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ABSTRACT

Essays on Monetary Policy and Banking Regulation. (August 2004)

Jingyuan Li, Diploma; M.S., Huazhong University of Science and

Technology

Chair of Advisory Committee: Dr. Guoqiang Tian

A central bank is usually assigned two functions: the control of infla-

tion and the maintenance of a safety-banking sector. What are the precise

conditions under which trigger strategies from the private sector can solve

the time inconsistency problem and induce the central bank to choose zero

inflation under a nonstationary natural rate? Can an optimal contract be

used together with reputation forces to implement a desired socially optimal

monetary policy rule? How to design a truth-telling contract to control the

risk taking behaviors of the bank? My dissertation attempts to deal with

these issues using three primary methodologies: monetary economics, game

theory and optimal stochastic control theory.
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CHAPTER I

INTRODUCTION

This dissertation studies several problems of monetary policy and bank-

ing regulation.

There are three essays in this dissertation. The first essay develops a

model to examine the equilibrium behavior of the time inconsistency prob-

lem in a continuous time economy with stochastic nature rate and endoge-

nized distortion. The second essay studies the time inconsistency problem

on monetary policy for central banks using a unified approach that combines

reputation forces and contracts. In the third essay, we study how to control

the risk taking behaviors of the bank.

Chapter II develops a model to examine the equilibrium behavior of

the time inconsistency problem in a continuous time economy with stochas-

tic nature rate and endogenized distortion. First, we introduce the notion

of sequentially rational equilibrium, and show that the time inconsistency

problem may be solved with trigger reputation strategies for stochastic set-

ting. We provide the conditions for the existence of sequentially rational

equilibrium. Then the concept of sequentially rational stochastically stable

equilibrium is introduced. We compare the relative stability between the

cooperative behavior and uncooperative behavior and show that the coop-

erative equilibrium in this monetary policy game is a sequentially rational

stochastically stable equilibrium and the uncooperative equilibrium in this

The journal model is Journal of Economic Theory.
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monetary policy game is sequentially rational stochastically unstable equi-

librium. In the long run, the zero inflation monetary policies are inherently

more stable than the discretion rules, and once established, they tend to

persist for longer periods of the time.

Chapter III studies the time inconsistency problem on monetary policy

for central banks using a unified approach that combines reputation forces

and contracts. We first characterize the conditions for reputation forces to

eliminate the inflation bias of discretionary policy. We then propose an opti-

mal contract that can be used with reputation forces to implement a desired

socially optimal monetary policy rule when the reputation forces alone are

not large enough to discourage a central bank to use a surprise inflation

policy. In contrast to most of the existing contracts that are contingent on

realized inflation rates which are in turn contingent on production shocks,

like the standard reputation model, a central banker in our hybrid mechanism

is punished only when she uses a surprise inflation rate. Since the penalty

proposed is the lowest one that discourages the central bank from attempting

to cheat and the sum of the loss, reputation forces, and the penalty for the

central bank to cheat is the same as the loss at the socially optimal inflation

rate, our hybrid mechanism is the most efficient and robust mechanism that

implements the socially optimal monetary policy rule. We also provide an

upper bound of the penalty that is lower than that of the existing contracts

when realized inflation rate is greater than a certain level.

Chapter IV studies how to control the risk taking behaviors of the bank.

First we get the expected bankruptcy time and conditional probability dis-

tribution of bankruptcy for a given time. We show that the risk-shifting
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behavior will increase the probability of bankruptcy during a given time.

Then we use these results to analyze the regulation policies and show that

capital requirements can not control the risk taking behaviors of bank at

finite future point in time. We also prove that if we use the time horizon

as an additional instrument, we can control the risk shifting problem. We

give a theoretic explanation for the VaR regulation. Finally, we discuss the

VaR contracts with asymmetric information and show that VaR contracts

can induce the banker report the real risk of the project.
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CHAPTER II

TIME INCONSISTENCY AND REPUTATION IN MONETARY

POLICY: A STRATEGIC MODELLING IN CONTINUOUS TIME

This chapter develops a model to examine the equilibrium behavior of

the time inconsistency problem in a continuous time economy with stochastic

and endogenized distortion. First, we introduce the notion of sequentially

rational equilibrium , and show that the time inconsistency problem may be

solved with trigger reputation strategies for stochastic setting. We provide

the conditions for the existence of sequentially rational equilibrium. Then

the concept of sequentially rational stochastically stable equilibrium is intro-

duced. We compare the relative stability between the cooperative behavior

and uncooperative behavior and show that the cooperative equilibrium in

this monetary policy game is a sequentially rational stochastically stable

equilibrium and the uncooperative equilibrium in this monetary policy game

is sequentially rational stochastically unstable equilibrium. In the long run,

the zero inflation monetary policies are inherently more stable than the dis-

cretion rules, and once established, they tend to persist for longer periods of

the time.

A. Introduction

Time inconsistency is an interesting problem in macroeconomics in gen-

eral, and monetary policy in particular. Although technologies, preferences,

and information are the same at different time, the policymaker’s optimal
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policy chosen at time t1 differs from the optimal policy for t1 chosen at

t0 < t1. The study of time inconsistency is important. It not only provides

positive theories that help us to understand the incentives faced by policy-

makers and provides the natural starting point for attempts to explain the

actual behavior of policymakers and actual policy outcomes, but also requires

one to design policy-making institutions. Such a normative task can help one

understand how institutional structures affect policy outcomes.

This problem was first noted by Kydland and Prescott [20]. Several

solutions have been proposed to deal with this problem since then. Barro

and Gordon [4] were the first to build a game model to analyze “reputation”

of monetary policy.1 A second solution is based on the incentive contracting

approach to monetary policy. Persson and Tabellini [30], Walsh [41] and

Svensson [37] developed models using this approach. A third solution is

built on the legislative approach. The major academic contribution in this

area was by Rogoff [33].

Among these approaches, the “reputation” problem is key. If reputation

consideration discourages the monetary authorities from attempting surprise

inflation, then legal or contracting constraints on monetary authorities are

unnecessary and may be harmful.

The main questions on reputation are when and how the government

chooses inflation optimally to minimize welfare loss, and, whether the pun-

1Backus and Driffill [2] extended the work of Barro and Gordon to a
situation in which the public is uncertain about the preferences of the gov-
ernment. Persson and Tabellini [29] gave an excellent summarization of these
models. Al-Nowaihi and Levine [1] discussed reputation equilibrium in the
Barro-Gordon monetary policy game.
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ishment can induce the government to choose zero inflation. The conclusions

of Barro-Gorden models are: First, there exists a zero-inflation Nash equi-

librium if the punishment for the government deviating from zero-inflation

is large enough. However, this equilibrium is not sequentially rational over

a finite time horizon. The only sequentially rational equilibrium is achieved

if the government chooses discretionary inflation and the public expects it.

Only over an infinite time horizon can one get a low-inflation equilibrium.

Otherwise, the government would be sure in the last period to produce the

discretionary outcome whatever the public’s expectation were and, working

backward, would be expected to do the same in the first period. Second, there

are multiple Nash equilibria and there is no mechanism to choose between

them.

This chapter develops a continuous times model of central bank at the

spirit of Kydland and Prescott [20] and Barro and Gordon [4]. The main

differences between our model and previous models are the following two

assumptions:

(1) the natural rate is a Brownian motion;

(2) the distortion of the economy is correlated to the natural rate.

The reason we use assumption (1) is that the most recent literature

shares the view that the natural rate changes over time and specifies the

natural rate as a random walk without drift seems a plausible assumption

for U.S. unemployment data 2.

The key aspect of this monetary time inconsistency problem is the dis-

2See Staiger, Stock and Watson [39], and Salemi [34].
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tortion which arises from the labor-market distortions and the political pres-

sure on the central bank. Most often, some appeal is made to the presence

of labor-market distortions, for example, a wage tax. So, it seems reasonable

for us to assume that the distortion is an increasing function of the scale of

the economy. We use an linear function to approximate this function in this

chapter.

In this chapter, we use the optimal stopping theory in the stochastic

differential equations literature to study the time inconsistency problem in

monetary policy with the continuous finite or infinite time horizon model.

The optimal stopping theory can cover many dynamic economic applications

under uncertainty. The optimal stopping theory, though relatively complete

in its theoretical development, has not yet been widely applied in economics.

By using the optimal stopping theory and introducing the notions of se-

quentially rational equilibria, we give the conditions under which the time

inconsistency problem may be solved with trigger reputation strategies. We

provide the conditions for the existence of sequentially rational equilibrium.

We argue that the tradition concepts of equilibrium are not satisfactory

as a predictor of long run behavior when the game is subjected persistent

stochastic shocks. The concept of sequentially rational stochastically sta-

ble equilibrium is introduced. Loosely speaking, the sequentially rational

stochastically stable equilibrium of a dynamic game are those equilibrium

that the expected time to apart from them is infinite. Then we compare the

relative stability between the cooperative behavior and uncooperative behav-

ior and show that the cooperative equilibrium in this monetary policy game

is a sequentially rational stochastically stable equilibrium and the uncoop-
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erative equilibrium in this monetary policy game is a sequentially rational

stochastically unstable equilibrium.

The results obtained in the chapter imply that, in the long run, the zero

inflation monetary policies are inherently more stable than the discretion

rules, and once established, they tend to persist for longer periods of the

time.

Whether or not we can expect the monetary policy to have a tendency

to become stable depends not only on the lifetime of the government, but

also on the beliefs of the government and the public, ceteris paribus. If the

time horizon is long enough, we may expect the monetary policy tends to

stable beyond some point of time. Although the initial economy shocks and

natural rate may not implement a stationary sequentially rational equilibrium

at the beginning, under the sequentially strong rational strategy behavior

assumption, the reputation trigger equilibrium have a tendency to reach a

new stationary equilibrium beyond some point in time. If the life time of the

government is not long enough to reach such a point, we may be able to use

an incentive contract or a legislative approach to reach it.

The remainder of the chapter is organized as follows. Section B will set

up the model and provides a solution for the optimal stopping problem faced

by the government. In Section C, we study the equilibrium behavior. The

stochastic stability of this monetary game is discussed in Section D. Section

E gives the conclusion.
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B. Model

1. The Setup

We consider a continuous time game theoretical model with two players:

the government and the public. The government’s strategy space is R+ ×

L[0, T ], from which the government is to choose an action (τ, {πt}t∈T ). Here

τ is the time that the government changes its monetary policy from the

zero-inflation rule to a discretion rule; πt is the inflation rate chosen by the

government at time t; T is the lifetime of the government which can be finite

or infinite; and L[0, T ] is the class of Lebesgue integral functions defined on

[0, T ]. The public’s strategy space is L[0, T ], from which the public is to

choose an action ({πe
t }t∈T ). Here πe

t is the expected inflation rate formed by

the public at time t.

Suppose that, at the beginning, the government commits an inflation

rate π0 = 0, and the public believes it so that πe
0 = π0 = 0. The government

has the right to switch from the zero-inflation to a discretion rule πt 6= 0 at

the time t between 0 and T . However, after he changes his policy, he loses

his reputation.

The government’s loss function is described by a quadratic discounted

expected loss function of the form:

Λ = E

∫ T

0

e−ρ·t
[
1

2
θ (yt − ȳt − kt)

2 +
1

2
π2

t

]
dt (II.1)

where ρ is the discount factor with 0 < ρ < 1, yt is aggregate output, ȳt is

the economy’s natural rate of output, kt is the distortion which is equal αȳt

and α > 0. Some appeal is made to the presence of labor-market distortions,
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for example, a wage tax. Since a larger scale of a economy always implies a

larger wage tax, so, it seems reasonable for us to assume that the distortion is

an increasing function of the scale of the economy. We use an linear function

to approximate this function in this chapter.

θ is a positive constant that represents the relative weight the govern-

ment puts on output expansions relative to inflation stabilization. Here, the

target inflation π is zero.3 (II.1) is a typical marco welfare function that has

played an important role in the literature, and means that the government

desires to stabilize both output around ȳt + kt, which exceeds the economy’s

equilibrium output of ȳt by kt, and inflation around zero.

Here we assume that ȳt = Xt and

dXt = σdBt, X0 = x,

which is a special case of the general Ito diffusion:

dXt = b(Xt)dt + σ(Xt)dBt

with b(X̄t) = 0 and σ(X̄t) = σ. Here, Bt is 1-dimensional Brownian motion

and σ is the diffusion coefficient with σ < ∞.

The government’s objective is to minimize this discounted expected loss

function subject to the constraint imposed by a Lucas-type aggregate sup-

ply function, the so-called Phillips curve, which describes the relationship

3Without loss of generality, the target inflation rate is assumed to be zero.
The results obtained in the chapter will continue to be true if the monetary
authority has a target inflation that differs from zero.
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between output and inflation in each period:

yt − ȳt = a (πt − πe
t ) + ut, (II.2)

where a is a positive constant that represents the effect of a money surprise

on output, i.e., the rate of the output gain from the unanticipated inflation

so that the larger is a, the greater is the central bank’s incentive to inflate,

and ut is a bounded random variable with E[ut] = 0, V ar[ut] = σ2
u, |ut| ≤ M1

for all t and cov(us, ut) = 0, for t 6= s, which represents the shock at time

t. And we assume that ȳt and ut are independent. We also assume that the

government can observe ut and Xt prior to setting πt.

The public has complete information about the policymaker’s objectives.

It is assumed that the public forms his expectations rationally, and thus the

assumption of rational expectation implicitly defines the loss function for the

public as E[πt − πe
t ]

2. The public’s objective is to minimize this expected

inflation error. Given the public’s understanding of the government’s decision

problem, its choice of πe is optimal.

We first examine the “one-shot” game. The single-period loss function

`t for the government is:

`t (πt, π
e
t ) =

1

2
θ (yt − ȳt − kt)

2 +
1

2
π2

t (II.3)

=
1

2
θ[a(πt − πe

t )− αXt + ut]
2 +

1

2
π2

t .

The equilibrium concept in this game is noncooperative Nash. Then the

government minimizes `t by taking πe
t as given, and thus we have the best
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response function for the policymaker:

πD
t =

aθ

1 + a2θ
(aπe

t + αXt − ut) . (II.4)

The public is assumed to understand the incentive facing the government so

they use (II.4) in forming their expectations about inflation so that

πe
t = EπD

t =
aθ

1 + a2θ
(aπe

t + αEXt) . (II.5)

Solving (II.5) for πe
t , we get the unique Nash equilibrium πe∗

t = EπD∗
t =

aθαEXt. Thus, as long as EXt 6= 0, the policymaker has incentives to

use the discretion rule although the loss at πe
t = πt = 0 is lower than at

πe∗
t = EπD∗

t .

