. Furthermore, the harmonic content of the input current has been reduced by 2% ~ 10 % and switching losses at the instant of zero vector transition has been decreased by 5%. However, the conventional scheme has shown better performance regarding the harmonic contents of output voltage and harmonic flux of the proposed scheme has been increased by 6%. Finally, experimental results have been shown to verify the theoretical analysis and simulation.
CHAPTER III

RIDE-THROUGH CAPABILITY FOR INPUT VOLTAGE DISTURBANCE*

3.1 Introduction

As discussed in Chapter I, section 1.3, the matrix converter is an array of controlled bidirectional semiconductor switches and the input voltage source is directly connected to the output load without any intermediate energy storage elements. It results the matrix converters are more sensitive to input power disturbances than a conventional PWM voltage source inverters due to the absence of dc-link.

With the rapid increase of adjustable speed drives (ASDs) in commercial and industrial facilities, the susceptibility of ASDs under power disturbances such as sags, swells, transients and short term power interruption (STPI) has become more important issue. According to a recent survey results, STPI for 0.5 ~ 5 sec and voltage sags of 10 % ~ 40 % below normal grid voltage for 3 ~ 30 cycles are the majority of power disturbances caused to costly industry process disruption [44]. Although several studies concerning ride-through capability under power disturbances have been proposed [44] [45] [46], these studies have focused on three phase PWM rectifier and/or PWM inverter. Reference [27] proposes an approach for matrix converter with limited ride-through capability. However, this approach has limitation to develop torque or motor flux during ride-through interval and needs speed and flux angle observers to re-energize the motor in the grid condition re-establishment.

This chapter proposes a new ride-through approach for matrix converter fed ASDs under STPI. In the proposed approach, the topology of a conventional matrix

converter is modified with the addition of three IGBTs and a dc-link capacitor. During a power interruption, the input grid is disconnected from the ASD by the selective turn-off of six (out of nine) bidirectional switches. It is shown that the three remaining bidirectional switches along with the additional IGBTs and dc-link capacitor, a PWM voltage source inverter (VSI) can be realized. The PWM VSI is then suitably controlled to maintain rotor flux and guarantee continuous operation of the ASD. Upon restoration of input grid, the control is simultaneously transferred to the matrix converter mode. The proposed strategy provides ride-through capability for matrix converter fed ASD and has the following advantages:

- It maintains rotor flux magnitude and keeps synchronization between matrix converter and motor during STPI.
- It allows matrix converter to re-accelerate the motor to the reference speed without experiencing current transients when normal grid condition is re-established.
- It operates as an embedded PWM voltage source inverter with dc-link during STPI and uses space vector PWM to regenerate mechanical energy in the load inertia to electrical energy in the dc-link capacitor.
- Minimum addition of hardware and software is required to the conventional matrix converter structure.

Simulation and experimental results are shown to demonstrate the advantages of the proposed approach.

3.2 Ride-through system in matrix converter

In this section, the proposed ride-through system is introduced and its operation is explained under a short term power interruption. The whole system is divided into two power modules together with each operating mode according to input voltage condition. Two operating modes are detailed and control scheme for an uninterrupted mode changes is designed.
3.2.1 Ride-through system configuration

Fig. 3.1 shows the proposed ride-through system for matrix converter. This system consists of two parts. The first part is a conventional matrix converter module which operates under normal grid condition, operating for normal mode. The second part is an add-on ride-through module which extends the matrix converter function to include the ride-through capability under an abrupt power interruption, operating for ride-through mode. The three additional IGBTs (SiA, SiB, SiC) together with six IGBTs (SaA+, SaA-, SaB+, SaB-, SaC+, SaC-) and dc-link capacitor C_{dc} form a conventional standard voltage source inverter (VSI) and thereby can use the well-known space vector PWM method using the same voltage hexagon shown in Fig. 1.8. With three IGBTs SaA-, SaB- and SaC- fully turning on, each IGBT pair SaA+ and SiA, SaB+ and SiB, and SaC+ and SiC configures phase A, B, C half-bridge arm of the VSI, respectively. In other words, the assembly of the above nine IGBTs and dc-link capacitor C_{dc} results in

![Fig. 3.1 Matrix converter with ride-through module](image)

Fig. 3.1 Matrix converter with ride-through module (SiA, SiB, SiC are add-on IGBTs)
an embedded PWM VSI without rectifying diode block. Since the ride-through module mainly handles magnetizing current component during very short regenerating interval, current rating of the added three IGBTs and capacitor C_{dc} can be designed much smaller than main matrix converter power rating. The C_{dc} is charging to the rated dc-link voltage V_{dc}^* which is the peak value of input line-to-line voltage during the normal mode, or recharged to the V_{dc}^* when the converter returns to the normal mode from the ride-through mode. The capacitor is charged through the anti-parallel diodes of three IGBTs (SiA, SiB, SiC) and input line-to-line voltage V_{ab} or V_{ac} (when $V_{ab} > 0$ or $V_{ac} > 0$).

3.2.2 Ride-through strategy

The proposed approach has two operating modes, which are normal mode during healthy power condition and ride-through mode during power outage. The operation of both modes is explained together with its working power circuit part and new control scheme is introduced for smooth transition between two modes.

A. Normal mode

The bold lines in Fig. 3-2 (a) represent the working circuit parts while power grid condition is healthy and this part is nothing but the matrix converter. Indirect space vector modulation, which is explained in the operating principle section, generates PWM patterns for nine bidirectional switches, eighteen IGBTs, in this normal mode. Upon detecting of an input power failure, the control is simultaneously transferred to the ride-through mode.
Fig. 3.2 Operating mode (a) normal mode (b) ride-through mode

B. Ride-through mode

The bold lines in Fig. 3.2 (b) represent the working circuit parts while the input power is interrupted. During the power interruption, the input grid is disconnected from the matrix converter by the selective turn-off of six (out of nine) bidirectional switches. It is shown that the three remaining bidirectional switch set connected in input phase a along with the additional IGBTs and dc-link capacitor, a PWM voltage source inverter
can be realized. It operates as an embedded PWM voltage source inverter with small dc-link and uses space vector PWM [47] to regenerate mechanical energy stored in the load inertia into electrical energy in the dc-link capacitor. During this ride-through mode, the dc-link voltage is maintained at the preset value which is 10% bigger than the rated dc-link voltage V_{dc}^* and DSP controller maintains rotor flux and keeps synchronization between matrix converter and motor to guarantee continuous operation of the ASD regardless of power variation. Upon restoration of input grid, the control is simultaneously transferred back to the normal mode.

C. Control scheme for both modes

PI controller is employed to ride-through a power outage by regenerating load inertia. The PI controller regulates the dc-link voltage with acceptable tolerance during the power interruption by changing the stator reference frequency. Fig. 3.3 shows the control block diagram for the proposed control scheme. Suppose a power outage occurs abruptly when the matrix converter runs at normal mode and DSP controller detects it. At the instant to acknowledge the power loss, the control is transferred to ride-through mode and PI controller output ω_r is in initial value, zero. Thus, the ω_r begin to decrease from zero to negative value as soon as the PI controller is enabled because dc-link capacitor supplies necessary power instead of input grid and thereby actual dc-link voltage V_{dc} begins to collapse rapidly. This negative-going ω_r is added to stator reference frequency ω_s and results in stator ride-through frequency ω_o. The stator reference voltage V_o and phase angle θ_o is calculated by the V/f ratio and transferred to the space vector PWM (SVPWM) block which calculates PWM patterns for six IGBT gate signals of the embedded PWM VSI [40]. During the ride-through interval, the converter supplies almost zero electromechanical torque to the motor and regenerate only a minor amount of power corresponding to the entire electrical losses in the converter. When the normal grid condition is re-established and DSP controller detects it, control is
transferred to the indirect space vector PWM (ISVPWM) block and re-accelerates motor shaft speed to the stator reference frequency ω_s from the stator ride-through frequency ω_o without any discontinuity in the motor states. Thus the both modes are changed without experiencing current transients. The ISVPWM block calculates PWM patterns for eighteen IGBT gate signals of matrix converter and feedbacks input voltage vector V_i to synchronize with the input grid.