A potential solution to the above time inconsistency problem is to force

the government to bear some consequence penalties if it deviates from its an-

nounced policy of low inflation. One of such penalties that may take is a loss

of reputation, and so, in this chapter, we will adopt the reputation approach

that incorporates notions of reputation into a repeated-game framework to

avoid this time consistency problem. If the government deviates from the

low-inflation solution, credibility is lost and the public expects high inflation

in the future. That is, the public expects zero-inflation as long as government

has fulfilled the inflation expectation in the past. However, if actual infla-

tion exceeds what was expected, the public anticipates that the policymaker

will apply discretion in the future. So the public forms their expectation

according to the trigger strategy: Observing “good” behavior induces the

expectation of continued good behavior and a single observation of “bad”

behavior triggers a revision of expectations.
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2. The Optimal Stopping Problem for Government

In order to solve the time inconsistency problem by using the reputation

approach, we first incorporate the government’s loss minimization problem

into a general optimal stopping time problem. During any time in [0, T ],

the policymaker has the right to reveal his type (discretion or zero-inflation).

Since he has the right but not the obligation to reveal his type, we can think

it is an option for the policymaker. So the policymaker’s decision problem is

to choose a best time τ ∈ [0, T ] to exercise this option.

The policymaker considers the following time-inhomogeneous optimal

stopping problem: Find τ ∗ such that

L∗(x) = inf
τ

Ex

[∫ τ

0

f(t,Xt)dt + g(τ,Xτ )

]
, (II.6)

where

f(s, Xt) =
1

2
θe−ρ·s(αXt − ut)

2 (II.7)

is the instantaneous loss function for the policymaker when he uses the zero-

inflation rate which is clearly Lipschits continuous, and

g(s, Xτ ) = e−ρsEXτ

[∫ T

s

e−ρ(t−s)

[
θ

2
[a(πD

t − πe
t )− αXt + ut]

2 +
πD2

t

2

]
dt

]
(II.8)

is the expected loss function for policymaker in which he begin to use the

discretion rule at time s. Note that g(·) ≥ 0 since the loss function `t ≥ 0.

We assume that g(·) is a bounded function, i.e., g(·) ≤ M for some constant

number M .

Let {Ft} be a filtration, i.e., a nondecreasing family {Ft : t ≥ 0} of
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sub-σ-fields of F : Fs ⊂ Ft ⊂ F for 0 ≤ s < t < ∞, which is assumed to be

generated by the process itself, i.e., Ft := σ(Xs : 0 ≤ s ≤ t). Then, Ft can

be regarded the set of accumulated information up to time t.

We assume that the public’s strategy πe
t for t > τ is {Fτ}-adapted. This

means that when the public form their expectation at time t, they know the

natural rate at τ .

To compute g(τ, Xτ ), putting (II.4) into (II.8), we have

g(τ,Xτ ) =
1

2

θ

1 + a2θ
e−ρτEXτ

[∫ T

τ

e−ρ(t−τ) (αXt − ut + aπe
t )

2 dt

]
(II.9)

We now calculate the conditional expectation for X2
t and Xt. Let A be the

of Ito diffusion dXt = b(Xt)dt + σ(Xt)dB (with b = 0). Then

Af =
∑

i

bi
∂f

∂xi

+
1

2

∑
i,j

(
σσT

)
i,j

∂2f

∂xi∂xj

=
1

2

∑
i,j

(
σσT

)
i,j

∂2f

∂xi∂xj

Then, by Dynkin’s formula (Øksendal [27]), we have

EXτ [Xt] = Xτ + EXτ

[∫ t

τ

AXsds

]
= Xτ (II.10)

EXτ
[
X2

t

]
= X2

τ + EXτ

[∫ t

τ

AX2
s ds

]
= X2

τ + σ2(t− τ). (II.11)

Substituting (II.10) and (II.11) into (II.9), we have

g(τ,Xτ ) =
1

2

θ

1 + a2θ

{
σ2

[
1

ρ2

(
e−ρτ − e−ρT

)
− 1

ρ
(T − τ)e−ρT

]
(II.12)

+[(αXτ + aπe
τ )

2 + σ2
u]

1

ρ
(e−ρτ − e−ρT )

}
.
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Note that, if we define

f1(s, Xt) = −f(s, Xt),

g1(s, Xτ ) = −g(s, Xτ ) + M ≥ 0,

then the loss minimization problem in (II.6) can be reduced to the following

maximization problem: Find τ ∗ such that

G∗
0(x) = sup

τ∈[0,T ]

Ex

[∫ τ

0

[−f(t,Xt)] dt− g(τ, Xτ ) + M

]
= sup

τ∈[0,T ]

Ex

[∫ τ

0

f1(t,Xt)dt + g1(τ, Xτ )

]
. (II.13)

In the following, we will use the optimal stopping approach to solve the

optimization problem (II.13).

3. Solving the Optimal Stopping Problem

In order to solve the government’s optimization problem (II.13) by using

a standard framework of the optimal stopping problem involving an integral

(cf. Øksendal [27]), we make the following transformations: Let

Wτ =

∫ τ

0

f1(t,Xt)dt + w, w ∈ R

and define the Ito diffusion Zt = Z
(s,x,w)
t in R3 by

Zt =


s + t

Xt

Wt
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for t ≥ 0. Then

dZt =


dt

dXt

dWt

 =


1

0

−1
2
θe−ρt(Xt − k)2

 dt+


0

σ

0

 dBt, Z0 = (s, x, w).

So Zt is an Ito diffusion starting at z := Z0 = (s, x, w). Let Rz = R(s,x,w) de-

note the probability law of {Zt} and let Ez = E(s,x,w) denote the expectation

with respect to Rz. In terms of Zt the problem (II.13) can be written

G∗
0(x) = G∗(0, x, 0) = sup

τ
E(0,x,0)[Wτ + g1(τ,Xτ )] = sup E(0,x,0)[G(Zτ )]

which is a special case of the problem

G∗(s, x, w) = sup
τ

E(s,x,w)[Wτ + g1(τ,Xτ )] = sup E(s,x,w)[G(Zτ )]

with

G(z) = G(s, x, w) := w + g1(s, x).

Then, for

f1(s, x) = −1

2
θe−ρ·s(αx− us)

2

g1(s, x) = −1

2

θ

1 + a2θ

{
σ2

[
1

ρ2

(
e−ρs − e−ρT

)
− 1

ρ
(T − s)e−ρT

]
+ [(αx + aπe

s)
2 + σ2

u]
1

ρ

(
e−ρs − e−ρT

)}
+ M

and

G(s, x, w) = w + g1(s, x),
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the AZ of Zt is given by

AZG =
∂G

∂s
+

1

2
σ2∂2G

∂x2
− 1

2
θe−ρs(x− k)2∂G

∂w

=
1

2

θ

1 + a2θ
[(αx + aπe

s)
2 + σ2

u]e
−ρs − 1

2
θ(αx− us)

2e−ρs.(II.14)

Let

U = {(s, x, w) : G(s, x, w) < G∗(s, x, w)}

and

V = {(s, x, w) : AG(x) > 0} .

Then, by (II.14) we have

V = {(s, x, w) : AZG(s, x, w) > 0} (II.15)

= R× {x : (αx + aπe
s)

2 + σ2
u > (1 + a2θ)(αx− us)

2} ×R.

Remark B.1. Øksendal [27] shows that: V ⊂ U , which means that it is

never optimal to stop the process before it exits from V . If we choose a

suitable πe(x) such that (αx+aπe
s)

2 +σ2
u > (1+a2θ)(αx−us)

2, then we have

U = V = R3. Therefore, any stopping time less T will not be optimal for all

(s, x, w) ∈ V , and thus τ ∗ = T is the optimal stopping time. We will use this

fact to study the time inconsistency problem of the monetary policygame in

the following sections.

Remark B.2. If ρ → ∞, then AZG → 0, it is optimal to use the cheat-

ing policyfor the government. If ρ < ∞, the term in equation (II.14),

1
2

θ
1+a2θ

[(αx + aπe
s)

2 + σ2
u]e

−ρs can be regarded as the marginal benefit of not

stopping zero inflation policy and the term, 1
2
θ(αx−us)

2e−ρs, is the marginal
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cost. Since the government put the same weight(e−ρs) on the marginal bene-

fit and the marginal cost, so when he compares this two terms, the discount

factor ρ will not effect his decision.

Remark B.3. In fact, we can verify directly that dL(x)
dτ

< 0 when πe is bigger

enough, where L(x) is defined by

L(x) = Ex

[∫ τ

0

f(t,Xt)dt + g(τ,Xτ )

]
= Ex

[∫ τ

0

f(t,Xt)dt + g(τXτ )

]
.

Thus, τ ∗ = T is the time.

C. The Equilibrium Behavior of the Monetary Policy Game

In order to study the equilibrium behavior of the game, we first give the

following lemma that shows that the government will keep the zero-inflation

policy when the public uses trigger strategies and reputation penalties im-

posed by the public are large enough.

Lemma C.1. Let τ = inf{s > 0 : πs 6= 0}. Then, for all x, any trigger

strategy of the public, {πe
t (x)}, which has the form of

πe
t =


0 if t = 0

0 if 0 < t < τ

πe(x) ∈ {h : (αx + aπe
s)

2 + σ2
u > (1 + a2θ)(α|x|+ M)2} if t > s and t ≥ τ

,

discourages the policymaker from attempting surprise inflation.

Proof. For each x ∈ R, if we choose any πe ∈ {h : (αx + aπe
s)

2 + σ2
u >

(1 + a2θ)(αx− us)
2}, we have

(αx + aπe
s)

2 + σ2
u > (1 + a2θ)(αx− us)

2 for all x ∈ R.
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Then, V in (II.15) becomes V = R3, and thus any stopping time less T is

not optimal for the government. Hence, τ ∗ = T . Thus, when the public

applies this trigger strategy, it is never optimal for government to stop the

zero-inflation policy.

Although there are (infinitely) many trigger strategies given in Lemma 1

that can discourage the policymaker from attempting surprise inflation, most

of them are not optimal for the public in terms of minimizing the public’s

expected inflation error: πt−πe
t . To rule out the those non-optimal strategies,

we have to impose some assumptions how the public form an expectation

and what an equilibrium solution should be used to describe the public’s

self-interested behavior. Different assumptions on the public’s behavior may

result in different the optimal solutions. In the following, we introduce two

types of sequentially rational equilibrium solution concepts.

Suppose the government knows the distribution of the natural rate, Xt,

exactly, that is,

dP̃G = dP,

where P̃G is the belief of the government for the movement of the shock, P

is the measure of the natural rate.

We suppose that the public does not know the distribution of the natural

rate, but it’s belief P̃ P is absolutely continuous with respect to P 4, which

means that if an event does not occur in probability, then the public will

believe that this event will not happen.

Then, by Randon-Nikodym Theorem (Lipster & Shiryaev [22]), there

4P̃ P (A) = 0 for each A ∈ Ft, such that P (A) = 0.
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exist Randon-Nikodym derivatives, M(t), such that

dP̃ P = M(t)dP, (a.s.),

and M(t) is a martingale and bounded from above and below (i.e. M1 ≤

M(t) ≤ M2 for all 0 ≤ t ≤ T ). This means that, whenever new information

becomes available, the belief of the public is adjusted. We can interpreter

M(t) is the information structure of the society, it is a measurement of how

the public knows the real natural rate.

We suppose that M(t) is P-square-integrable and Xt is P̃ P -integrable.

We also suppose that 〈Xt, M(t)〉 = 05, heuristically, this assumption can be

interpreted as: the history of the natural rate can’t help the public to predict

the movement of the future natural rate in generally.6

We denote by Ẽ the expectation operator with respect to P̃ P .

A strategy (τ, {πt, π
e
t }) is said to be a sequentially rational equilibrium

strategy for the dynamic model defined above if

(1) the belief of the public for the movement of the natural rate

Xt, P̃ P , satisfies Bayes’ rule:

Ẽ[Xt|Fs] =
1

M(s)
E[XtM(t)|Fs] (II.16)

for all s < t;

5〈X, Y 〉 is cross-variation, which is defined by 〈Xt, Yt〉 =
lim||Π||→0

∑
1≤k≤m(Xt(k) − Xt(k−1))(Yt(k) − Yt(k−1)), where Xt and Yt are

square-integrable, and Π = [t0, t1, ..., tm] is a partition of [0,t].
6Note that, if one assumes that the public knows the distributions of the

shocks, Xt, exactly, then M(t) = 1. This is a usual assumption made in the
literature.
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(2) The expectation of the public is rational: πe
t = EXsπD

t :=

Ẽ[πD
t |Fs] for all s < t;

(3) it optimizes the objectives of the public and the government.

Now we use this type of sequentially rational equilibria to study the time

consistency problem in monetary policy. Proposition C.2 below shows the

existence of such equilibria.

Proposition C.2. Suppose the shocks {Xt} satisfy the inequality:

(αx + a2θαXt)
2 + σ2

u > (1 + a2θ)(α|x|+ M)2 for all t ∈ [0, T ] and x ∈ R .

(II.17)

Let (τ, {πs}) be the strategy of the government, where τ is the first time that

the government changes its policy from zero-inflation to discretion rule, i.e.,

τ = inf{s > 0 : πs 6= 0}. Let the strategy of the public {(πe
t )} be given by

πe
t =


0 if t = 0

0 if 0 < t < τ

aθαXτ if t ≥ τ

.

Then, (τ ∗, {π∗t , πe∗
t }) with τ ∗ = T , π∗t = 0 and πe∗

t = 0 for all t ≥ 0 is a

sequentially rational equilibrium strategy for the policymaker and the public.

Proof. To prove (τ, {πt, π
e
t }) defined above results in a sequentially rational

equilibrium, τ ∗ = T , π∗t = 0 and πe∗
t = 0 for all t ≥ 0, we need to show

that (1) it satisfies Bayes’ rule, (2) the rational expectation condition holds:

πe
t = EXτ πD

t := Ẽ[πD
t |Fτ ], (3) πe

t ∈ {h : (αx + ah)2 + σ2
u > (1 + a2θ)(α|x| +

M)2}, and (4) (τ ∗, {π∗t , πe∗
t }) optimizes the objectives of the public and the

government.
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We first claim that the public updates its belief by Bayes’ rule. Indeed,

since M(t) is a martingale and, for s < t, Xt is a P̃ P -integrable random

variable, then, by Lemma of Shiryaev & Kruzhilin [38], the Bayes’ Rule

holds:

Ẽ[Xt|Fs] =
1

M(s)
E[XtM(t)|Fs].