3.3 Simulation results

To illustrate the advantages obtained by the proposed ride-through approach, the matrix converter of Fig. 3.1 has been simulated in PSIM. The parameters of the induction motor used in the simulation are $P=3$HP, $U_N=208$V, $f_N=60$Hz, $n_N=1710$rpm, $J=0.089$kgm2, $I_N=5.8$A, $T_N=11.9$Nm, $R_S=0.435\Omega$, $R_R=0.816\Omega$, $L_S=L_R=2$mH, $L_M=69.3$mH and other simulation conditions are as follows:

- Input grid : 208V, 60 Hz
- Output frequency : 40 Hz
- Switching frequency : 5 kHz
- Dc-link capacitor C_{dc} : 100 μF
- Acceleration ramp : 120 Hz/sec
Fig. 3.4 shows the ride-through operation without load torque, $T_{load} = 0$ Nm, during 400 msec short term power interruption. Fig. 3.4 (a) shows input grid is interrupted momentarily during 0.8 ~ 1.2 sec and Fig. 3.4 (b) shows the motor phase current I_A of matrix converter flows continuously without transients after power outage and re-establishment. Fig. 3.4 (c) shows V_{dc} is regulated well by regenerating load mechanical energy during outage and then back to its normal dc-link voltage level. Fig. 3.4 (d) shows the motor maintains its shaft speed with small speed dip and continues its operation. Fig. 3.5 shows the proposed scheme performs a complete ride-through operation at 100% load torque. Fig. 3.5 (b) shows motor phase current I_A supplies magnetizing current during outage and small amount of power for converter losses.
Fig. 3.5 Ride-through operation under 100% load torque (from top to bottom (a) input line voltage V_{ab} (b) motor phase current I_A (c) dc-link voltage V_{dc} (d) motor shaft speed [rpm])

regardless of the required load torque during normal mode. Fig. 3.5 (c) shows V_{dc} is regulated at 90% of the predetermined dc-link voltage V_{dc}^* under 100% load torque. Fig. 3.5 (d) shows motor shaft speed decreases to 50% of reference speed by the difference between zero electromagnetic torque and 100% load torque during STPI and re-accelerates toward the reference speed with the acceleration ramp of 120Hz/sec after input grid re-establishment. It shows the possible duration of the ride-through operation depends on load torque, initial motor shaft speed and load inertia.
3.4 Experimental results

3.4.1 Hardware implementation

A 230V, 3kVA matrix converter prototype (Fig. 3.7) has been built to verify the proposed approach. The converter is controlled using the indirect space vector modulation specialized to reduce common mode voltage [17]. Fig. 3.6 shows block diagram of the matrix converter with ride-through module. The completer control system is implemented on TMS320LF2407 DSP board. FPGA and analog board contains Altera FPGA EPM7128S for 4 step commutation, analog signal conditioning and protection circuits. IGBT Matrix module (FM35R12KE3) and three discrete IGBTs (IRG4PH50KD) for embedded PWM VSI, voltage, current sensors and snubber circuits are mounted on power board.

Fig. 3.6 Block diagram of 3kVA matrix converter with ride-through module
3.4.2 Results using the ride-through module

The matrix converter with ride-through module operates with output frequency of 40 Hz and switching frequency of 5 kHz into a 208V, 2HP induction motor and programmable AC power source (California Instruments) is used to emulate a three-phase grid with disturbances. A separate functional test for matrix converter and ride-through module has been carried out. Fig. 3.8 shows the output current I_A and output line-to-line voltage V_{AB} when matrix converter module is running at 30 Hz. It is seen the matrix converter supplies sinusoidal output current with low harmonic contents and the output line-to-line voltage reflects 360 Hz peak envelope of input source voltage. The
Fig 3.8 Matrix converter module operation. (ch2: input voltage V_{ab}, ch3: output current I_A [5A/div], ch4: output line-to-line voltage V_{AB})

Fig 3.9 Ride-through module operation (ch2: input voltage V_{ab}, ch3: output current I_A [5A/div], ch4: output line-to-line voltage V_{AB})
add-on ride-through module has been tested with the same load and input condition with extra B6 type rectifier to verify its feasibility. Fig. 3.9 shows the output current \(I_A \) and output line-to-line voltage \(V_{AB} \) running at 30 Hz and 300V dc link voltage is provided by extra B6 rectifier.

Fig. 3.10 (a), (b) and (c) show the output line-to-line voltage \(V_{AB} \) (Ch.2), input line-to-line voltage \(V_{ab} \) (Ch. 3), output current \(I_A \) (Ch. 4, [5A/div]) and STPI detect signal (Ch. 1, 0: normal mode, 1: ride-through mode). Fig. 3.10 (a) shows the waveforms while the input grid is healthy, i.e. normal mode and the proposed system works as a matrix converter at fixed output frequency 40 Hz. The matrix converter supplies sinusoidal output current with low harmonic contents corresponding to load torque and the rippled PWM pulse train of \(V_{AB} \) tracks 360 Hz peak envelope of input grid voltage which is a typical waveform of matrix converter. Fig. 3.10 (b) shows the waveforms while the input grid is interrupted, i.e. ride-through mode. The proposed system regenerates the mechanical energy from the motor by decreasing a motor speed. The ride-through module works as a voltage source inverter and controls the motor all the time of this mode. Therefore output current \(I_A \) flows continuously even though the input voltages disappear but decreases to the magnetizing current level of the motor. The flat peak value of PWM pulse train of \(V_{AB} \) represents the dc-link voltage is well regulated by the PI controller. In the above two figures, STPI signal denotes the present operating mode and is calculated by real time STPI detection algorithm programmed on DSP. The “1” of STPI signal indicates momentary power interruption occurs (Fig. 3.10 (b)) and the STPI signal is “0” during normal grid condition (Fig. 3.10 (a)). An experiment about mode change between normal mode and ride-through mode has been done. Fig. 3.10 (c) shows waveforms at transition moment from ride-through mode to normal mode when input grid is reestablished after momentary power interruption. The output line-to-line voltage \(V_{AB} \) changes from the typical waveform of PWM VSI to the typical waveform of matrix converter without any pulse dropping. The output current \(I_A \) flows continuously without transients and its magnitude returns from magnetizing current level back to magnitude.
Fig. 3.10 Waveforms at power disturbance (a) normal mode (b) ride-through mode (c) mode transition from ride-through mode to normal mode (ch1: STPI, ch2: output line-to-line voltage V_{AB}, ch3: input voltage V_{ab}, ch4: output current I_A [5A/div])

corresponding to load torque. Fig. 3.11 compares the matrix converter without ride-through module (Fig. 3.11 (a)) and with the module (Fig. 3.11 (b)) when the input grid is interrupted and then re-established. Fig. 3.11 (a) shows matrix converter without the module is comparatively sensitive to an input voltage disturbance and tripped by over current at the instant of power outage. Meanwhile, matrix converter with the module ride-through the momentary power interruption effectively and output current I_A flows continuously without any transients between mode changes caused by power outage and re-establishment as shown in Fig. 3.11 (b).
Fig. 3.11 Comparison during power interruption (a) without ride-through module (b) with ride-through module (ch1: STPI, ch2: output current I_A [5A/div]), ch3: input voltage V_{ab}, ch4: output line-to-line voltage V_{AB})
Fig. 3.12 Mode changes between normal mode and ride-through mode (ch1: STPI detector signal (0: normal mode, 1: ride-through mode), ch2: output frequency f_{OUT}, ch3: input voltage V_{ab}, ch4: output current I_A)

Fig. 3.12 shows the proposed ride-through operation when the input grid is interrupted for 500 msec and then reestablished. Programmable AC power source (California Instruments) has been used to emulate a three-phase grid with disturbances. While the STPI detector signal is ‘1’, ride-through module and PI controller decrease output frequency f_{OUT} from reference frequency 40 Hz to 25 Hz and it regulates dc-link voltage to 275 V by regenerative operation. After power recovery, it reaccelerates the motor up to the reference frequency 40 Hz and the STPI detector signal go back to ‘0’. Output current I_A flows continuously without any transients between mode changes caused by power outage and re-establishment.
3.5 Alternative scheme

Fig. 3.13 shows an alternative scheme to achieve ride-through capability in the matrix converter. In this article, the topology of conventional matrix converter is modified to add a small dc-link capacitor and then realize the embedded PWM VSI, which runs in regenerative operation during power outage. However, matrix converter usually employs dc capacitor for a voltage clamp circuit, which is needed to absorb the energy trapped in the leakage inductances of motor and protect switching devices against voltage spikes when an abrupt shutdown occurs. The voltage clamp circuit consists of clamp capacitor and two B6-type diode bridges connected to input and output phases of bidirectional switches. Therefore, another embedded PWM VSI can be simply realized by replacing the output side B6 diode bridge by six IGBTs which configures three-phase VSI as illustrated in Fig. 3.13. The dc capacitor is shared as a snubber clamp capacitor in the normal mode and a dc-link in the ride-through mode. Current rating of six IGBTs are selected much smaller than the main matrix converter power rating due to the same reason as the added ride-through module case.

![Voltage clamp & ride-through](image)

Fig. 3.13 Modified voltage clamp circuit for ride-through capability
3.6 Conclusion

In this chapter, a new ride-through approach for matrix converter has been proposed. The proposed approach has been shown to maintain the rotor flux and keep synchronization between the motor and matrix converter during momentary power interruption. It has been shown that by regenerating the mechanical energy stored in load inertia and transferring it to dc-link capacitor within the embedded PWM VSI part, successful ride-through operation is accomplished. Further, the matrix converter has been shown to re-accelerate the motor to the reference speed without any current transients when normal grid power is restored. The duration of the ride-through operation depends on initial motor shaft speed level, load torque type and load inertia and so the approach is more effective for applications with sufficient load inertia. The ride-through capability has been achieved by the minimal addition of hardware and software into the matrix converter.
CHAPTER IV

HIGH-FREQUENCY LINK TO INCREASE VOLTAGE TRANSFER RATIO*

4.1 Introduction

Distributed generation and storage technologies are an ever increasing portion of the electric supply resources and most of these new energy technologies produce output voltage and frequency that are incompatible with the existing utility. Therefore, static power converters should be integrated with these technologies to provide the necessary compatibility. When we consider a variable-speed constant-frequency application such as microturbine and wind turbine, a typical candidate for power converters is an AC/DC/AC PWM converter/inverter. In some cases, these applications request the flexible voltage step-up/down transformation to meet the standard utility voltages such as 230V, 380V and 480V and electrical galvanic isolation between variable speed source and utility for safety consideration. Conventional VSCF systems employ an AC to DC converter, dc-link, DC to AC inverter followed by a line frequency isolation transformer. This approach suffers from bulky 60 Hz magnetic components and large dc-link electrolytic capacitors.

Since the power throughput density in the transformer is proportional to the operating frequency, increasing the frequency allows higher utilization of the magnetic core and reduction in transformer size. A solid-state transformer employing a high frequency ac link stage was proposed to reduce power transformer volume [48]. Although several studies adopting high-frequency link has been proposed, these studies have focused on DC/AC conversion [49] for UPS application and AC/DC conversion.

with zero-voltage switching [50] for high power rectifier. An application of high frequency link to direct AC/AC conversion has not been presented in the literature.

This chapter proposes a new three-phase AC/AC high-frequency link matrix converter. In this approach, the variable speed three-phase ac source is chopped to 50 % duty square wave pulses by the proposed PWM scheme and transferred through single-phase high frequency transformer and finally established as a fixed frequency utility voltage. The dc-link reactive energy components are eliminated along with a related initial charging circuit. The advantages of the proposed approach are:

1. Flexible voltage transfer ratio to meet the several standard utility voltages
2. Electrical galvanic isolation between variable-speed source and fixed frequency utility source
3. Full utilization of input voltage for dc-link stage and near symmetric square wave pulse trains to the high-frequency transformer regardless of the operating frequency of variable speed input source
4. High power density due to minimization of magnetic components and bulky dc link capacitors
5. Controllable displacement power factor at output utility
6. Bi-directional power flow capability which is able to start up microturbine as a motor load and then operate it as a generator
7. lower total harmonic distortion of the input and output currents

Simulation and experimental results are shown to demonstrate the advantages of the proposed approach.
4.2 High-frequency link matrix converter

4.2.1 Proposed topology

Fig. 4.1 (a) shows the circuit diagram of the proposed high frequency link matrix converter topology and it has two power conversion stages, i.e., the variable speed source $3\phi/1\phi$ matrix converter part (primary side converter) for balanced three-phase variable-frequency ac to high frequency ac (HFAC) and the utility interactive $1\phi/3\phi$ matrix converter part (secondary side converter) for HFAC to fixed-frequency utility ac, respectively. A small and efficient high-frequency (HF) transformer is placed between the two power conversion stages and the HFAC with a form of 50% duty square wave pulse is transferred through it to provide input/output isolation and required voltage transfer ratio. Each of twelve bidirectional switches is constructed by connecting two IGBTs in back-to-back shown in Fig. 4.1 (b).

In this paper, the utility interactive $1\phi/3\phi$ matrix converter is modified from using six bidirectional switches (Fig. 4.1) to ten IGBT switches with unfiltered dc-link block

![Fig. 4.1 (a) proposed $3\phi/3\phi$ high frequency link matrix converter (b) bidirectional switch configuration](image-url)
Fig. 4.2 shows an actual implementation of the proposed matrix converter. The secondary side converter consists of single-phase full bridge active rectifier ($R1 \sim R4$) and conventional voltage source inverter structure ($T1 \sim T6$). The step-upped secondary side HFAC signal V_s is rectified by active rectifier and establishes a desired magnitude of fluctuated dc link voltage V_{dc} by a proper selection of transformer turn ratio n. Since conventional voltage source inverter structure is chosen on the secondary side, space vector PWM and well-proven current control algorithm can be adopted to meet a harmonic specification of power quality standards.