To show πe
t = EXτ πD

t , first note that Xt and M(t) are square-integrable

martingale, using the fact that XtM(t)− 〈Xt, M(t)〉 is a martingale (Karatzas

& Shreve [17]) and the assumption 〈Xt, M(t)〉 = 0, We can get that XtM(t)

is a martingale, by Bayes’ rule:

Ẽ[Xt|Fτ ] =
1

M(τ)
E[XtM(t)|Fτ ] =

1

M(τ)
XτM(τ) = Xτ .

which means {Xt} is also a martingale under P̃ P . Since the policymaker’s

best response function is given by

πD
t =

aθ

1 + a2θ
(aπe

t + αx− us),

{Xt} is a martingale under P̃ P , and πe
t = aθαXτ is complete information at

time t, we have

EXτ πD
t = EXτ

aθ

1 + a2θ
(aπe

t + αx− us)

=
aθ

1 + a2θ
(aπe

t + αEXτ Xt)

=
aθ

1 + a2θ
(aπe

t + αXτ ). (II.18)

Substituting πe
t = aθαXτ into (II.18), we have EXτ πD

t = aθ
1+a2θ

[a2θαXτ +

αXτ ) = aθαXτ = πe
t .

Now, if condition (II.17) is satisfied, we have (αx + aπe
s)

2 + σ2
u > (1 +
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a2θ)(α|x|+ M)2 and thus πe
t ∈ {h : (αx + ah)2 + σ2

u > (1 + a2θ)(α|x|+ M)2}

for all x ∈ R with x 6= k. Then, by Lemma 1, and the time is τ ∗ = T .

Therefore, we must have π∗t = 0 for all t ∈ [0, T ].

Since the public only cares about his inflation prediction errors, so πe
t =

aθαXt minimizes the public’s expected loss when the policy change occurs

at time t in this game. Hence, if both the policymaker and public believe

that future shocks will grow enough to make the inequality (II.17) hold, the

threat of the public is credible. Hence, we must have πe∗
t = 0 for all t ∈ [0, T ]

since τ ∗ = T . Thus, we have shown that the trigger strategies (τ, {πt, π
e
t })

result in a sequentially rational equilibrium, which is τ ∗ = T , π∗t = 0, and

πe∗
t = 0 for all t ≥ 0.

Thus, Proposition C.2 implies that, as long as natural rate Xt is big

enough, the public can use a trigger strategy to induce a zero-inflation sequen-

tially rational equilibrium. Of course, the assumption that (αx+aπe
s)

2+σ2
u >

(1 + a2θ)(α|x| + M)2 for all t ∈ [0, T ] and x ∈ R with x 6= k seems very

strong. Proposition D.1 in the next section shows that this is a reasonable

assumption. As long as this inequality holds for the initial natural rate x,

the public and the government will have a strong belief that it will be true

for all t ∈ (0, T ] and x ∈ R.

D. Stochastically Stable Equilibrium

In this section we study the robustness of sequentially rational equi-

librium. In order to get the sequentially rational equilibrium in Proposi-

tion C.2, we imposed the assumption that B = {(αx + a2θαXt)
2 + σ2

u >
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(1 + a2θ)(α|x| + M)2} for all 0 ≤ t ≤ T and x ∈ R. It seems that the

concept of sequentially rational equilibrium is not satisfactory as a predic-

tor of long-run behavior when the game is subjected to persistent stochastic

shocks. So we introduce the concept of sequentially rational stochastically

stable equilibrium7.

Definition D.1. Let {A : (y, z ∈ R2)} be the set of sequentially ratio-

nal equilibrium of a dynamic game under the shock Xt, we say A is a se-

quentially rational stochastically stable equilibrium if Ex[τ ] = ∞, where

τ = inf{t : (yt, zt) /∈ A}, and A is a sequentially stochastically unstable

rational equilibrium if Ex[τ ] < ∞.

Loosely speaking, the sequentially rational stochastically stable equilib-

ria of a dynamic game are those equilibria such that the expected time to

depart from them is infinite.

Lemma D.1. Let B = {Xt : (αx + a2θαXt)
2 + σ2

u > (1 + a2θ)(α|x| + M)2

for t ≥ 0}, and let η = inf{t > 0 : Xt /∈ B} be the first time Xt exits from

B. Suppose that x ∈ B. Then, we have

Ex[η] = ∞

for all x ∈ R.

7In determinate dynamic systems, in order to analyze the dynamic behav-
ior, the concepts of Lyapunov stable and asymptotically stable are always
used. For stochastic evolution system, Foster and Young [10] and Young [44]
first introduce the concept of stochastic stability. But the concept in their
paper is different from ours.
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Proof. Solving (αx + a2θαXt)
2 + σ2

u > (1 + a2θ)(x− ut)
2 for Xt, we have

Xt >
1

a2θα

[
−σ2

u − αx +
√

1 + a2θ(α|x|+ M)
]

or

Xt <
1

a2θα

[
(−σ2

u − αx−
√

1 + a2θ(α|x|+ M)
]
.

Let C = 1
a2θα

[
ut − αx +

√
1 + a2θ(α|x|+ M)

]
and D = 1

a2θα

[
(ut − αx−

√
1 + a2θ(α|x|+ M)

]
.

Since X0 = x ∈ B for all x ∈ R, there are two cases to be considered:

(1) x > C and (2) x < D.

Case 1. x > C. Let ηc = inf{t > 0: Xt ≤ C}, and let ηn be the first

exit time from the interval

{Xt : C ≤ Xt ≤ n}

for all integers n with n > C. We first show that P x(Xηn = C) = n−x
n−C

and

P x(Xηn = n) = x−C
n−C

. Consider function h ∈ C2
0(R) defined by h(x) = x for

C ≤ x ≤ n (C2
0(R) means the functions in C2(R) with compact support in

R). By Dynkin’s formula,

Ex [h(Xηn)] = h(x) + Ex

[∫ ηn

0

Ah(Xs)ds

]
= h(x) = x, (II.19)

we have

CP x(Xηn = C) + nP x(Xηn = n) = x.

Thus,

P x(Xηn = C) =
n− x

n− C



26

and

P x(Xηn = n) = 1− P x(Xηn = C) =
x− C

n− C
.

Now consider h ∈ C2
0(R) such that h(x) = x2 for C ≤ x ≤ n. Applying

Dynkin’s formula again, we have

Ex [h(Xηn)] = h(x) + Ex

[∫ ηn

0

Ah(Xs)ds

]
= x2 + σ2Ex [ηn] , (II.20)

and thus

σ2Ex [ηn] = C2P x(Xηn = C) + n2P x(Xηn = n)− x2.

Hence, we have

Ex [ηn] =
1

σ2

[
C2 n− x

n− C
+ n2 x− C

n− C
− x2

]
.

Letting n → ∞, we conclude that P x(Xηn = n) = x−C
n−C

→ 0 and ηc =

lim ηn < ∞ a.s. Therefore, we have

Ex[ηc] = lim
n→∞

Ex [ηn] = ∞.

Case 2. X0 = x < D. Define ηD = inf{t > 0; Xt ≥ D}. Let ηn be the

first exit time from the interval

{Xt : −n ≤ Xt ≤ D}

for all integers n with −n < D. By the same method, we can prove that

Ex [ηn] =
1

σ2

[
D2 n + x

n + D
+ n2 D − x

n + D
− x2

]
.

Letting n → ∞, we conclude that P x(Xηn = n) = D−x
n+D

→ 0 and
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ηD = lim ηn < ∞ a.s., and thus

Ex[ηD] = lim
n→∞

Ex [ηn] = ∞.

Thus, in either case, we have Ex[η] = ∞.

Lemma D.1 thus implies that, because the expected exit time from B

is infinite since the expectation Ex[η] = ∞ for all x ∈ R with x 6= k,

the policymaker will have the belief that the future natural rate will stay

in B forever, and consequently they will likely make decisions and behave

according to this belief. As a result, the sequentially rational equilibrium

will likely appear in the game when the public has the same belief as the

government. So, in this sense, we can regard the class B as an absorbing

class for Xt as long as x ∈ B.

What happens if the initial shock x is not in B? We have following

proposition:

Lemma D.2. Define τ = inf{t > 0 : Zt ∈ B}. Then for x /∈ B, i.e.,

a(1− θ) ≥ 2, we have

Ex[τ ] =
a(1− θ)− 2

σ2aθ
(k − x)2

for all D ≤ x ≤ C.

Proof. Since x 6∈ B, we have D ≤ x ≤ C. Define τC = inf{t > 0 : Xt ≥ C}

and τD = inf{t > 0 : Xt ≤ D}. Then τ = τc ∧ τD := min{τc, τD}. We

first show that P x(Xτ = C) = x−D
C−D

and P x(Xτ = D) = C−x
C−D

. Consider
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h ∈ C2
0(R) such that h(x) = x for D ≤ x ≤ C. By Dynkin’s formula,

Ex [h(Xτc∧τD
)] = h(x) + Ex

[∫ τc∧τD

0

Ah(Xs)ds

]
= h(x) = x, (II.21)

we have

CP x(Xτ = C) + DP x(Xτ = D) = x.

Thus,

P x(Xτ = C) =
x−D

C −D
.

and thus

P x(Xτ = D) = 1− P x(Xτ = C) =
C − x

C −D
.

Now consider h ∈ C2
0(R) such that h(x) = x2 for D ≤ x ≤ C. By

Dynkin’s formula:

Ex[h(Xτc∧τD
)] = h(x)+Ex[

∫ τcΛτD

0

Ah(Xs)ds] = h(x)+σ2Ex[τc∧τD], (II.22)

we have

σ2Ex[τc ∧ τD] = C2P x(Xτ = C) + D2P x(Xτ = D)− x2

and thus

Ex[τc ∧ τD] =
a(1− θ)− 2

σ2aθ
(k − x)2 ≥ 0. (II.23)

by noting that a(1− θ) ≥ 2.

Notice that, from (II.23), one can see that, the bigger the variance of

the natural rate (measured by σ), the faster the convergence rate. In partic-

ular, if σ2 → 0, Ex [τc ∧ τD] → ∞ and Ẽx [τc ∧ τD] = Ex [M(t)(τc ∧ τD)] ≥
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M1E
x [τc ∧ τD] →∞. This means that, when the natural rate {Xt} degener-

ates to a non-stochastic process, the government and the public will believe

that Xt 6∈ B for all t ∈ [0, T ], and thus a stationary sequentially strong

rational equilibrium does not exist. On the other hand, if σ2 → ∞, then

Ex [τc ∧ τD] → 0 and Ẽx [τc ∧ τD] = Ex [M(t)(τc ∧ τD)] ≤ M2E
x [τc ∧ τD] →

0 . This means that, when the variance of the natural rate {Xt} becomes

very large, the public and the government may believe that Xt will be in B

for t ∈ (0, T ]. As such, the policymaker and the public will likely have the

beliefs that the natural rate Xt will be in B right after the initial natural rate

x, and consequently, the stationary sequentially strong rational equilibrium

will likely appear in the time horizon (0, T ].

When 0 < σ < ∞, from Lemma D.2, the expected time of entering

B, Ex[τ ] = Ex [τc ∧ τD] is a finite number. Suppose the public has the

same belief as the government. There are two cases to be considered: (1)

Ex[τ ] ≥ T . In this case, the government and the public likely believe that

Xt 6∈ B for all t ∈ [0, T ], and thus a stationary sequentially strong rational

equilibrium will not likely exist. (2) Ex[τ ] < T . In this case, we should

not expect the zero-inflation stationary monetary policy for the time period

between [0, Ex[τ ]] since Xt 6∈ B for all t ∈ [0, Ex[τ ]]. However, once Xt enters

B at the first time Ex[τ ], we can regard Xτ as a new starting point. Then,

by Lemma D.1, the policymaker and the public will believe Xt will stay in

B for all t ∈ [Ex[τ ], T ], and thus we can expect to have a non-zero inflation

stationary monetary policy on [Ex[τ ], T ]. This implies that, although we do

not have a time consistency policy on the whole time horizon [0, T ] when

x 6∈ B, we could have a time consistency monetary policy beyond the point



30

Ex[τ ]. In other words, one will have an nonstationary policy period if the

initial shock x 6∈ B, however, after a certain point τ , the monetary policy

may become stationary. Thus, the time inconsistency can happen at most

once.

Summarizing the above discussion, we can draw the following conclu-

sions:

(i) If the initial natural rate x is in the class B, one can expect

all future shocks Xt are in B and thus can expect a stationary

zero-inflation outcome by the sequentially rational behavior.

(ii) If the initial natural rate x is not in the class B, whether or

not we can expect the monetary policy to have a tendency to

become stable depends on T , the lifetime of the government.

If the expected first entry time to B, Ex[τ ] is greater than

the lifetime of the government, we do not expect a station-

ary monetary policy and thus we have the time inconsistency

problem. If the first entering time into B, Ex[τ ] is less than

the lifetime of the government, we may expect a stationary

monetary policy beyond the entry point Ex[τ ], and monetary

policy becomes stationary. Thus, the monetary policy can

jump at most once.

Combine LemmaD.1 and LemmaD.2, we have following proposition:

Proposition D.3. Let (τ, {πs}) be the strategy of the government, where τ

is the first time that the government changes its policy from zero-inflation to
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discretion rule, i.e., τ = inf{s > 0 : πs 6= 0}. Let the strategy of the public

{(πe
t )} be given by

πe
t =


0 if t = 0

0 if 0 < t < τ

aθ(k −Xτ ) if t ≥ τ

.

Then, (τ ∗, {π∗t , πe∗
t }) with τ ∗ = T , π∗t = 0 and πe∗

t = 0 for all t ≥ 0 is a

sequentially rational stochastically stable equilibrium strategy for the poli-

cymaker and the public.

Then, we can see that the cooperative equilibrium in this monetary pol-

icy game is a sequentially rational stochastically stable equilibrium and the

uncooperative equilibrium in this monetary policy game is a sequentially ra-

tional stochastically unstable equilibrium. In the long run, the zero inflation

monetary policies are inherently more stable than the discretionary rules,

and once established, they tend to persist for longer periods of the time.

Thus, for this continuous time dynamic stochastic game, sequentially strong

rational stochastically stable equilibrium behavior can be predicted for any

initial natural rate.