![Diagram of the proposed matrix converter](image)

Fig. 4.2 Real implementation of the proposed matrix converter

4.2.2 Variable speed source 3φ/1φ matrix converter

This primary converter part is used to synthesize the high-frequency ac voltage V_p from the balanced three-phase input voltage and then, transfer single-phase HFAC square wave pulses to the utility interactive 1φ/3φ matrix converter part through an isolated HF transformer. The PWM strategy for the 6 bidirectional switches is expanded from the PWM method of [5]. It is assumed that the input source voltages are balanced and described by

$$V_a = V_{im} \cos \theta_a = V_{im} \cos(\omega_m t)$$
\[V_b = V_{im} \cos \theta_b = V_{im} \cos(\omega_m - \frac{2\pi}{3}) \]
\[V_c = V_{im} \cos \theta_c = V_{im} \cos(\omega_m + \frac{2\pi}{3}) \]

where \(\omega_m \) is the input angular frequency and is changeable according to an operating point of distributed generating system. Within any 60° interval between two successive zero crossings of input phase voltages, shown in Fig. 4.3, only one of the three-phase input voltages has the maximum absolute value and the other phase voltages have opposite polarity voltage. For example, in the mode 1, phase \(a \) has the maximum positive value and phase \(b \) and \(c \) have negative values in Fig. 4.3 and \(| V_a | = | V_b | + | V_c |\)

Fig. 4.3 Six modes of input phase voltages

Under mode 1 and positive pulse mode at \(V_p \), switch \(S_{ap} \) remains turned on and switch \(S_{bn}, S_{cn} \) are modulated within one switching period \(T_S \) while all other switches remain turned off. In order to satisfy unity displacement power factored input current requirement and full utilization of input source voltage, the duty ratio \(d_b, d_c \) of switch \(S_{bn} \) and \(S_{cn} \) are given by

\[d_b = \frac{|\cos \theta_b|}{|\cos \theta_a|}, \quad d_c = \frac{|\cos \theta_c|}{|\cos \theta_a|} \]

From Fig. 4.2 and Fig. 4.4(c), the output dc link voltage \(V_{dc} \) is

\[V_{dc} = n(d_b(V_a - V_b) + d_c(V_a - V_c)) \]
where n is the transformer turn ratio $n = N_{sec}/N_{prim}$. By substituting (4.1) and (4.2) into (4.3) with trigonometric transformation, V_{dc} averaged within a switching period T_S can be given by

$$V_{dc} = \frac{3nV_{im}}{2|\cos \theta_a|} \tag{4.4}$$

Table 4.1 shows the bidirectional switch states, the primary winding voltage V_P of HF transformer and the dc-link voltage V_{dc} according to mode of input phase voltage and positive/negative pulse mode of V_P.

Table 4.1 Switch states and corresponding voltage V_P and V_{dc} according to mode of input phase voltages

<table>
<thead>
<tr>
<th>Mode</th>
<th>Duty ratio</th>
<th>Positive pulse</th>
<th>Negative pulse</th>
<th>V_{dc}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Turn-on SW pair</td>
<td>V_P</td>
<td>Turn-on SW pair</td>
</tr>
<tr>
<td>1</td>
<td>d_b</td>
<td>$S_{ap} - S_{bn}$</td>
<td>V_{ab}</td>
<td>$S_{an} - S_{bp}$</td>
</tr>
<tr>
<td></td>
<td>d_c</td>
<td>$S_{ap} - S_{cn}$</td>
<td>V_{ac}</td>
<td>$S_{an} - S_{cp}$</td>
</tr>
<tr>
<td>2</td>
<td>d_a</td>
<td>$S_{cn} - S_{ap}$</td>
<td>V_{ac}</td>
<td>$S_{cp} - S_{an}$</td>
</tr>
<tr>
<td></td>
<td>d_b</td>
<td>$S_{cn} - S_{bp}$</td>
<td>V_{bc}</td>
<td>$S_{cp} - S_{bn}$</td>
</tr>
<tr>
<td>3</td>
<td>d_c</td>
<td>$S_{bp} - S_{cn}$</td>
<td>V_{bc}</td>
<td>$S_{bn} - S_{cp}$</td>
</tr>
<tr>
<td></td>
<td>d_a</td>
<td>$S_{bp} - S_{an}$</td>
<td>V_{ba}</td>
<td>$S_{bn} - S_{ap}$</td>
</tr>
<tr>
<td>4</td>
<td>d_b</td>
<td>$S_{an} - S_{bp}$</td>
<td>V_{ba}</td>
<td>$S_{ap} - S_{bn}$</td>
</tr>
<tr>
<td></td>
<td>d_c</td>
<td>$S_{an} - S_{cp}$</td>
<td>V_{ca}</td>
<td>$S_{ap} - S_{cn}$</td>
</tr>
<tr>
<td>5</td>
<td>d_a</td>
<td>$S_{cp} - S_{an}$</td>
<td>V_{ca}</td>
<td>$S_{cn} - S_{ap}$</td>
</tr>
<tr>
<td></td>
<td>d_b</td>
<td>$S_{cp} - S_{bn}$</td>
<td>V_{cb}</td>
<td>$S_{cn} - S_{bp}$</td>
</tr>
<tr>
<td>6</td>
<td>d_c</td>
<td>$S_{bn} - S_{cp}$</td>
<td>V_{cb}</td>
<td>$S_{bp} - S_{cn}$</td>
</tr>
<tr>
<td></td>
<td>d_a</td>
<td>$S_{bn} - S_{ap}$</td>
<td>V_{ab}</td>
<td>$S_{bp} - S_{an}$</td>
</tr>
</tbody>
</table>

Where $V_{ab} = V_a - V_b$, $V_{ba} = -V_{ab}$, $V_{bc} = V_b - V_c$, $V_{cb} = -V_{cb}$, $V_{ca} = V_c - V_a$, $V_{ac} = -V_{ca}$

$$d_a = \frac{1}{\cos \theta_a|/\cos \theta_{max}}$$
$$d_b = \frac{1}{\cos \theta_b|/\cos \theta_{max}}$$
$$d_c = \frac{1}{\cos \theta_c|/\cos \theta_{max}}$$

$\cos \theta_{max} = \max(|\cos \theta_a|, |\cos \theta_b|, |\cos \theta_c|)$
Fig. 4.4 (a) ~ (c) show the high frequency link operating mechanism at mode 1, with excessively increased switching period T_S so that resulted square wave pulses can be observed in detail. In this example, two square-wave pulses are applied to the primary winding of HF transformer in each mode (Fig. 4.4 (b)). At the beginning of every switching interval T_S, duty d_b of V_{ab} is used. Bidirectional switch S_{ab} and S_{bn} are turned on creating a positive pulse V_{ab} across the primary winding and a current pulse is flowing from phase a into phase b during $d_b \cdot T_S$. At the end of the same switching interval T_S, duty d_c of V_{ac} is used. Bidirectional switch S_{ap} and S_{ca} are turned on creating

![Mode 1 diagram](image)

Fig. 4.4 PWM pattern generation (a) duty cycle in input phase voltage (b) 50% duty square wave in the primary voltage V_P (c) fluctuated dc-link voltage V_{dc}
a positive pulse V_{ac} across primary winding and a current pulse is flowing from phase a into phase c during $d_c \cdot T_S$. In order to keep the HF transformer flux balanced, a negative voltage pulse is applied across the primary winding in the next switching period. Bidirectional switch S_{an} and S_{bp} are turned on generating negative pulse V_{ba} during $d_b \cdot T_S$ and then S_{an} and S_{cp} are turned on generating negative pulse V_{ca} during $d_c \cdot T_S$. In the consecutive switching cycle, the above positive and negative pulse train with 50% duty and different magnitude is repeated as shown in Fig. 4.4 (b). The pulse train V_P is stepped up/down to V_S through HF transformer and then V_S is rectified to a fluctuated dc-link voltage V_{dc} as shown in Fig. 4.4 (c).