E. Conclusion

This chapter develops a model to examine the equilibrium behavior of

monetary time inconsistency problem in a continuous time economy with

stochastic natural rate and endogenized distortion. First, we introduce the

notion of sequentially rational equilibrium, and show that the time inconsis-

tency problem may be solved with trigger reputation strategies in a stochastic
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setting. We provide the conditions for the existence of sequentially rational

equilibrium. Then the concept of sequentially rational stochastically stable

equilibrium is introduced. We compare the relative stability between, of

so=called the cooperative behavior, with so-called uncooperative behavior,

and show that the cooperative equilibrium in this monetary policy game is a

sequentially rational stochastically stable equilibrium and the uncooperative

equilibrium in this monetary policy game is sequentially rational stochasti-

cally stable equilibrium. In the long run, the zero inflation monetary policies

are inherently more stable than the discretion rules, and once established,

they tend to persist for longer periods of the time.
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CHAPTER III

REPUTATION AND OPTIMAL CONTRACT FOR CENTRAL

BANKERS: A UNIFIED APPROACH

This chapter studies the time inconsistency problem on monetary policy

for central banks using a unified approach that combines reputation forces

and contracts. We first characterize the conditions for reputation forces to

eliminate the inflation bias of discretionary policy. We then propose an opti-

mal contract that can be used with reputation forces to implement a desired

socially optimal monetary policy rule when the reputation forces alone are

not large enough to discourage a central bank to use a surprise inflation

policy. In contrast to most of the existing contracts that are contingent on

realized inflation rates which are in turn contingent on production shocks,

like the standard reputation model, a central banker in our hybrid mechanism

is punished only when she uses a surprise inflation rate. Since the penalty

proposed is the lowest one that discourages the central bank from attempting

to cheat and the sum of the loss, reputation forces, and the penalty for the

central bank to cheat is the same as the loss at the socially optimal inflation

rate, our hybrid mechanism is the most efficient and robust mechanism that

implement the socially optimal monetary policy rule. We also provide a up-

per bound of the penalty that is be lower than that of the existing contracts

when realized inflation rate is greater than a certain level.
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A. Introduction

The time inconsistency problem is one of the most common problems

that plague economic policy. Even though technologies, preferences, and in-

formation are the same at different times, the policymaker’s optimal policy

chosen at time t1 differs from the optimal policy for t1 chosen at t0. One

can see such a time inconsistency problem exists almost everywhere. For

instance, politicians quite often announce that they will carry out a specific

policy in the future, but then do something else when the time comes.1 It

is well known from Kydland and Prescott [20] and Barro and Gordon [3]

that the time inconsistency of optimal monetary policy may appear when a

central bank faces an incentive to expand output above its equilibrium level,

and the monetary policy games between the central bank and the public

may result in inflation bias as a bad Nash equilibrium outcome. The society

experiences a positive average inflation with no systematic improvement in

output performance. Indeed, when the marginal benefit of inflation exceeds

the marginal cost at a low inflation, the central bank will have an incentive

to use a discretionary policy of inflationary bias, and since the public under-

stands that it will do so, the central bank’s announcement of a low inflation

policy will not be credible. The public will expect a positive rate of infla-

tion, and the central bank cannot do better than to fulfill those expectations.

Thus, in order to induce the set of equilibria that lead to desired outcomes,

some methods that increase the marginal cost of the central bank must be

1In fact, the time consistency problem can be regarded a special case
of the general incentive compatibility problem in the incentive mechanism
design literature.
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used to change the central banker’s incentives.

Since the time inconsistency problem was first noted by Kydland and

Prescott [20], several solutions have been proposed to deal with this problem

in monetary policy. Barro and Gordon [3, 4] were the first to build a game

theoretical model to analyze “reputation” of monetary policy. Backus and

Driffill [2] extended the work of Barro and Gordon to a situation in which

the public is uncertain about the preferences of the government. Persson and

Tabellini [29] gave an excellent summarization of these models. Al-Nowaihi

and Levine [1] discussed reputation equilibrium in the Barro-Gordon mone-

tary policy game. Li and Tian [21] developed a reputation strategic model of

monetary policy with a continuous time horizon. The second solution is built

on the legislative approach. The major contribution in this area was made by

Rogoff [33]. Following the legislative approach of Canzoneri [8] and Garfin-

kle and Oh [13], Lohmann [23] showed how the welfare effects of Rogoff’s

conservative bankers can be improved by adding an escape clause. The third

solution is based on the incentive contracting approach to monetary policy.

Persson and Tabellini [30], Walsh [41, 42, 43], Svensson [37], Jensen [16], and

Huang and Padilla [15] among many others use this approach.

The basic idea of these three approaches is that if the incentives faced by

a central bank in choosing how much to inflate can be affected by some means,

the inflation bias may be eliminated while still leaving the central bank free

to respond to aggregate output shocks. The insight is that since the inflation

bias reflects the monetary authority underestimating the equilibrium cost of

inflation, the bias can be eliminated if it can internalize an additional penalty

to high realized inflation.
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Walsh [41] was the first to use the contracting approach to investigate

the central banker’s incentive problem. He showed that by tying reward of

the central bank to realized inflation through a simple linear incentive con-

tract, the inflation bias of discretionary policy is eliminated and an optimal

response is achieved. Walsh’s model has then been extended in several di-

rections. Persson and Tabellini [30] showed how the credibility problem may

be resolved by a simple performance contract that imposes a linear penalty

for inflation on the central bank, and argued that this kind of contract has

some resemblance to real-world institutions (also see Beestma and Jensen [5],

Herrendorf and Lockwood [14], and Svensson [37]).

However, a main drawback of the contracting approach in the literature

is that it completely ignores the equilibrium cost of using discretion inflation

rule. The existing contracting models fail to capture the fact that reputa-

tion forces can restore credibility or at least reduce the cost of contracts to

some extent. Also, the existing contracting schemes are costly for use than

necessary. For instance, in Walsh’s setting, the government will punish the

central banker by an amount that is proportional to the realized socially op-

timal monetary policy πR
t . Even though a realized inflation rate does not

comes from a surprise inflation, but from a production shock, the central

bank will then be nevertheless penalized. Since a production shock can be

arbitrary large when it is an unbounded random variable, a huge contract

cost will be required for implementing the socially optimal monetary policy

rule although the central bank has no incentive to use a cheating monetary

policy. A central bank is normally financed by the public and making them

pay a pecuniary fine would simply be a reshuffling of tax money.
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In this chapter, we study the time inconsistency for monetary policy by

using a unified approach that combines the reputation effect and contract

effect. The government designs an incentive optimal contract for the central

bank, and simultaneously the public may also be able to punish the central

bank by reputation forces. Each game may involve more than one period

dependent on whether the central banker will cheat, and the game will be

played repeatedly. We assume that the government has complete ability to

commit to the contract he proposes to the central banker. In order to focus

on the nature of the incentives with which the monetary authority should be

faced, like Walsh, we assume that, ex ante, both the government and the cen-

tral banker share the same preference over inflation and output fluctuations

at each period. This may reflect the outcome of some appointment process

that ensures a similarity of views between the government and the monetary

authority. As in the standard model of the time-inconsistency monetary pol-

icy, both the government and the central bank prefer to have a low-inflation

policy. When the reputation force is not big enough, the government then

needs to design an additional incentive compatible contract for the central

bank to ensure that, ex post, the central bank implements a low inflation

policy.

To compare the total loss when the central bank cheats with the social

loss when the central does not cheats, we assume that the central bank’s

objective is to minimize the average expected loss conditional upon the re-

alization of information up to the present. We provide the necessary and

sufficient condition for reputation forces to eliminate the discretionary pol-

icy of inflation bias. If the reputation force from the public is large enough
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to discourage central bankers to use a surprise inflation policy, no contract

should be imposed to the central bank. Because the reputation approach

does not make any transfer payment and a central bank is punished (by los-

ing the credibility and thus increasing the social loss) only when she uses a

surprise inflation rate, it is the most efficient way to implement a socially

optimal monetary policy rule, and thus should be the first choice to be used.

However, when reputation forces from the public alone cannot restrain the

central bank from using a cheating rule, then one must impose additional

cost to the central bank such as penalty determined by a contract.

We then show how the government may present an optimal contract

that can be used with reputation forces to give the central bank incentives to

induce a socially optimal policy as a desired equilibrium outcome when the

reputation force from the public alone cannot restrain the central bank from

using a cheating rule. We present a hybrid mechanism that combines repu-

tation forces and penalty threats. Our approach unifies the reputational ap-

proach and the contracting approach. It suggests a simple optimal incentive

scheme or institution that discourages the central bank from surprise infla-

tion and gives her enough flexibility to respond to aggregate output shocks.

The length of reputation impact can reduce the penalty cost imposed to the

central bank. As it will be seen, the longer the reputation effect lasts, the

smaller the penalty will be required for discouraging the central bank from

surprise inflation.

Our hybrid mechanism approach differs from the pure contracting ap-

proach in the following main aspects. First, the contract part in the hybrid

mechanism will be used only when the reputation mechanism does not work.
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It is well known that the reputation mechanism is the best choice when it

works since no explicit transfer payment is needed, and thus the cost of im-

plementing a socially optimal monetary policy rule is the lowest. In this case,

no contract is needed. If the reputation mechanism does not work, then one

should consider other approaches.

Secondly, even if the reputation forces alone cannot eliminates the cen-

tral bank’s inflationary bias, it nevertheless can reduce to some extent the

temptation for the central bank to cheat, and thus a contract scheme may

be used together with the reputation forces to solve the central bank’s incen-

tive problem so that the contract cost will be lower. To have such a unified

approach of reputation and contract, the way for the public to form their

expectations in our setting is assumed to be different from the way assumed

in the existing contracting approach. Like the reputation model, we assume

that the public responds the central bank’s cheating to the expected discre-

tion inflation with a lag of one period while the existing contracting approach

assumes that the public responds the central bank’s cheating to the expected

discretion inflation immediately (without any lag of time). This difference of

timing in forming expectations makes our contract differs from the existing

contracts.

Thirdly, unlike many existing contracts such as Walsh’s contract in

which the central banker will be punished as long as the realized inflation

rate is not zero even though it fully results from production shocks and is

out of the central bank’s control, the penalty imposed to the central bank in

our hybrid mechanism is independent of realized production shocks and the

penalty depends only on whether or not she will use a surprise inflation rate,
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i.e., whether or not expected inflation rate is positive. Thus, just like the

existing reputation models, the penalty determined by the both parts of rep-

utation and contract in the hybrid mechanism depends on surprise rate, but

not on the realized inflation rate that may result from some uncontrollable

shocks by the central bank such as production shocks.

Fourthly, the penalty in our hybrid mechanism is bounded for prevent-

ing the central bank from cheating. While most of the existing contract

mechanisms are linear in inflation rate and thus the penalty is unbounded,

the penalty function in our approach is quadratic, concave, and continuous

in surprise inflation rate so that the maximum penalty exists. The central

bank can be punished by this upper bound of penalty if she uses a surprise

inflation rate in the cheating set we will specify, and yet, this upper bound of

penalty may give a lower penalty than the existing contracts. For instance,

even if the reputation forces are not taken into account, the penalty is lower

than the penalty determined by Walsh’s contract when a realized inflation

rate is greater than half of the expected optimal cheating rate π̄C specified

in (III.6).

Fifthly, the penalty is just the difference between temptation and en-

forcement for any inflation rate that makes the difference positive, and thus

it the lowest penalty that just discourages the central bank from cheating,

and so it reaches a lower bound of penalty payment. Thus, the penalty

payment function specifies the minimum required payment that implements

the socially optimal monetary policy rule, and therefore, the contract is the

most efficient way to implement a socially optimal monetary policy. Hence,

our hybrid mechanism provides both lower bound and upper bounded of the
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penalty which can discourage the central bank from using a surprise inflation

monetary policy rule. Finally, since the sum of the loss, reputation forces,

and the penalty for the central bank to cheat is the same as the social loss

at the optimally socially optimal inflation rate even if there are production

shocks, our optimal contract is a robust mechanism that implements the

socially optimal monetary policy rule.

The remainder of the chapter is organized as follows. Section B sets up

the model and the time-inconstancy problem faced by the central banker.

Section C considers the dynamic incentives and reputation forces faced by

the central bank, and provides a necessary and sufficient condition for repu-

tation forces to eliminate the discretionary policy of inflation bias. Section D

presents an optimal contract that can be used with reputation forces to give

the central bank incentives to induce a socially optimal policy as a desired

equilibrium outcome when the reputation force from the public alone cannot

restrain the central bank from using a cheating rule. Section E gives the

conclusion.

B. The Setup

1. Economy

As a standard framework in the literature, we consider an economy char-

acterized by the aggregate supply function:

yt − ȳ = a(πt − wt) + xt t = 1, 2, 3, ... (III.1)
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where yt is aggregate output at time t, ȳ is the equilibrium level of output

in absence of supply shocks or unanticipated inflation, πt is the inflation

rate, wt = πe
t is the rate of growth of nominal wage which is equal to the

public’s inflationary expectations, {xt} are aggregate supply shocks which

are assumed to be identically and independently distributed, with E[xt] = 0,

var[xt] = σ2
x < ∞ where E is the expectations operator, and a is a positive

constant that represents the effect of a money surprise on output, i.e., the

rate of the output gain from the unanticipated inflation so that the larger is

a, the greater is the central bank’s incentives to inflate.

In order to focus on the nature of the incentives with which the monetary

authority should be faced, we assume that both the government and the

central bank share the same ex ante preference over inflation and output

fluctuations at each period, which is described by a quadratic loss function

of the form:

£t =
1

2
[π2

t + θ(yt − ȳ − k)2], (III.2)

where θ is a positive constant that represents the weight the central bank

puts on output expansions relative to inflation stabilization, k is a constant

that can be considered as the amounts of output that excesses the equilibrium

output, and thus ȳ + k is interpreted as the target level of output that the

government and the central bank want to reach. As it will be seen below,

in order to provide an incentive for the policymaker to attempt to create

inflation surprises, k must be positive. Notice that the we have implicitly

assumed that the central bank has a zero target inflation rate. The inflation

term in (III.2) will be replaced by 1
2
(πt−π∗)2 if the central bank has a target
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inflation π∗ that differs from zero inflation rate.

Substituting (III.1) into (III.2), the loss function becomes

£(πt, π
e
t ) =

1

2
{π2

t + θ[a(πt − πe
t ) + xt − k]2} t = 1, 2, 3, ... (III.3)

We assume that the government, the central banker and the public all

know the distribution of the output shocks, but only the central banker

knows the current shock exactly. The government and the public only know

the shocks in previous periods exactly. Thus we can think of the current

output shock xt as private information for the central banker.

2. Three Types of Monetary Policy Rules

First note that, since the objective function is quadratic in inflation rate

πt and output yt that in turn are linear in xt, an optimal inflation policy rule

must be a linear function in xt.
2 That is, it belongs to the class

πt = π̄ + a1xt,

where π̄ and a1 are constants to be determined. When π̄ > 0, we say the

central bank has a positive inflation bias or uses a surprise inflation rate. a1

represents the effect of production shock on the inflation rate πt. Since the

2In general, it is useful to distinguish between inflation and the central
bank’s policy instrument, the latter taken to be the rate of growth of a
monetary aggregate directly controlled by the central bank so that inflation
rate is given by πt = mt + νt +µt, where mt is the money growth rate, νt is a
demand (or velocity) shock, and µt is a “control error” in monetary policy.
In this paper, we simplify the stochastic structure by setting νt = µt = 0
without affecting the results in any essential way. With these simplifications,
we have πt = mt and thus we have assumed that the central bank controls
πt directly.
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central banker knows the shock xt exactly, to determine an optimal inflation

policy rule, the central bank only needs to determine the optimal surprise

inflation rate π̄ and the parameter a1 under various behavior assumptions.

As in Barro and Gordon (1983a), there are three types of monetary policy

rules a central banker may choose.

a. Ideal Rule: Socially Optimal Monetary Policy Rule

In this case, the central bank is assumed to be able to commit herself in

advance to a linear contingent inflation rule subject to the condition that

Eπt = πe
t . That is, it is assumed that the public believes that the central

bank follows this contingent inflation rule and the central bank does not cheat

by letting actual inflation deviate from the announcement of the inflation

rate. Then πe
t = E(πt) = E(π̄ + a1xt) = π̄. Substituting πt and πe

t into the

loss function (III.3) and solving this unconditional expected minimization

problem by choosing π̄ and a1, we get π̄ = 0 and a1 = − aθ
1+a2θ

. Then, πe
t = 0,

and thus the optimal contingent inflation policy rule, denoted by πR
t , which

minimizes the value of social loss conditional on the realization of xt and the

constraint that πe
t = E(πt) = 0 is given by

πR
t = − aθ

1 + a2θ
xt, (III.4)

and the corresponding expected social loss is given by

E[£(πR
t , EπR

t )] =
1

2
θk2 +

1

2

θ

1 + a2θ
σ2

x, (III.5)

which is constant for all t by the i.i.d. assumption on xt. This is the bench-

mark case where the society reaches its desired socially optimal rule πR
t . The
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rule, πR
t , in this benchmark case was called an ideal rule by Barro and Gor-

don. (III.5) gives the lowest social loss for implementing this socially optimal

monetary policy rule πR
t .

b. Cheating Rule

The monetary policy rule given by (III.4), is not credible if implemented

either directly by the government or by a monetary authority whose objective

function is given by (III.3). When the public expects that the central bank

will use the contingent rule πR
t so that the expected inflation rate by the

public is πe
t = EπR

t = 0, then the central bank would like to implement

a positive surprise inflation rate in order to secure some benefits from a

surprise inflation. Indeed, when the central bank chooses an optimal inflation

policy πC
t to minimize the value of the loss function (III.3) conditional on

the realization of xt and πe
t = EπR

t = 0 as given, we have

πC
t =

aθ

1 + a2θ
(k − xt), (III.6)

and the corresponding expected social loss is:

E[£(πC
t , EπR

t )] =
1

2

θ

1 + a2θ
k2 +

1

2

θ

1 + a2θ
σ2

x, (III.7)

which is lower than that given by (III.5), and thus the central banker has an

incentive to adopt a cheating monetary policy rule with a surprise inflation

rate given by π̄C = E(πC
t ) = aθ

1+a2θ
k.
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c. Discretion Rule

The discretionary rule is defined in the present context as a Nash equilibrium

of a non-cooperative game between the central bank and the public. Under

the assumption of rational expectations, the public will not believe that the

central bank will use the contingent rule πR
t so that the expected inflation

by the public is πe
t 6= 0.3 Thus, the central bank will choose the optimal

discretionary πt = πD
t to minimize the value of the loss function (III.3)

conditional on the realization of xt and taking πe
t as given. The equilibrium

level of inflation is πD
t = a2θπe+aθ(k−xt)

1+a2θ
and thus the expected inflation is

πe
t = E(πD

t ) = aθk > 0 which means that there exists an inflation bias on

average. Thus, the discretionary inflation rule is given by

πD
t = aθk − aθ

1 + a2θ
xt, (III.8)

and the corresponding expected social loss is given by

E[£(πD
t , EπD

t )] =
1

2
θ(1 + a2θ)k2 +

1

2

θ

1 + a2θ
σ2

x, (III.9)

which reaches a higher expected social loss than the benchmark case given

by (III.5).

As will be seen below, since

E[£(πC
t , EπR

t )] < E[£(πR
t , EπR

t )] < E[£(πD
t , EπD

t )], (III.10)

the central bank may have the incentives to cheat or deviate from the optimal

3The assumption of rational expectations implicitly defines the expected
loss function for the public as £p = E[πt − πe

t ]
2; given the public’s under-

standing of the central bank’s choice problem, their choice of πe
t is optimal.
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policy if the time discount factor is small and as a result, she reaches a

worse noncooperative Nash equilibrium outcome than the benchmark case

if no additional cost is imposed on the central bank. Then, the economy

suffers from a positive bias inflation with an even higher expected social

loss. Thus, we have the time-inconsistency problem, which leads to an non-

socially-optimal monetary policy.

In this case, the central banker needs to be given additional incentives to

implement the desired socially optimal monetary policy (III.4) if the reputa-

tion force alone is not large enough to prevent the central bank from cheating.

The main purpose of this paper is to solve this problem by giving an optimal

hybrid mechanism that combines the reputation effect and contract enforce-

ment. To do so, in what follows, we first characterize the conditions under

which the reputation mechanism alone can solve the central bank’s incentive

problem. We then present an optimal incentive compatible hybrid mecha-

nism that eliminates the inflationary bias and, at the same time, has a lowest

contract cost.

C. Reputation Mechanism and Enforcement of Ideal Rule

The idea of the reputation model is that a credible rule comes with some

enforcement power that can reduce an central bank’s temptation to cheat. If

the central bank adopts a higher rate of inflation than people expect, then

they will raise their expectations of future inflation and it results in a higher

inflation in the future and a higher social loss.

The timing of the monetary policy game can be described as follows.
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At the beginning of each period, the central bank announces her inflation

policy rule, and then the public form expectations (or write wage contracts)

based on its belief or lack of belief in the central bank’s announcement. The

output shock is then realized, and finally the central bank chooses an inflation

policy rate that obeys or does not obey her announcement. This process, the

interaction between the central bank and the public, will then be repeated

over time. Thus, this iterative process incorporates notions of reputation

into a repeated-game version of the basic framework.

The public is assumed to use the following behavior strategy in this

repeated monetary policy game to form their expectations. If the central

bank uses the socially optimal monetary policy rule in the previous period,

the public trusts the central bank will continue to use the rule in the current

period, and forms their expectations by this belief which equals πe
t = EπR

t =

0. But, if the central bank departs from the socially optimal monetary rule

πR
t−1 last period by using a cheating rule πt−1 so that Eπt−1 6= πe

t−1 = EπR
t−1,

the public then loses their trust and does not expect the central bank to

follow her rule. With a lag of one period (the contract length), the public

expects the central bank to pursue the discretionary policy πD
t+i, and responds

to a deviation πe
t+i = EπD

t+i = θak for the next P periods where i = 1, . . . , P

and P may be interpreted as the punishment length for the cheating or the

negotiation power over wages of a monopoly union. The punishment length

P is assumed to be exogenously given and fixed.4 The credibility is restored

4If P is an endogenous variable, there exists a multiplicity of reputational
equilibria that can be supported as subgame-perfect equilibria on the part of
the public sector. Al-Nowaihi and Levine [1] considered this problem with
solution.
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as the P periods punishment. That is, it is assumed that the public has the

following form of expectation mechanism:

πe
t = EπR

t if Eπt−1 = πe
t−1 = EπR

t−1 (III.11)

πe
t+i = EπD

t+i if Eπt−1 6= πe
t−1 = EπR

t−1 (III.12)

for i = 0, 1, . . . , P −1. Notice that the form of expectations above is different

from the form of expectations used in the contracting literature in which the

public is assumed to respond the central bank’s cheating to the expected

discretion inflation without any lag of time, i.e., πe
t = Eπt for any period of

time t so that the cheating monetary policy rule πC
t does not appear in the

contracting model. This difference of timing in forming expectations makes

our contract differs from the existing contracts.

Accordingly, the central bank can maintains its reputation or credibility

in each period if she wants. On the other hand, if the central bank cheats dur-

ing period t, the expectations are the ones associated with the discretionary

rule πD
t+i for next P periods. Notice that the assumption of rational expec-

tations implies that there is at least one period punishment to the central

banker if she cheats.

The government wants to eliminate the inflation bias of discretionary

policy while still preserving the ability of the central bank to respond to ag-

gregate output shocks. Thus, he wants the central bank to implement the

socially optimal contingent rule πR
t for any length of periods. While the rep-

utation game can be repeated independently as many times as desired, it is

assumed that the future is discounted by 0 < β < 1 so that the government’s
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total loss for 1+P periods has present values
∑P

i=1 βiE[£(πR
t+i, EπR

t+i)] under

the socially optimal monetary policy rule πR
t . For the convenience of discus-

sion, we may consider the average loss, and may also want to discount the

time, so the total time having this total loss has the present value
∑P

i=0 βi.

Thus the government’s average expected social loss for the length of P + 1

periods at πR
t is given by

£G =
P∑

i=0

βiE[£(πR
t+i, EπR

t+i)]∑P
i=0 βi

=
1

2
θk2 +

1

2

θ

1 + a2θ
σ2

x. (III.13)

However, the central bank may have a different ex-post average objective

function. Since the central bank’s decision may cheat at any time t, the

central banker’s average expected loss under the cheating is given by

λ(πt) =
Et[£(πt, EπR

t ) +
∑P

i=1 βi£(πD
t+i, EπD

t+i)]∑P
i=0 βi

(III.14)

where Et denotes the expectations conditional upon the realization of all in-

formation up to and including period t. This objective function shows that

the central bank has an option to use a discrete monetary policy in period

t when she thinks it is necessary. We now investigate under which condi-

tions, reputation forces will prevent the central bank from using a cheating

monetary policy.

Note that Et(£(πC
t , EπR

t )) ≤ Et(£(πt, EπR
t )) for any linear contingent

inflation rate πt, and thus the central bank does not have any incentive to

cheat at πt if she does not have an incentive to cheat at πC
t . So we only need

to consider the loss at the optimal cheating policy πC
t .
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Note that

λ(πC
t )− λ(πR

t ) =
a2θ2k2

2
∑P

i=0 βi
(

P∑
i=1

βi − 1

1 + a2θ
). (III.15)

Thus, if
∑P

i=1 βi ≥ 1
1+a2θ

, then the central bank does not have the in-

centives to cheat or deviate from the socially optimal monetary policy. This

result can be regarded as a version of the folk theorem for infinite-horizon re-

peated games, which suggests that the central bank has an incentive to cheat

when the discount factor is small. The smaller is β, the larger is the reputa-

tion force P needed. However, when β is too small so that
∑P

i=1 βi < 1
1+a2θ

,

the reputation force alone cannot solve the central bank’s cheating problem.

Indeed, when β < 1
2+a2θ

,
∑P

i=1 βi = β 1−βP

1−β
< 1

1+a2θ
for any P , and thus the

minimum discount factor for the central bank to keep the socially optimal

monetary policy rule is β = 1
2+a2θ

.

The intuition behind this is that: if the central bank uses a cheating

policy, she will receive a benefit or gain of Et[£(πR
t , EπR

t )) − £(πt, EπR
t ))]

from reneging arising from the one period before the public can retaliate,

but the public will then retaliate the central bank for P periods and the

penalty will be
∑P

i=1 βiEt[£(πD
t+1, EπD

t+1)−£(πR
t+1, EπR

t+i))] which arises from

the P periods of punishment. As in Barro and Gordon, we may call the

benefit of cheating as temptation and the cost of cheating as enforcement

to renege on the socially optimal monetary policy rule πR
t . When the en-

forcement is greater than the temptation, i.e.,
∑P

i=1 βiEt[£(πD
t+i, EπD

t+i) −

£(πR
t+i, EπR

t+i))] > Et[£(πR
t , EπR

t )−£(πt, EπR
t ))], the reputation mechanism

implements the socially optimal contingent monetary policy πR
t .
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Thus, we have the following proposition.

Proposition C.1. For the reputation repeated game of monetary policy be-

tween the central bank and the public, there is no inflation bias for any period

of time if and only if
∑P

i=1 βi ≥ 1
1+a2θ

, and further the socially optimal mone-

tary policy rule {πt} cannot be supportable for any length of reputation forces

if β < 1
2+a2θ

.

Note that, when β is large, we only need a small P to keep this inequality

held. In particular, when β is close to one, we have
∑P

i=1 βi > 1
1+a2θ

and thus

the central bank does not have an incentive to cheat or deviate from the

optimal policy in any period t for any P ≥ 1. Then, we have the following

corollary.

Corollary C.2. For the reputation repeated game of monetary policy between

the central bank and the public, when β is close to one, there is no inflation

bias for any positive length of reputation.

Hence, reputation forces discourage the central bank from attempting to

cheat and the legal, institution, or contracting constraint on the central bank

is unnecessary and will impose unnecessary contract cost. In particular, all

contracts such those in Walsh are unnecessary for use.

Remark C.1. The conclusion of Corollary C.2 is based on the quadratic

specification of objective function in (III.2). However, as shown in Barro

and Gordon, when the objective function is replaced by the quadratic-linear

objective function

£t =
1

2
[π2

t − θ(yt − ȳ − k)], (III.16)
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the zero average inflation policy rule is no longer supportable by the reputation

mechanism for any discount factor 0 ≤ β ≤ 1 although a non-zero but less

than the discretionary inflation rate may be sustainable. In this case, we need

to adopt other means such as the contracting approach we will discuss below

to solve the central bank’s incentive problem.

D. A Hybrid Mechanism of Optimal Contracts and Reputation

The above proposition shows that, when
∑P

i=1 βi < 1
1+a2θ

, the reputation

force alone is not large enough to discourage the central bank from surprise

inflation. The repeated monetary policy game between the central bank and

the public yields inflation bias as a bad noncooperative Nash equilibrium

outcome so that the society experiences a positive average inflation without

systematic improvement in output performance and suffering a higher social

loss. The government then needs to step in and may play an important role of

providing an incentive compatible mechanism that induces a desired socially

optimal monetary policy rule. In this section, we use the principal-agent

framework (a simple case of general mechanism design) to determine how

the optimal contract is designed and combined with the reputation punish-

ment together to solve the central bank’s incentive compatibility problem. In

this framework, the principal is the government whose goal is to implement

the socially optimal monetary policy rule πR
t , and the agent is the central

bank, to which the government delegates the task of implementing the goal.