Since the frequency range of variable speed source varies widely, synchronous or asynchronous PWM is chosen depending on the operating variable speed source frequency in the primary side converter control. It is chosen according to the frequency modulation ratio defined by

$$m_f = \frac{f_{sw_pri}}{f_{in}}$$ \hspace{1cm} (4.5)

where f_{in} is the varying variable speed source frequency and f_{sw_pri} is the switching frequency of primary side converter. For small value of m_f, the phases of primary converter and variable speed source should be synchronized to each other for full utilization of available input voltage and improvement of input current waveform quality. Also, m_f should be a multiple of six because the whole range of input phase is divided into six modes. By changing switching frequency f_{sw_pri} to be multiples of six of the input frequency, it distributes the square wave pulse train to be quarter-wave symmetric about the each center of modes and guarantees the magnetizing flux balance at the HF transformer. Meanwhile, the average voltage loss of V_{dc} due to asynchronous PWM is small at the larger value of m_f and the asynchronous PWM can be used where the frequency of primary converter is kept constant, whereas the frequency of input voltage varies, resulting in non-integer values of m_f.
4.2.3 Utility interactive 1φ/3φ matrix converter

The secondary converter part is similar to the traditional AC/DC/AC converter system without DC capacitors [51]. IGBT switches \(R1, R2, R3 \) and \(R4 \) are controlled to rectify 50% duty square wave \(V_S \) into fluctuated dc-link voltage \(V_{dc} \) and active switches are used for bidirectional power flow instead of B4-type diode rectifier. When secondary voltage of HF transformer is positive pulse \((V_S > 0) \), \(R1 \) and \(R2 \) are turned on and \(R3 \) and \(R4 \) are turned-on at negative pulse \((V_S < 0) \) to maintain \(V_{dc} \) positive. In practical implementation, resistor – capacitor – diode snubber circuit is adopted to mitigate the effect of leakage inductance of HF transformer and circuit layout and the snubber energy is regenerated to input side or output side by using the IGBT switches. It should be noticed that four active switches can be replaced by four diodes when out power factor is more than 0.87 and bidirectional power flow is no longer required.

Conventional voltage source inverter structure \((T1 \sim T6) \) is used as the power stage from fluctuated dc-link to fixed frequency utility and two methods are used to satisfy low current distortion and unity displacement factor. First, the synchronous reference-frame \(d \) and \(q \) current regulators are adopted with the feed-forward compensation of speed voltage term to eliminate the cross coupling between the \(d \) and \(q \) phases [52] and it allows the reduction of the current control loops to first-order plants and improved their tracking capability. Second, \(\cos \theta_{\text{max}} \) in Table 1 is multiplied to the final PWM voltage command of the above current controller to compensated highly fluctuated dc-link voltage and distribute its pulse within the pulse width generated by primary converter in average level.

4.2.4 HF transformer design consideration

This part deals with the proper selection of dc-link voltage, takes into account the utility voltage fluctuation and the reduced voltage transfer gain in primary side converter
and derives a minimum turn-ratio n of HF transformer to accommodate these issues. The secondary side converter with well-designed current controller and fixed frequency utility can be modeled as two independent ac voltage sources connected through inductor L_F, which acts as the load between utility voltage U and converter output voltage V shown in Fig. 4.5 (a). The direction of power flow between these two sources depends on their magnitudes (U_m and V_{om}) and phase angles (θ_U and θ_V). The voltage and current relationships of the utility interactive $1\phi/3\phi$ matrix converter can be analyzed using the phasor diagram in Fig. 4.5 (b). Neglecting the resistor drop in the line and assuming unity displacement factor operation (synchronous frame reactive current $I_d^e = 0$), the amplitude of the converter output voltage V_{om} can be calculated as

$$V_{om} = \sqrt{U_m^2 + (\omega_o L_F I_q^e)^2}$$ (4.6)

where

- f_o utility frequency
- $\omega_o = 2\pi f_o$
- I_q^e active component current

In order to avoid saturation in a space vector pulse width modulator and considering a maximum modulation index of 0.95, the peak phase voltage V_{om} must be

$$V_{om} \leq \frac{V_{dc}}{\sqrt{3}} \cdot 0.95 \quad \text{where} \quad V_{dc} = \frac{3nV_{im}}{2}$$ (4.7)

Combining (4.6) and (4.7), the boundary condition for PWM saturation can be given as a relationship between dc-link voltage V_{dc} and utility voltage U_m and a required turn-ratio n of HF transformer is derived as

$$n = \frac{N_s}{N_p} \geq \frac{2\sqrt{U_m^2 + (\omega_o L_F I_q^e)^2}}{\sqrt{3}V_{im} \cdot 0.95}$$ (4.8)

The primary purpose of HF transformer is to reduce the size, weight and volume and to improve efficiency. In order to achieve this, a standard grain-oriented silicon-steel
core transformer is chosen and an operating frequency of 1.2 kHz to 2.4 kHz is used [18] for the verification of the proposed approach. However, amorphous core material and coaxial windings are required for real 96,000 rpm rotating microturbine application [24].

4.3 Simulation results

To illustrate the advantages obtained by the proposed high frequency link matrix converter, the system of Fig. 2 has been simulated with the following conditions:

- **Input variable speed source**: 208V, 30 Hz
- **Output utility**: 208V, 60 Hz
- **HF transformer turn ratio** n : 1:1.3
- **Utility interface inductor** : 1.5 mH
- **f_{SW} in 3φ/1φ matrix converter part** : 2 kHz
- **f_{SW} in 1φ/3φ matrix converter part** : 10 kHz

Fig. 4.6 shows input phase voltage V_a at 30 Hz, input phase current I_a before passing through input LCR filter, primary winding voltage V_p and primary current I_p of
Fig. 4.6 Primary side $3\phi/1\phi$ matrix converter waveforms ($f_{in} = 30$ Hz)

Fig. 4.7 Secondary side $1\phi/3\phi$ matrix converter waveforms ($f_{out} = 60$ Hz)
HF transformer. The primary part 3φ/1φ matrix converter draws only active component of current I_a with unity displacement factor and tracks the phase of variable speed of distributed power generator. The waveform of I_a illustrates low total harmonic distortion and it means the design of the high speed generator into a given volume is simplified considerably [53].

The waveform of primary current I_p represents the proposed flux balancing method works as desired. Fig. 4.7 shows utility phase voltage V_A at 60 Hz, output current I_A through utility interactive inductor L_F, secondary winding voltage V_s of HF transformer and fluctuated dc-link voltage V_{dc}. The secondary side 1φ/3φ matrix converter supplies only active component of current I_A with unity displacement factor. The waveform of I_A illustrates very low total harmonic distortion of the output current and it satisfies the requirements of power quality standard.

4.4 Experimental results

To validate the proposed topology and PWM pattern generation, a 230V, 3kVA high frequency link matrix converter prototype was developed. In order to evaluate asynchronous PWM mode at larger value of m_f, 208V, 60Hz utility is applied to the primary side and the secondary side is connected to 170V, 60 Hz utility step-downed by variable auto-transformer. Fig. 4.8 shows the primary winding voltage V_p, input line voltage V_{ab}, fluctuated dc-link voltage V_{dc} where $m_f = 33.3$ is used. The reestablished dc-link voltage waveform represents asynchronous PWM works as desired. Fig. 4.9 shows unfiltered input current I_a and input phase voltage V_a. I_a is in phase with V_a. Fig. 4.10 illustrates input current I_a, fluctuated dc-link voltage V_{dc}, output phase voltage V_A and output current I_A. Since the same utility is used at both input and output side, I_a and I_A are in phase with output phase voltage V_A and it shows unity power factor operation is occurred at both sides. Fig. 4.11 show the harmonic spectrum of unfiltered input current
Fig. 4.8 High frequency link waveforms at 60Hz input (ch2: V_p, ch3: V_{ab}, ch4: V_{dc})

Fig. 4.9 Primary side waveforms at 60Hz input (ch2: I_a (10A/div), ch3: V_a)
Fig. 4.10 Input/out waveforms at 60Hz input (ch1: I_d (20A/div), ch2: I_o (20A/div), ch3: V_d, ch4: V_{dc})

Fig. 4.11 FFT results at 60Hz input (ch M1: I_o, ch M2: I_d)
Fig. 4.12 High frequency link waveforms at 400Hz input (ch1: mode, ch2: V_p, ch3: V_{ab}, ch4: V_{dc})

Fig. 4.13 Input/out waveforms at 400Hz (ch1: I_A (20A/div), ch2: I_a (20A/div), ch3: V_A, ch4: V_a)
\(I_a \) and output current \(I_A \). Although the input current waveform is contaminated by switching frequency, FFT result shows it contains fundamental component and 9\%, 6\% of 5\(^{th}\) and 7\(^{th}\) harmonics, respectively because secondary converter distribute its pulse within the pulse width generated by primary converter in average mode, not instantaneous mode. However the output current FFT result shows only fundamental components. It should be noticed the lower order harmonics can be eliminated if primary side and secondary side pulses are correlated based on traditional matrix converter [3] but it requests complex calculation and considerable hardware burden.

For the check of synchronous PWM at small value of \(m_f \), 140V, 400 Hz generator output is applied to the primary side and 127V, 60Hz to the secondary side. Fig. 4.12 shows mode generated by primary side converter, input line voltage \(V_{ab} \), primary winding voltage \(V_p \) and fluctuated dc-link voltage \(V_{dc} \) when \(m_f \) is 6. The square wave pulse are symmetric each other and one pulse is generated at each mode due to successful synchronization. Fig. 4.13 illustrates input/ output phase voltage and current, respectively. Although output current is near sinusoidal and keep unity power factor, input current is same as rectifier current loaded by continuous current source because primary side converter acts like uncontrolled rectifier at \(m_f = 6 \). Therefore, larger value of \(m_f \) is required to improve input current waveform quality depending on an application.

4.5 Conclusion

In this chapter, a new three phase AC/AC high-frequency link matrix converter has been proposed. The proposed matrix converter has been shown to maintain unity displacement factor and low harmonic distortion in both variable speed source and utility. The added HF transformer into the intermediate stage of dual-bridge matrix converter has provided electrical galvanic isolation and flexible voltage transfer ratio, which makes it possible to be connected with any commercial utility voltage. Further, the proposed system has been shown to maintain the characteristics of a conventional matrix converter: with bidirectional power flow, no dc-link capacitors, improved
reliability and availability. The above advantages have made the proposed topology to be a competitive solution for VSCF distributed generation system such as wind-turbine and micro-turbine. The feasibility of the proposed high frequency link matrix converter has been verified through simulation and experiments.
CHAPTER V

SOFT SWITCHING DC/AC DIRECT CONVERTER

5.1 Introduction

Fuel cells are electrochemical devices that convert hydrogen and oxygen directly into electricity and water. Although they are emerging as a viable clean energy source for static power generation as well as moving vehicles [54], this source produces widely varying low dc voltage which is incompatible with the existing utility and shows slow dynamic response for sudden load change. To accommodate the low dc voltage of fuel cells (42 ~ 60V) to the required split 120V/240V single phase ac voltage, a typical fuel cell based power conditioner has two parts; variable low dc-to-fixed high dc converter and dc/ac converter, and battery/ultra capacitor is utilized to improve load dynamics [55]. Although several power circuit topologies have been proposed in the literature, these approaches are focused on the improvement of dc/dc converter part [56][57][58] or inverter part [59], separately. A research for a complementary operation of dc/dc converter and inverter has not been presented in the literature.

This paper proposes a new soft switching direct converter for residential use and new PWM scheme is proposed to synchronize both dc/dc converter and inverter switching instants. Inverter operating condition for zero current commutation and zero voltage switching requirements in the dc/dc converter are analyzed and clamp circuit design is discussed. The advantages of the proposed direct converter are:

- Switching losses in dc/dc converter are nearly zero due to the combined ZVS and ZCS operation
- ZVS occurs throughout the whole load range since ZVS in dc/dc converter uses magnetizing current of transformer
- Higher reliability due to simple control in dc/dc converter and reduced EMI noise
- Higher power density due to the absence of the bulky dc-link capacitors and the elimination of the initial charging circuit.

Theoretical analysis and experimental results are shown to demonstrate the feasibility of the new direct converter.

5.2 Power conditioner topology

Fig. 5.1 exhibits a block diagram of the proposed ac link based fuel cell power conditioner. The topology has a boost converter at the input that acts as a buffer between the widely varying fuel cell (42 to 60V) and preregulated battery level (80V). The boost converter precisely controls the current taken from the fuel cell ensuring that the maximum current slew rate is not exceeded and limits the second order harmonic current to flow into fuel cells. The battery is placed to compensate for the slow transient response of fuel cell. From the pre-regulated $80V_{DC}$, $1\phi/3\phi$ direct converter transforms to the split 120V/240V single phase ac voltage without any intermediate energy storage element.

![Fig. 5.1 The proposed AC link based fuel cell power conditioner](image)
Fig. 5.2 illustrates the proposed 1φ/3φ direct converter. It consists of soft switching dc/dc converter, dc-linkless 3φ inverter and output LC filter. The soft switching dc/dc converter is divided into primary dc/dc converter, high frequency transformer, secondary synchronous rectifier and clamp circuit. The primary dc/dc converter generates 20 kHz square wave from the preregulated 84V DC and steps up to 420V DC through high frequency transformer and synchronous rectifier. Further, the preregulated 84V DC leads to a full utilization of magnetic material and simple open loop control for square wave generation. The parasitic (or added) capacitors across MOSFET and clamp circuit allow ZVS (Zero Voltage Switching) turn-on and ZCS (Zero Current Switching) turn-off, respectively, whose operations are introduced in section 5.4. The secondary synchronous rectifier is used to reduce conduction loss and provide bidirectional power flow path when load displacement power factor is less than 0.866 [5].

The proposed inverter is the same as the three phase inverter without dc link capacitor [51][60]. The inverter supplies split 120V/240V single phase ac output directly without bulky dc link electrolytic capacitors, which results in lower power profile and improved reliability. A new PWM scheme provides zero vector interval for the inverter while dc/dc converter switches are commutating at zero current and its principle is introduced in section 5.3.
It should be noticed that the proposed direct converter for resident use can be applied in 3φ 220 V_{AC} utility interface mode just by removing output filter capacitors and employing conventional space vector modulation together with synchronous frame PI current controller [60]. Fig. 5.3 exhibits 1φ/3φ direct converter for 3φ utility interface and synchronous rectifier can be replaced by full bridge diode rectifier when the direct converter supplies unity power factored current to utility.

5.3 PWM strategy in inverter stage

The proposed inverter employs the conventional 3φ voltage source inverter topology and it means a standard 6-pack IGBT module can be used to generate split 120/240V single phase ac voltage. IGBT T1, T4 arm, T3, T6 arm and T5, T2 arm produce V_{A}, V_{N} and V_{B}, respectively and their reference voltages are defined as follows,

\[
V_{A-REF} = m_{a} \sin (2\pi \cdot 60 \cdot t) \quad (5.1)
\]
\[
V_{N-REF} = 0 \quad (5.2)
\]
\[
V_{B-REF} = -m_{a} \sin (2\pi \cdot 60 \cdot t) \quad (5.3)
\]

Where \(m_{a} \) is modulation index
Phase A reference voltage V_{A-REF} is 180° out of phase with Phase B reference voltage V_{B-REF}. Phase N reference voltage V_{N-REF} is always zero and generates 50% square wave gate signal V_{N-GATE} as shown in Fig. 5.4 (b). The average value of square wave V_N is zero and provides virtual ground over V_A, V_B. Fig. 4 shows an example of the proposed PWM scheme when V_{A-REF} is in positive peak ($\theta = 90^\circ$) and thereby V_{B-REF} is in negative peak. When output voltage vector is defined as a sequence of $[V_A \ V_N \ V_B]$, possible voltage vectors are divided into two active vector $[100]$, $[110]$ and two zero vectors $[000]$, $[111]$.