In this section, we show that by combining the reputation pressure with an

additional incentive contract, one can induce the central bank to eliminate
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the inflation bias of discretionary policy, and give the central bank the right

incentives to induce the socially optimal monetary policy πR
t as a desired

equilibrium outcome. In addition, the hybrid mechanism has the lowest con-

tract cost in the sense that the transfer payment is the lowest to implement

the socially optimal monetary policy for any rate of surprise inflation.

Our hybrid mechanism approach differs from the pure contracting ap-

proach in the following main aspects. First, a contract part in the hybrid

mechanism will be used only when the reputation mechanism does not work,

i.e., only when
∑P

i=1 βi < 1
1+a2θ

. It is well known that the reputation mech-

anism is the best choice when it works since no explicit transfer payment is

needed, and thus the cost of implementing a socially optimal monetary policy

rule is the lowest. In this case, no contract is needed. If the reputation mech-

anism does not work, then one should consider other approaches. Secondly,

even if the reputation forces alone cannot eliminates the central bank’s infla-

tionary bias, it nevertheless can reduce in some extent the temptation for the

central bank to cheating, and thus a contract scheme may be used together

with the reputation forces to solve the central bank’s incentive problem so

that the contract cost will be lower. Thirdly, unlike many existing contracts

such as Walsh’s contract in which the central banker will be punished as

long as the realized inflation rate is not zero even though it fully results from

production shocks, the penalty function for the central bank in our hybrid

mechanism is independent of realized production shocks xt and the penalty

depends only on whether or not she will use a surprise inflation rate, i.e.,

whether or not expected inflation rate π̄ > 0. Fourthly, while most exist-

ing contract mechanisms are linear in inflation rate and thus the penalty is
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unbounded, the penalty function in our approach is quadratic, concave, and

continuous in surprise inflation rate so that the maximum penalty exists. Fi-

nally, the penalty is just the difference between temptation and enforcement:

Et[£(πR
t , EπR

t )−£(πt, EπR
t ))]−

∑P
i=1 βiEt[£(πD

t+i, EπD
t+i)−£(πR

t+i, EπR
t+i))],

for any πt that makes the difference positive. Thus, the penalty payment

function specifies the minimum required payment that implements the so-

cially optimal monetary policy rule {πR
t }.

Now, we formally present the optimal hybrid mechanism below. In the

hybrid mechanism, the central bank receives a penalty payment (which may

be zero) from the government when the central bank uses a surprise inflation

rate π̄ at time t. The payment could be considered as a direct cost of the

central bank or more broadly as legal constraints for the central bank, de-

noted by W (π̄). Notice that, the penalty function is the function of surprise

inflation, but not a function of the actual inflation rate πt that is given by

πt = π̄ + a1xx which depends on both surprise inflation rate π̄ and produc-

tion shock xt. This specification makes our contract be significantly different

from one in Walsh’s model that is linear and depends on the inflation rate

πt which in turn depends on production shock xt.

The problem faced by the government (principal) is to design a penalty

function W (π̄) that makes the central bank have no incentives to cheat and

thus induces the central bank to choose the socially optimal monetary policy

{πR
t }, and further minimizes the expected value of the loss

λ(πt, W ) =
£(πt, EπR

t ) +
∑P

i=1 βi£(πD
t+i, EπD

t+i) + W (π̄)∑P
i=0 βi

(III.17)

conditional on the realization of xt.
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Like the first term in (III.14), the loss function £(·) is valued at (πt, EπR
t ) =

(πt, 0), but not at (πt, Eπt) when the central bank cheats at the current pe-

riod t. Notice that this is the main difference between our unified approach

and the existing contracting approach. In the existing contract models, the

public is assumed to respond the central bank’s cheating to the expected

discretion inflation EπD
t+i = aθk without any lag of time so that the cheat-

ing monetary policy rule πC
t does not appear in the central bank’s objective

function.

When

£(πt, EπR
t ) +

P∑
i=1

βi£(πD
t+i, EπD

t+i) > £(πR
t , EπR

t ) +
P∑

i=1

βi£(πR
t+i, EπR

t+i)

(III.18)

or equivalently, when enforcement is greater than temptation:

P∑
i=1

βiEt[£(πD
t+i, EπD

t+i)−£(πR
t+i, EπR

t+i)] > Et[£(πR
t , EπR

t )−£(πt, EπR
t )],

it is more costly for the central bank to use the discretionary policy πt, and

thus she does not have an incentive to cheat. Thus, the reputation mech-

anism alone cannot solve the central bank’s incentive problem. So we only

need to consider the case where
∑P

i=1 βiEt[£(πD
t+i, EπD

t+i)−£(πR
t+i, EπR

t+i))] <

Et[£(πR
t , EπR

t )−£(πt, EπR
t ))]. Define the set of inflation rates in which the

central bank has an incentive to deviate from the socially optimal monetary

policy rule πR
t by

Πt = {πt : A(πt) < 0} (III.19)
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where

A(πt) =
P∑

i=1

βiEt[£(πD
t+i, EπD

t+i)−£(πR
t+i, EπR

t+i))]

−Et[£(πR
t , EπR

t )−£(πt, EπR
t ))] (III.20)

which may be called the cheating set at time t. Note that Et[λ(πR
t , 0)] =

Et[£(πR
t , EπR

t )]. The contract W (π̄) implements the optimal policy {πR
t } if

Et[λ(πt, W )] ≥ Et[£(πR
t , EπR

t )] for all πt ∈ Πt and for all t. It is clear that

there are many such contracts which implement the optimal policy {πR
t }.

For instance, any W (π̄) that makes Et[λ(πt, W )] ≥ Et[£(πR
t )] for all t can be

used as such a contract. Hence, our interest here is to find an optimal one

which has the lowest penalty cost.

Then, we have the following definition about the optimal contract.

Definition D.1. A contract W (π̄) is said to be an optimal contract which

implements the optimal policy {πR
t } if it satisfies the following three condi-

tions.

(1) (Incentive Compatibility): Et[λ(πt, W )] ≥ Et[£(πR
t , EπR

t )] for

any πt ∈ Πt.

(2) (Optimal Choice): πt minimizes Et[λ(πt, W )] for all πt ∈ Πt.

(3) (Efficient Contract): E[λ(πt, W )] = E[£(πR
t , EπR

t )] for all

πt ∈ Πt.

In the above definition, Condition 1 is known as the incentive compatibil-

ity requirement that discourages the central bank deviating from the socially

optimal monetary policy {πR
t } so that the central bank’s interest is com-

patible with the government’s interest. Condition 2 is known as the central
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banker’s rational (optimal) choice condition on monetary policy rule. Con-

dition 3 is known as the efficient contract condition under which the penalty

determined by the contract is the lowest penalty that just discourages the

central bank from cheating, i.e., the sum of the loss at any discretionary

monetary policy rule, reputation forces, and the penalty is exactly equal to

the loss at the socially optimal monetary policy πR
t . Notice that Condition

2 is not the same as Condition 3. For instance, when a big constant term

is added into the penalty function W , the central banker’s original optimal

choice on πi remains optimal, but the λ(πt, W ) becomes larger. Also notice

that expectations in the first two conditions are taken conditional on the

realization of xt since, by assumption, it is known by the central bank.

As we mentioned earlier, any optimal monetary policy rule of the central

bank belongs to the class of linear contingent function in xt: πt = π̄ + a1xt,

the central bank wants to choose the optimal π̄ and a1 so that πt minimizes

Et[λ(πt, W )] for all πt ∈ Πt. Then the first order conditions for the central

bank’s problem are obtained by differentiating (III.17) with respect to a0 and

π̄, respectively

(1 + θa2)πtxt + θa(xt − k)xt = 0 (III.21)

and

(1 + θa2)πt + θa(xt − k) +
∂W (π̄)

∂π̄
= 0. (III.22)

Taking the unconditional expectation for equation (III.21) and solving

for a1, the optimal a1 is given by a1 = − aθ
1+a2θ

. Thus, in the hybrid mecha-

nism, the optimal monetary policy rule of the central bank has the form of

πt = π̄− aθ
1+a2θ

xt = π̄ +πR
t , where π̄ is a surprise inflation bias deviating from



59

the socially optimal inflation policy rule πR
t by the central banker.

To find out the penalty function W (πt), substituting πt = π̄− aθ
1+a2θ

xt =

π̄ + πR
t into (III.22) and solving for ∂W (π̄)

∂π̄
, we have

∂W (π̄)

∂π̄
= θak − (1 + θa2)π̄. (III.23)

Thus, we have

W (π̄) = W 0 + θakπ̄ − 1

2
(1 + θa2)π̄2. (III.24)

To make W (π̄) be the optimal incentive compatible contract, we need

to determine the constant term W 0 so that Et[λ(πt, W ) − £(πR
t , EπR

t )] ≥ 0

and E[λ(πt, W )−£(πR
t , EπR

t )] = 0.

Note that, by substituting W (π̄) into (III.17), we have

λ(πt, W )− λ(πR
t ) =

[1
2
(1 + θa2)π̄ − θak)]π̄ + 1

2
a2θ2k2

∑P
i=1 βi + W (π̄)∑P

i=0 βi

=
1
2
a2θ2k2

∑P
i=1 βi + W 0∑P

i=0 βi
. (III.25)

Then, when W 0 = −1
2
a2θ2k2

∑P
i=1 βi, we have λ(πt, W )) = £(πR

t , EπR
t ).

Therefore, we have Et[λ(πt, W )−£(πR
t , EπR

t )] ≥ 0, which means that W (π̄)

is the optimal contract under which the cost of using a cheating monetary

policy rule πt is the same as the cost for the central bank to use the socially

optimal monetary policy rule. Thus, the central bank cannot benefit from

the cheating, although it is not worse off either.

Thus, the optimal incentive compatible contract that is contingent on

the surprise inflation rate π̄ and discourages the central bank from using the
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discretionary monetary policy rule πt is given by

W (π̄) = θakπ̄ − 1

2
(1 + θa2)π̄2 − 1

2
a2θ2k2

P∑
i=1

βi ∀ πt ∈ Πt. (III.26)

The central bank will be penalized by the amount of W (π̄) if she uses a

surprise inflation rate πt ∈ Πt at time t, and will not be penalized if she uses

a socially optimal monetary policy rule πR
t or uses a surprise inflation rate

πt which is not in the cheating set Πt.
5 Thus, the optimal contract penalty

payment W (π̄) is solely based on whether the central bank uses the surprise

inflation rate π̄, but not based on the inflation rate which in turn depends

on the magnitude of production shocks xt.

To determine the cheating set Πt, note that W (π̄) ≥ 0 if and only if

g1 < π̄ < g2, where

g1 ≡
aθk

[
1−
√

1−(1+θa2)
∑P

i=1 βi
]

1+θa2

and

g2 ≡
aθk

[
1+
√

1−(1+θa2)
∑P

i=1 βi
]

1+θa2 .

Thus the central banker does not have an incentive to cheat at the

cheating set Πt = [g1, g2] and the optimal contract that implements the

socially optimal monetary policy rule {πR
t } can be written as

W (π̄) =

 θakπ̄ − 1
2
(1 + θa2)π̄2 − 1

2
a2θ2k2

∑P
i=1 βi if g1 < π̄ < g2

0 otherwise
.

(III.27)

Remark D.1. The term 1
2
a2θ2k2

∑P
i=1 βi in the penalty function W (π̄) in

5Since the central bank is assumed to be rational, she will never have an
incentive to choose an inflation rate not in Πt, otherwise she will be worse
off.
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(III.27) is the reputation effect. Thus, this hybrid mechanism is the com-

bination of the reputation mechanism and the contract W (π̄). When 1 <

(1 + θa2)
∑P

i=1 βi, the reputation force is enough to solve the central bank’s

incentive problem by Proposition C.1, and thus no penalty is needed so that

the contract cost is zero.

Remark D.2. The penalty function W (π̄) depends not only on the discount

factor but also the length of reputation P . Furthermore, W (π̄) is a decreasing

function in P , which means the length of the reputation impact from the public

can reduce the contract cost.

Remark D.3. When future is perfectly discounted, i.e., β approaches to

zero, there is no reputation forces imposed on the central bank. In this case,

the cheating set has a simple form which is given by Πt = (0, 2θak
1+θa2 ), and the

reputation term disappears in the above penalty function. Thus, our hybrid

mechanism becomes a pure contract mechanism that is given by

W (π̄) =

 θakπ̄ − 1
2
(1 + θa2)π̄2 if π̄ ∈ (0, 2θak

1+θa2 )

0 otherwise
, (III.28)

which implements the socially optimal monetary policy rule {πR
t }. This is

a new contract scheme and is different from the existing contract schemes.

The hybrid mechanism defined in (III.27) is the sum of the reputation forces

given by
∑P

i=1 βi[£(πD
t+i)−£(πR

t+i)] = 1
2
a2θ2k2

∑P
i=1 βi and the pure contract

mechanism defined by (III.28).

Remark D.4. Notice that, if the central bank chooses a cheating inflation

rule according to the rule specified by (III.6): πt = πC
t = 1

1+θa2 θa(k − xt),
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then π̄C = 1
1+θa2 θak and thus W (π̄C) is given by

W (π̄C) =
1

2

θ2a2k2

1 + θa2
− 1

2
a2θ2k2

P∑
i=1

βi. (III.29)

In fact, since the penalty function is linear-quadratic (i.e., the first term in the

penalty function is linear and the second term is quadratic), continuous, and

concave in π̄, the maximum penalty will be reached at π̄C = EπC
t = 1

1+θa2 θak.

The intuition behind this is that, since we are looking for the minimal penalty

for the central bank to keep the socially optimal monetary policy πR
t for any

level of surprise inflation and the bank’s loss will be minimized at πC
t , the

maximum penalty needs to be imposed to make the sum of the loss, the repu-

tation forces, and the penalty as big as the loss at the socially optimal policy

πR
t in order for the central bank to have no incentives to cheat. Thus, the

penalty function is an increasing function when π̄ < 1
1+θa2 θak and a decreas-

ing function when π̄ > 1
1+θa2 θak. Note that the penalty will be zero when

π̄ ≤ g1 or π̄ ≥ g2. However, since the sum of the loss and the penalty equals

the loss at the socially optimal monetary policy πR
t over the interval (g1, g2),

the central bank does not have the incentives to use a discretionary monetary

policy and thus the optimal contract is robust so that we can allow the price

fluctuations due to measurement error or uncontrollable production shocks.