![Diagram showing PWM patterns at $\theta = 90^\circ$ and zero vector position](image-url)

Fig. 5.4 PWM patterns at $\theta = 90^\circ$ and zero vector position
Both zero vectors are placed in both ends and center of each switching period T_S as shown in Fig. 4 (b). During the zero vector intervals, output currents freewheel through upper switches or lower switches in case of [111] or [000], respectively and the dc/dc converter switches are commutating as shown in Fig. 5.4 (d). It means inverter dc link current I_{DC} and dc/dc converter secondary current I_S are all equal to zero in this interval. Therefore, the primary current I_P is reduced to magnetizing current I_M and commutates at near zero current. Fig. 5.4 (c) exhibits the resulted PWM patterns in output V_{AN} and output V_{BN}.

Modulation index of 0.85 is assumed to provide enough zero vector interval for ZCS and ZVS switching in the dc/dc converter. It is worth to note that three leg iron core type 3φ reactor can be employed owing to the above PWM scheme.

5.4 Soft switching strategy in dc/dc converter

Primary dc/dc converter operates as simple square wave generator and uses magnetizing current for ZVS turn on at every switching transition. Therefore ZVS operation occurs independent of the magnitude of load current and voltage surges are nearly eliminated at switching instants [61].

Also, the switching instants of dc/dc converter are synchronized with the zero vector interval of inverter. The synchronization leads to ZCS turn off at the dc/dc converter switches and elimination of reverse recovery phenomenon at secondary rectifier. Therefore, voltage overshoot and ringing caused from the interaction of the reverse recovery process of the rectifier with the leakage inductance of the transformer are almost eliminated. The clamp circuit is placed to support ZCS operation and clamp voltage surges caused from stray inductances of dc link power layout. Furthermore, the energy trapped in snubber C_S is regenerated to output side through the inverter switches.
5.4.1 ZCS turn-off operation

While the primary dc/dc converter is commutating, the voltage vector of inverter is zero vector (000 or 111) by the aforementioned PWM scheme. This condition indicates the dc link I_{DC} current becomes zero during the commutation of dc/dc converter switches and inverter output current freewheels through inverter active switches and anti-parallel diodes. However, the primary current keeps conducting by the leakage inductance L_{lk} of transformer. If the energy stored in the leakage inductance can be eliminated before the dc/dc converter switches commutate, zero current turn-on and -off at the dc/dc converter is possible and switching losses are significantly reduced. In other words, the eight switches of primary and secondary dc/dc converter commutate under discontinuous current mode. Therefore it can eliminate reverse recovery phenomenon and the pertinent EMI which occurs in continuous current mode of conventional rectifying diodes.

In order to remove the trapped energy at leakage inductance on time, clamp circuit is placed in the dc-link as shown in Fig. 5.2. When voltage vector of inverter changes from active vector (100 or 110) to zero vector (000 or 111), inverter part becomes separated from the dc/dc converter part. Since the secondary current I_S in leakage inductance is no longer able to conduct to the load through inverter switches, I_S is directed to the clamp circuit and dc link voltage is clamped to snubber capacitor voltage V_C.

Fig. 5.5 shows (a) the equivalent circuit and (b) secondary current I_S of the dc/dc converter during the above interval. In the equivalent circuit, the transformer is represented by the leakage inductance L_{lk} because magnetizing current freewheels through primary side path and is not seen in the clamp circuit. The equivalent circuit is valid until I_S discharges to zero.
Fig. 5.5 (a) equivalent circuit at ZCS turn-off and (b) I_S during inverter zero vectors

From the equivalent circuit, the snubber capacitor current I_C and voltage V_C are

$$I_C(t) = I_S(0^+) \cdot \cos(\omega_o t) + \frac{V_{IN} - V_C(0^+)}{Z_o} \sin(\omega_o t)$$ \hspace{1cm} (5.4)

where

$$\omega_o = \frac{1}{\sqrt{L_{lk} C_S}} \quad Z_o = \frac{L_{lk}}{\sqrt{C_S}}$$

L_{lk} : leakage inductance referred to secondary side
C_S : snubber capacitance
V_{IN}^* : preregulated voltage referred to secondary side
$V_{C}(0^+), I_S(0^+)$: initial value of V_C and I_S

The magnetic energy stored in leakage inductance is transferred to the electrostatic energy in snubber capacitor C_s at T_{reset} by resonance and T_{reset} is derived by using $I_C(T_{reset}) = 0$ at (4)

$$T_{reset} = \sqrt{L_{lk} C_S} \tan^{-1} \left(\frac{Z_o I_o}{V_c(0^+) - V_{IN}^*} \right)$$ \hspace{1cm} (5.5)
5.4.2 ZVS turn-on operation

In general, ZVS is preferable over ZCS at high switching frequency and the reason is related with the parasitic capacitances of the switch [2]. Since the secondary current I_S becomes zero before dc/dc converter changes square wave polarity, load current component is disappeared and magnetizing current component is only considered in the ZVS turn-on operation. During the switching transition, magnetizing current provides the constant charging/discharging current to parasitic (or added) capacitance across eight dc/dc converter MOSFET switches. Therefore transition time is constant regardless of the load current level because the peak value of magnetizing current is determined by preregulated voltage level of 80V. In addition, there is no significant conduction loss penalty to achieve ZVS as in the case of conventional phase shift modulated converter because ZVS operation is carried out by magnetizing current.

Assuming equivalent parasitic capacitance of each MOSFET and peak magnetizing current are C_P and I_{M-pk}, the resulted charging/discharging time is

$$t_{ZVS} = \frac{4C_P V_{IN}}{I_{M-pk}}$$

(5.6)

The blanking time between half bridge switches of dc/dc converter should be chosen greater than t_{ZVS} and zero vector interval of inverter should be greater than the sum of T_{reset} and the blanking time for smooth ZCS and ZVS operation.

5.4.3 Clamp circuit design consideration

Assuming C_S to be large relative to switching period and handled energy, the snubber capacitor and clamp circuit can be replaced by a dc source V_C in steady state. Since the waveform must repeat from one time period to the next in steady state, the integral of the charged and discharged energy on snubber capacitor over one period must
be zero. Therefore, the charged energy from leakage inductance with switching frequency f_{SW}

$$CHRG = \frac{1}{2} L_{lk} l_{S}^{2} \cdot 2 f_{SW}$$

(5.7)

is all dissipated at snubber resistor R_S in every switching period T_S.

Assuming snubber capacitor voltage is V_C in steady state and V_C is enough for the desired T_{reset}, the resistor R_S is determined by

$$R = \frac{V_C^2}{P_{CHRG}}$$

(5.8)

5.5 Experimental results

To validate the theoretical analysis, a 230V 3kVA soft switching direct converter prototype was developed. The controller consists of a DSP board using TMS320LF2407 and interface board including FPGA (Altera EPM7128S) for digital

Fig. 5.6 3kVA direct matrix converter
functions, analog circuits for feedback and protection. Power assembly has dc/dc converter, transformer, $1\varphi/3\varphi$ direct converter and LC filter as shown in Fig. 5.6.

Fig. 5.7 exhibits ZVS turn on at $S4$ MOSFET when the square wave polarity changes from positive to negative. At $t1$, the magnetizing current I_M is on positive peak. It starts to discharge/charge the parasitic capacitance of $S4/S1$ linearly, respectively and completes the voltage transition at $t2$. I_M flows through body diode of $S4$ from $t2$ and ZVS turn-on occurs when $S4$ turns on at $t3$. Interval $t1 \sim t3$ is the blank time of $S1$, $S4$ half bridge and greater than t_{ZVS} corresponding to interval $t1 \sim t2$.