Remark D.5. The maximum penalty specified in (III.29) gives a upper bound

of penalty when the central bank adopts a surprise inflation rate in the cheat-

ing set. One may simply use this upper bound of penalty to punish the cen-

tral bank when she cheats. That is, the penalty will be equal to this upper

bound and so it is constant for any π̄ = (g1, g2) and zero otherwise. Yet,
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this penalty may be lower than the one determined by Walsh’s penalty func-

tion since his payment is continent on observed inflation rate which in turn

is implicitly dependent on production xt that can be arbitrarily larger. In-

deed, since Walsh’s penalty is linear which is given by θakπt and our penalty

W (π̄) < θ2a2k2

2(1+θa2)
. Then, when πt > π̄C/2, θ2a2k2

2(1+θa2)
= 1

2
θakπ̄C < θakπt by

noting that π̄C = θak
1+θa2 . Thus, even if we do not consider the reputation

effect, the penalty from the pure mechanism specified in (III.28) is lower the

penalty in Walsh’s contract when πt > π̄C/2.

Thus, the optimal contract W (π̄) combined with the reputation enforce-

ment implements the socially optimal monetary policy rule {πR
t } given by

(III.4) and has the lowest cost for preventing the central bank from using an

inflation bias of discretionary policy. Also, the total cost for using a cheating

monetary policy under this hybrid mechanism is the same as the social cost

at πR
t , and thus the hybrid mechanism is the most efficient way to implement

the socially optimal monetary policy rule πR
t . Hence, when the reputation

enforcement alone cannot restrain the central bank from using a cheating

rule, this simple hybrid contingent mechanism may be used.

Summarizing the above discussion we have the following proposition.

Proposition D.1. In the monetary policy repeated game among the public,

the central bank and the government, suppose the reputation enforcement lasts

for P periods so that
∑P

i=1 βi < 1
1+a2θ

, and suppose the penalty function W (π̄)

is given by (III.27). Then, the hybrid mechanism is an optimal mechanism

that implements the socially optimal monetary policy rule πR
t .

The above results on the optimal contract with the can be illustrated
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by the quadratic and convex curve equation

Lβ(π̄) =
1

2
(1 + θa2)π̄2 − θakπ̄ +

1

2
a2θ2k2

P∑
i=1

βi < 0, (III.30)

which is the difference between the reputation enforcement and the tempta-

tion to cheat for πt ∈ Πt. The penalty function is given by the quadratic and

concave curve which is the mirror image (reflection mapping) of Lβ(π̄) for

g1 < π̄ < g2 and equals zero otherwise. The penalty reaches the maximum

while Lβ(π̄) reaches its minimum at π̄ = θak
1+a2θ

. Since W (π̄) + Lβ(π̄) = 0

for all g1 < π̄ < g2 due to their mirror image each other, the penalty for

the central bank to cheat just equals the difference between the temptation

to cheat and the reputation enforcement. When π̄ ≥ g2 or π̄ ≤ g1, the cen-

tral banker does not have an incentive to cheat since λ(π̄, 0) is greater than

£(πR
t ). Thus, no penalty is necessarily imposed to the central bank.

Thus, our optimal contract has some advantages that the existing con-

tracts do not share. Our approach answers some criticisms for the contracting

approach. One criticism is that the incentive contract is costly to use. In

Walsh’s model, since only the socially optimal monetary policy rule πR
t sat-

isfies the first order condition and the linear contract is contingent on πR
t

which in turn is contingent on production shocks, the central bank will be

nevertheless penalized even though the central bank has no incentive to use

a cheating monetary policy. Since the production shock xt can be arbitrary

large when xt is an unbounded random variable, a huge contract cost may be

required for implementing a socially optimal monetary policy rule for a very

large production shock. A central bank is normally financed by the public
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and making them pay a pecuniary fine would simply be a reshuffling of tax

money. In our approach, however, a contract penalty will be imposed only

when the reputation forces alone are not big enough to prevent the central

bank from cheating and further she uses an inflation bias of monetary policy

πt ∈ Πt. The magnitude of the penalty is in fact the difference between

the temptation to cheat and the reputation enforcement, and thus it is the

lowest penalty that just discourages the central bank from cheating. Since

the central bank has no incentive to cheat, the penalty is actually zero when

πt = πR
t . In addition, since the sum of the social loss, reputation cost, and

contract penalty for the central bank to cheat is the same for any rate of

surprise inflation and just equal the social cost at the socially optimal mone-

tary policy rule πR
t , our contract is robust. Thus, our optimal contract is the

most efficient and stable mechanism that implements the socially optimal

monetary policy rule, and at the same time it freely responds to production

shocks.

It may be remarked that, just like an agent in the usual principal-agent

model that satisfies the binding participation constraint, the central banker,

as an agent, is indifferent for both the socially optimal monetary policy rule

πR
t and a cheating monetary policy. This, however, may not be a problem.

Since the central bank in any case cannot benefit from using a surprise infla-

tion monetary policy, but more likely she will be hurt by cheating due to the

loss of credibility or pressure of reputation, influence on future promotion,

the central bank will choose the socially optimal monetary policy. Even if

the credibility, reputation pressure, or negative influence on future promo-

tion does not work, one may give the central bank additional (any positive)
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amounts of penalty when she cheats, and then the socially optimal monetary

policy πR
t becomes the unique optimal choice to the central banker.

Thus our optimal hybrid mechanism approach suggests that there may

be a simple optimal incentive scheme that can solve the time inconsistency

problem in monetary policy. When the reputation forces alone do not work,

our hybrid mechanism approach presents an optimal contract that has some

nice properties that an existing pure contract mechanism may not share.

In any case, we provide a lower bound of the penalty for the central bank

to implement a socially optimal monetary policy rule. The contract is an

optimal contract that has the lowest cost of implementing the socially optimal

monetary policy rule. The penalty function W depends solely on surprise

inflation rate.

We know that among the approaches that solve the time inconsistency

problem, the “reputation” problem is key. If reputation consideration dis-

courages the central bank from attempting surprise inflation, then legal or

contracting constraints on central bankers are unnecessary and may be harm-

ful. The result in this section, however, suggests that one can reduce the

contract cost of maintaining the stationary inflation policy by combining the

reputation impact with the contracting penalty when the reputation enforce-

ment alone cannot solve the time inconstancy problem.

E. Conclusion

In this chapter, we have studied the time-inconsistency problem for cen-

tral bankers. When the reputation enforcement from the public is not large
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enough to discourage the central bank to use a surprise inflation policy, a con-

tract can be used together with reputation forces to implement the socially

optimal monetary policy rule. We presented an optimal hybrid mechanism

that combine the reputation approach and contracting approach. This hybrid

mechanism discourages the central bank from surprise inflation and gives her

full flexibility to respond to output shocks.

Our unified approach of reputation and contract has some nice properties

that the existing mechanisms may not share. Our results answer the concern

that using the incentive contract is very costly. The results obtained in

the paper suggest that one can reduce the contract cost of implementing a

socially optimal inflation policy by combining the reputational approach with

the contracting approach if the reputation enforcement alone cannot solve the

time inconstancy problem. Also, unlike the existing optimal contracts, our

contract is only contingent on surprise inflation rate, but not on production

shocks. The central bank will be punished only when she has an incentive

to use an inflation bias of monetary policy. The magnitude of the penalty

is in fact the difference between the temptation to cheat and the lowest

penalty which just discourages the central bank from cheating, and so it

reaches a lower bound of penalty payment. Thus, our hybrid mechanism is

an optimal mechanism that has the lowest cost of implementing the socially

optimal monetary policy rule, and it therefore is the most efficient way to

implement a socially optimal monetary policy. In addition, since the sum of

the loss, reputation forces, and the penalty for the central bank to cheat is the

same as the social loss at the optimally socially optimal inflation rate even if

there are production shocks, our optimal contract is a robust mechanism that
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implements the socially optimal monetary policy rule. We have also provided

a upper bound of penalty that may be lower than the linear contract when

inflation rate is greater than π̄C/2.

Of course, like the reputation approach, a weakness of our hybrid mech-

anism is that the penalty is the function of surprise inflation rate, but not

contingent on realized inflation rates. Thus, it imposes a stronger information

requirement to the government than the existing contracts in the literature

since the surprise inflation rate may be hard to be verifiable exactly although

one can estimate easily by various existing econometric methods in the liter-

ature. In any case, we can similarly give a hybrid mechanism that combines

reputation forces and a contract that is contingent on realized inflation rates,

but not on surprise rates if one is willing to increase the contract cost.
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CHAPTER IV

BANK CAPITAL REGULATION AND REGULATION HORIZON

In this chapter, we study how to control the risk taking behavior of

banks. First we derive the expected bankruptcy time and the conditional

probability distribution of bankruptcy for a given time. We show that risk-

shifting behavior will increase the probability of bankruptcy during a given

time. Then we use these results to analyze certain regulation policies and

show that capital requirements alone cannot control the risk-taking behavior

of banks at finite future point in time. We also prove that if we use the

time horizon as an additional instrument, we can control the risk shifting

problem. We give a theoretic explanation for the VaR regulation. Finally,

we discuss the VaR contracts with asymmetric information and show that

VaR contracts can induce the banker to report the real risk of the project.

A. Introduction

As a consequence of the observed instability of banking systems in the last

two decades, various regulation policies have been proposed and enacted. The

Basel Accord (1978) represents a landmark financial agreement for regulation

of commercial bank. Since 1994, more flexible methods of measuring the risk,

Value at Risk (VaR), have been developed and implemented by the major

banks. In an important regulatory innovation, the Basel Committee (1996)

has proposed that such models be used in the determination of capital that

banks must hold to back their securities trading.
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At the same time, the theory of prudential regulation of banking has

received much attention. Rochet [31] studies the consequences of capital reg-

ulations on the portfolio choices of commercial bank. Thakor [40], Santos [36]

discuss Basel Accord with a ”Credit Crunch”. Blum [7] analyzes the conse-

quences of more stringent capital requirements in a dynamic framework. On

the second approach, Merton [25, 26] was the first to use a diffusion model

for studying the behavior of commercial bank. Since the diffusion model

can capture the new characters in the last twenty years1 and be tractable,

many economists study the behavior of commercial bank following Merton’s

approach. Mella-Barral, Fries and Perraudin [24] derive the optimal clo-

sure rule and bailout policy. Rochet, Decamps and Roger [32] develop of

continuous time model of commercial bank’s behavior and analyze three in-

struments adopted by Basel Accord. Pages and Santos [28] analyze the im-

pact of depositor-preference laws on the supervisors. Bhattacharya, Plank,

Strobl and Zechner [6] consider a model of optimal bank closure rules with

Possion-distributed audit. The third approach is using asymmetric infor-

mation theory to understand financial markets and the regulation of these

markets. Risk taking and observability are two forms of moral hazard exist

in financial contracting. As a consequence of shareholders limited liabil-

ity, bank shareholders might try to influence the return distribution of their

loans to increase their expected payoff at the expense of the depositors. In

a situation of hidden information, the shareholders typically are the persons

1During the last two decades, in order to make trading profits and hedge
exposure elsewhere in their banking portfolios, banks have greatly increased
their holdings of trading asset, such as bonds, equities, interest rate and
equity derivatives.
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that can observe the risk of their loans at no cost. To the extent that their

payment depends on the risk related regulation policy, they might have an

incentive to understate the risk. This is called observability problem. Merton

[25], Furlong and Keeley [12] first formalize moral hazard in banking. Frexias

and Santomero [11] give an excellent summarization of these models. But all

above model do not consider the time horizon’s affects on risk regulation.

A different approach to bank regulation has its roots in the theory of

gambler’s ruin. Santomero and Vinso [35] use it for measuring the sound-

ness of banking system and they claim that in order to capture the time

dimensionality of the risk we should abandon the simple capital ratio regula-

tion. This is the original ideal of Value at Risk regulation we are using now.

Koehn and Santomero [19] study how to reduce the probability of failure by

reduce the riskiness of the bank portfolio. Kim and Santomero [18] develop a

mean-variance model to investigate the role of bank capital regulation in risk

control. But these models do not allow for the possibilities of moral hazard

and do not consider the incentives for the bank shareholders.

The present chapter is related to the gambler’s ruin problem approach

in a continuous time dynamic context but unlike above models we study the

regulation policy in an asymmetric information framework, and show that

Value at Risk regulation contracts are truthful signaling contracts.

The time at which the bank become insolvent is of obvious important to

the regulator whose goal is a ”safe and sound” banking system. We assume

that regulator has regulation goals in mind that he/she wants to attain within

a stipulated planning period. Two important goals need to be considered:

-The time horizon before the bank assets fall to their insolvent level;
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-The probability of the bank assets fall to their insolvent level, given a

fixed time horizon.

It is important to acknowledge that such goals may not minimize social

loss. However, these goals are reasonable under the situation of banking

regulation. We give the following two reasons for using the probabilistic

model. First, the cost of bank failure is very big and the negative externalities

generated by a bank failure are very difficult to calculate exactly, because the

failure may spread throughout the banking system, amplifying the negative

effects on unrelated intermediaries. So, if we approx the externalities of a

bank failure as a big constant, then minimizing the probability of the bank

failure implies minimizing the social loss. Second, in some situations (such as

economic crisis), keeping the bank from failure may be an overriding concern

to the public regulator. In practice, VaR represents these ideas.

We try to examine the relationship between regulation policies (capital

requirement and VaR), risk-taking and the two regulation goals of the bank.

We study how to control the risk taking behaviors of the bank. First we

get the expected bankruptcy time and conditional probability distribution

of bankruptcy for a given time. We show that the risk-shifting behavior will

increase the probability of bankruptcy during a given time. The higher risk

investments will make higher profit for the shareholders, but they hurt the

depositors.

Then we use these results to analyze the regulation policies and show

that capital requirements alone cannot control the risk taking behaviors of

bank at finite future point in time. We then prove that if one uses the

time horizon as an additional instrument, one can control the risk-shifting
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problem. Thus, we give a theoretic explanation for the VaR regulation.

Finally, we discuss the VaR contracts with asymmetric information and

show that VaR contracts can induce the banker report the real risk of the

project.

We study the model without regulation in section B. In section C we

analyze the two regulation policies: capital requirements and Value at Risk

regulation. The asymmetric information cases are discussed in section D. In

section E, we conclude.

B. The Model without Regulation

1. Bank Shareholder’s Risk-Taking Problem

In our economy, uncertainty is represented by a filtered space (Ω,F , P ),

on which is defined on 1-dimensional Brownian motion B(t). All stochastic

processes are assumed adapted to {Ft}, the filtration generation by B(t). At

the beginning, the bank accepts deposits D and has input of initial capital, x.