To check the soft switching operation under unbalanced load condition, Phase A is rated loaded and phase B is not loaded with 20 kHz switching frequency. Fig. 5.8 waveforms illustrate the proposed PWM scheme integrated between dc/dc converter and dc-linkless inverter. It shows secondary winding current I_S (trace 2), secondary winding voltage V_S (trace 3), inverter output voltage V_{UV} (trace 4) before LC filter when V_{A-REF} is
Fig. 5.8 ZCS operation with $\theta = 270^\circ$, unbalanced load (ch2: I_s (5A/div), ch3: V_s, ch4: V_{UV}) in negative peak ($\theta = 270^\circ$). At t_1, V_{UV} pulse is turned on and begins to supply power to resistor load through LC filter. At this instant, I_s builds up through leakage inductance L_{lk} until it reaches to output load current at t_2 and thereby a voltage dip occurs in the dc-link voltage V_{DC} which is reflected in V_s. At t_3, inverter switching status is changed to zero vector (000) and output load current starts to freewheel through lower switches of inverter. Meanwhile, I_s keeps conducting through transformer leakage inductance and transfer its trapped magnetic energy to snubber capacitor C_S by t_4. During $t_3 \sim t_4$, V_{DC} is clamped by snubber capacitor voltage V_C and this interval corresponds to T_{reset} at (5.5). After t_4, the primary winding current is reduced to magnetizing current level and is used for energy source for ZVS at the dc/dc converter. At t_5, dc/dc converter changes the polarity of its square wave and ZVS occurs at four half bridge arms. The interval $t_5 \sim t_6$ corresponds to t_{ZVS} at (5.6) and blanking time of half bridge arms is chosen greater than t_{ZVS}. Since the dc/dc converter switching occurs at almost zero current and zero voltage,
its switching losses are nearly disappeared and pertinent EMI is drastically reduced. At t_7, V_{UV} pulse turns on again and the same operation is repeated. Therefore, zero vector interval is $t_3 \sim t_7$ and is determined by inverter modulation index. It should be noticed that output load currents are supplied directly from preregulated 80V$_{DC}$ through transformer without any intermediate reactive energy reservoir.

Fig. 5.9 shows phase A voltage V_{AN} (trace 3), phase B voltage V_{BN} (trace 4) and phase A load current I_A (trace 2). V_{AN} is out of 180° phase with V_{BN} and has the same magnitude as V_{BN} even though phase A is loaded by 1kW resistor and phase B is not loaded. Since the snubber capacitor voltage V_C can be initially charged to two times the normal value by a resonance of L_{lk} and C_S, the snubber capacitor C_S needs to be precharged during a start-up period. This precharging can be implemented solely by a proper design of the control circuit without any additional components. To accomplish this, all secondary converter switches $R1 \sim R4$ turn off and thereby synchronous rectifier
becomes diode rectifier during the start-up period, \(t_1 \sim t_2 \) in Fig. 5.10. The duty cycle of primary converter should be increased with some slew rate to obtain the normal dc link voltage without damaging dc/dc converter switches.

5.6 Conclusion

In this chapter, a new soft switching direct converter has been presented for residential fuel cell system. The proposed dc/dc converter has been shown high efficiency & lower EMI due to soft switching through whole load range without significant conduction loss penalty as in the case of the conventional phase shifted dc/dc converter. The proposed dc-linkless inverter makes the entire system compact and increases the system reliability by removing electrolytic capacitors. The synchronized and complementary PWM strategy between dc/dc converter and inverter has resulted in
ZVS and ZCS operation in the square wave switching instants. The operating principle and design considerations for circuit parameters have been addressed and checked in no load, balanced load and unbalanced load condition. Finally, preliminary experimental results have been shown to verify the feasibility of the proposed direct converter.
CHAPTER VI

CONCLUSIONS

6.1 Conclusions

This dissertation is primarily concerned with several aspects of matrix converter design for practical industry applications. Three different types of matrix converter topologies have been introduced and each prototype has been built to demonstrate the feasibility of the proposed topologies and control strategies.

In Chapter I, a brief overview of the matrix converter technologies and indirect space vector modulation have been presented. Next, research objectives and dissertation outlines are clearly delineated.

In Chapter II, a new modulation strategy for matrix converter has been presented to reduce the common mode voltage. The common mode voltage corresponding to peak input phase voltage has been eliminated by choosing a medium-valued phase voltage as a zero vector component and placing the zero vector in the center or on the both sides of sampling period. Therefore the voltage transfer ratio is unaffected by the modulation scheme. Further, the harmonic content of the input current is reduced and switching losses at the instant of zero vector transition are decreased. Finally, experimental results have been shown to verify the theoretical analysis and simulation.

In Chapter III, a new ride-through module for matrix converter has been proposed. The proposed module has been shown to maintain the rotor flux and synchronization between the motor and matrix converter during momentary power interruption. It has been shown that by regenerating the mechanical energy stored in load inertia and transferring it to dc-link capacitor within the embedded PWM VSI part, successful ride-through operation is accomplished. Further, the matrix converter has been shown to re-accelerate the motor to the reference speed without any current
transients when normal power is restored. The ride-through capability has been achieved by the minimal addition of hardware and software into the matrix converter.

In Chapter IV, a new three phase AC/AC high-frequency link matrix converter has been proposed. The proposed matrix converter has been shown to maintain unity displacement factor and low harmonic distortion in both variable speed source and utility. The added high frequency transformer into the intermediate stage of dual-bridge matrix converter provides electrical galvanic isolation and flexible voltage transfer ratio, which makes it possible to be connected with a commercial utility voltage. Further, the high-frequency link converter has been shown to maintain the characteristics of a conventional matrix converter: with bidirectional power flow, no dc-link capacitors, improved reliability and availability. The above advantages make the proposed topology to be a competitive solution for VSCF distributed generation system such as wind-turbine and micro-turbine. The feasibility of the proposed high frequency link matrix converter has been verified through simulation and experiments.

In Chapter V, a new soft switching direct converter has been presented for residential fuel cell system. The dc/dc converter stage has been shown high efficiency and lower EMI due to the soft switching through whole load range. The dc-linkless inverter stage makes the entire system compact and increases the system reliability by removing bulky electrolytic capacitors. The synchronized and complementary PWM strategy between dc/dc converter and inverter has resulted in ZVS and ZCS operation. The operating principle and design considerations for the converter have been addressed. Finally, experimental results have been shown to verify the feasibility of the direct converter.

6.2 Suggestions for future work

Continuation of the work in this dissertation could be focus on the unbalanced input voltage and output load conditions. The three schemes presented in Chapters II to
IV are based on balanced input voltages. Further investigation would also be required during grid disturbance such as voltage sag or swell. Experimental results would be provided by using 1kVA direct converter along with PEM fuel cell.
REFERENCES

VITA

Han Ju Cha received the B.S degree in electrical engineering from Seoul National University and the M.S degree from Pohang Institute of Science and Technology, Korea, in 1988 and 1990, respectively. He will receive the Ph. D degree from Texas A&M University, in August 2004. From 1990 to 2001, he was with LG Industrial Systems, Anyang, Korea, where he was engaged in the development of power electronic converters and high power adjustable speed drives. In September 2001, he began his doctoral program at Texas A&M University in the area of power electronics. His research interests are high power converters, ac/dc, dc/ac and ac/ac converter topologies and their control, medium voltage adjustable speed drives, power conditioners for distributed power sources such as wind, microturbine and fuel cells. He can be reached through Dr. P. Enjeti, Power Electronics and Power Quality Laboratory, Department of Electrical Engineering, Texas A&M University, College Station, Texas 77843.