Then the bank undertakes risky investments. The evolution of asset values

of the investments Xt follows diffusion processes:

dXti = µXtidt + σiXtidBt, X0 = x, with 0 < x < ∞ i = 1, 2, ..., N

(IV.1)

where µ is the drift and σi is the instantaneous standard deviation of the

process with σ1 < σ2 < ... < σN , dBt denotes the increment of a standard

Wiener process. We assume that µ <
σ2

i

2
for i = 1, 2, .., N2. This implies

2It can be shown that for any x > 0, Xt → 0 a.s., as t →∞
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that the investment of the bank is risky, because, in a competitive banking

industry, bank closure will always happen in the long run3.

We assume that the bank manager wants to maximize the shareholders’

profit. So, if he chooses project i as the investment, his objective function

can be described by the following:

B(x, σi) = Ex[

∫ τ

0

e−ρ t(Xti − rD)dt] (IV.2)

where ρ is the discount factor with µ < ρ < 1, r is the interests earned by

depositors and x > rD and D > 04. τ = inf{t ≥ 0, Xti ≤ x∗i }, x∗i is the

value for which the shareholders choose to declare bankruptcy. Here and in

the following Ex denotes the expectation w.r.t. the probability measure Qx.

We define the value of bank equity is the present conditional expected profit

in the future. Then we have following lemma

Lemma B.1. The value of bank equity is

B(x, σi) = (
x

ρ− µ
− rD

ρ
) + [

rD

ρ
− x∗

ρ− µ
](

x

x∗i
)m2i

where, m2i is the negative root of m2 + (2 µ
σ2

i
− 1)m − 2 ρ

σ2
i

= 0, and x∗i =

−m2i

1−m2i

ρ−µ
ρ

rD.

Proof. By Dirichlet-Poission Theorem (Øksendal Theorem 9.3.3 [27]), we

know that B(x, σi) is the boundary solution of the 5

3It can be shown that Probx{Xηi = a} = 1, where a is an arbitrary
constant and η = inf{t ≥ 0, Xti = a}.

4This is the preliminary condition for the existence of banks
5Note that we use the Remark in Øksendal [27]
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 −ρB + µx∂B
∂x

+ 1
2
σ2

i x
2 ∂2B

∂x2 = −(x− rD) for x0 < x < ∞

B(x∗i ) = 0

The general solution is

B(x) =
x

ρ− µ
− rD

ρ
+ A1x

m1i + A2x
m2i

where A1, A2 are arbitrary constants and

mji =
1

2
− µ

σ2
i

±

√
(
1

2
− µ

σ2
i

)2 +
2ρ

σ2
i

(j = 1, 2), m2i < 0 < m1i.

First, the boundary condition require a bounded derivative as Xt → ∞, so

we have A1 = 0. Then by the boundary condition B(x∗i ) = 0, we conclude

that the solution of B is

B(x) = (
x

ρ− µ
− rD

ρ
) + [

rD

ρ
− x∗i

ρ− µ
](

x

x∗i
)m2i

Now the shareholders are entitled to choose the bankruptcy-triggering point

x∗i . By the first order condition for B(x), we get

x∗i =
−m2i

1−m2i

ρ− µ

ρ
rD

Since

dm2i

dσ2
i

=

2µ
σ4

i
m2i − 2ρ

σ4
i

2m2i + 2µ
σ2

i
− 1

> 0, (IV.3)

and

dx∗i
dσ2

i

=
−1

(1−m2i)2

ρ− µ

ρ
rD

dm2i

dσ2
i

< 0, (IV.4)
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then we have

dB

dσ2
i

=
rD

ρ

1

1−m2i

ln(
x

xi∗
)(

x

x∗i
)m2i > 0. (IV.5)

dx∗i
dσ2

i
< 0 implies that as the risk of the invest increasing, the bank’s

default-triggering value x∗ will decrease. Since default for the deposit is an

irreversible action for the bank, instead of close the bank, waiting for good

movements of the investment is a better choice under high risk situation.

This is consistent with the results in real option literature.

dB
dσ2

i
> 0 implies that bank manager has the incentives to increase the

shareholders’ payoff at the expense of the depositor. So, at initial time,

the manager will choose project N to invest. This is so-called risk-taking

behavior. We will show that this behavior will make the expected bankruptcy

time horizon of the bank shorter and the probability for the bankruptcy

bigger under certain conditions.

2. The Consequences of the Risk-Taking Problem

In this section, we show that the risk-shifting problem will make the bank

more unstable. First we have the following Lemma

Lemma B.2. If the manager chooses the project i to invest, then the expected

bankruptcy time is

Ex(τ) =
2ln( x

x∗i
)

σ2
i − 2µ

where τ = inf{t > 0, Xt 6∈ (x∗i ,∞)} (IV.6)

Proof. From Øksendal (exercise 7.18 (a)[27]), we know for x ∈ (x∗i , R), τ0 =
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inf{t > 0, Xti = x∗i } and τ1 = inf{t > 0, Xt = R}

Prob(τ0 < τ1) =
Rγ − xγ

Rγ − x∗i
γ , where γ = 1− 2µ

σi
2

(IV.7)

Let f ∈ C2
0(R), such that f(x) = 2ln(x)

γσi
2 +xγ. Applying Dynkin’s formula

(Øksendal, Theorem 7.4.1[27]) for τR = inf{t > 0, Xt 6∈ (x∗i , R)},

Ex[f(XτR
)] = f(x) + Ex[

∫ τR

0

Af(Xs)ds] =
2lnx

γσi
2

+ xγ − EX [τR]

Then, we have

Ex[τR] =
2lnx

γσi
2

+ xγ − Ex[
2lnXτR

γσi
2

+ Xγ
τR

]

Using (IV.7), we get

Ex[τR] =
2lnx

γσi
2

+ xγ − Rγ − xγ

Rγ − x∗i
γ (

2lnx0
i

γσi
2

+ x∗i
γ)− xγ − x∗i

γ

Rγ − x∗i
γ (

2lnR

γσi
2

+ Rγ)

Let R →∞ and use τR → τ as R →∞,we get

Ex(τ) =
2ln( x

x∗i
)

σi
2 − 2µ

Since

dEx[τ ]

dσ2
i

=
−2ln( x

x∗
)

(σ2 − 2µ)2
− 2

(σ2 − 2µ)x∗
dx∗

dσ2
(IV.8)

The risk-taking behavior have two sides affects on the expected operation

time of the bank. On the one hand higher risk investments will make the vari-

ance increase and decrease the operation time of the bank; on the other hand,

higher risk investment will make the shareholders choose a lower bankruptcy

point, the extend the operation time of the bank.
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Consider now the conditional probability distribution of the bankruptcy

level attained by the bank’s assets in a finite time horizon.

P (x, t) = Prob{infs∈[0,t]Xsi ≤ rD|X0 = x}

Now, we give the following Lemma

Lemma B.3. The Probability that the bank’s assets fall to the bankruptcy

level during time t is

P (x, t)

= 1−N(
ln( x

x∗ )+(µ−σ2
i
2

)t

σi

√
t

) + e
−

2(µ−
σ2

i
2 ) ln( x

x∗ )

σ2
i N(

− ln( x
x∗ )+(µ−σ2

i
2

)t

σi

√
t

). (IV.9)

where

N(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt. (IV.10)

Proof. Since Xt is a geometric Brownian motion, we can write ln(Xt

x
) as

ln(
Xt

x
) = (µ− σ2

2
)t + σdBt (IV.11)

Then from Dana and Jeanblanc [9], we have

P (x, t) = 1−N(
ln( x

x∗
) + (µ− σ2

2
)t

σ
√

t
)+e−

2(µ−σ2

2 ) ln( x
x∗ )

σ2 N(
− ln( x

x∗
) + (µ− σ2

2
)t

σ
√

t
).

(IV.12)

Then, we have

dP (t, x)

dσi

=
2ln( x

x∗
)

σ2
i

√
t

exp{−1

2
(
ln( x

x∗
) + (µ− σ2

i

2
)t

σi

√
t

)2} > 0. (IV.13)

So, the risk-taking behavior will increase the probability of bankruptcy
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during a given time. The higher risk investments will give higher profit for

shareholders, but hurt depositors. So when the banks capital is unregu-

lated, its level reflects only the shareholders’ welfare. As a consequence of

shareholder limited liability, bank shareholders gain from upside risk but are

protected from downside risk. This is a typ of market externality. This

risk-taking behavior necessitates a regulatory response if the safety net is to

remain viable, and the response is normally some form of public regulation

of bank risk-taking behavior.

C. Regulation Policies with Complete Information

1. Regulation with Capital Requirements

The effect of capital requirements have been extensively analyzed in pre-

vious literature6. In this section, we study the effects of capital requirements

on a bank’s expected closure time and the probability of failure during a

given time.

Since a flat Cooke ratio implies z = x
D

are constants, equation (IV.6)

can be written as

Ex(τ) =
ln(z 1−m2i

−m2i

ρ
r(ρ−µ)

)

σ2
i − 2µ

where τ = inf{t > 0, Xt 6∈ ((r + p)D,∞)}

So, we can see that a flat Cooke ratio z cannot eliminate the risk-taking

behavior of the bank.

Assume a regulator sets z(σ2
i ) = −m2i

1−m2i

r(ρ−µ)
ρ

e(σ2
i−2µ)K , where K is the

expected time of the operation of the bank on which the regulator wants to

6Furlong and Keely [12], Koehn and Santomero [19], Blum [7].
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implement. Then Ex[τ ] = K and the expected time of closure of the bank

will be free from the affects due to the risk-taking behavior of the bank.

The probability that the bank’s assets fall to the bankruptcy level during

time t can be written as

P (x, t)

= 1−N(
ln(z D

x∗ )+(µ−σ2
i
2

)t

σi

√
t

) + e
−

2(µ−
σ2

i
2 ) ln(z D

x∗ )

σ2
i N(

− ln(z D
x∗ )+(µ−σ2

i
2

)t

σi

√
t

).

In order to avoid risk-shifting behavior, the regulator may chose z that

the bank’s behavior cannot influence the probability of bankruptcy during

time t. This can be achieved by making the probability P (x, t) independent

of investment risk σi.

So, if z satisfies

−
2(µ− σ2

i

2
) ln(z D

x∗
)

σ2
i

= A1 (IV.14)

− ln(z D
x∗

)− (µ− σ2
i

2
)t

σi

√
t

= A2 (IV.15)

and

− ln(z D
x∗

) + (µ− σ2
i

2
)t

σi

√
t

= A3 (IV.16)

where A1, A2 and A3 are constants, the regulator can use the capital require-

ment z to control the risk taking behavior of the bank during time t. But

it is very difficult to set a capital requirement z that satisfies these three

equations at the same time. Since the capital ratios fail to adjust for the dy-
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namic relationship between book and market values of bank equity, so setting

the Cooke ratios cannot eliminate the effect of risk-taking behavior on the

probability of bankruptcy for a given time horizon. Thus our model suggests

that relying only on a capital requirement cannot rule out the affections the

bank’s risk-taking behavior. This is consistent with the fact that from most

of U.S. history, and certainly for the half-century following the Great Depres-

sion, capital requirements tended to be ineffective. More efficient regulatory

rules are needed.

2. Regulation with VaR

In an important regulatory innovation, the Basel Committee has pro-

posed use of the that Value-at-Risk (VaR) model to determine capital re-

quirements that banks must need to back their securities trading.

VaR can be defined as the minimal loss under extraordinary market

circumstance. From its definition, VaR is evaluated under a probabilistic

framework. Let 4X(4t) be the change in value of assets of a bank over a

time period of length4t. Denote the cumulative distribution function (CDF)

of 4X(4t) by P4X(x). Then the VaR of the asset over a time period 4t

with probability α is defined as:

α = Prob[4X(4t) ≥ V aR]

This definition states that the probability of loss greater than or equal to

VaR over the time horizon 4t is α. VaR regulation demands that, in an

audit, the bank’s safety assets x−x∗ must be at least as high as the α% VaR

for a time horizon of t. So in VaR regulation, both the probability of failure
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and the relevant time period are laid down by the regulator.

From the previous section, we know that in our model we can set

V aR = x− x∗.

Then we can write equation (IV.9) as:

P (x, t) = 1−N(
ln(1 + V aR

x∗
) + (µ− σ2

i

2
)t

σi

√
t

)

+e
−

2(µ−
σ2

i
2 ) ln(1+ V aR

x∗ )

σ2
i N(

− ln(1 + V aR
x∗

) + (µ− σ2
i

2
)t

σi

√
t

).

Given a bankruptcy probability α, we can set V aR such that

−
2(µ− σ2

i

2
) ln(1 + V aR

x∗
)

σ2
i

= A1 (IV.17)

where A1 is constant. And using the time horizon as another instrument, set

t so that

ln(1 + V aR
x∗

) + (µ− σ2
i

2
)t

σi

√
t

= A2 (IV.18)
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where A2 is a constant. Then we can derive7

P (x, t) ≤ 1−N(A2) + eA1N(−A2).

Then, given α, the regulator can use the pair (V aR, t) as instruments to

control the risk taking behavior of the bank.

Combine (IV.17) and (IV.18), we can get the following lemma:

Lemma C.1. The audit frequency for VaR regulation contracts, t, should

satisfy

t = (
A2 ±

√
A2

2 + 2A1

2( µ
σi
− σi

2
)

)2 (IV.22)

Proof. Combining (IV.17) and (IV.18), we get

− σ2
i A1

2(µ− σ2
i

2
)

+ (µ− σ2
i

2
)t = σi

√
tA2, (IV.23)

and simple algebraic calculations shows that

t = (
A2 ±

√
A2

2 + 2A1

2( µ
σi
− σi

2
)

)2. (IV.24)

7Note that
ln(1 + V aR

x∗
) + (µ− σ2

i

2
)t

σi

√
t

= A2 (IV.19)

implies

− ln(1 + V aR
x∗

)− (µ− σ2
i

2
)t

σi

√
t

= −A2, (IV.20)

Then

− ln(1 + V aR
x∗

) + (µ− σ2
i

2
)t

σi

√
t

= −A2 +
2(µ− σ2

i

2
)t

σi

√
t

≤ −A2. (IV.21)
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Proposition C.2. The VaR contract {VaR, t} should satisfy

ln(1 +
V aR

x
)(

µ

σ2
i

− 1

2
) =

A1

2
. (IV.25)

and
√

t(
µ

σi

− σi

2
) =

A2 −
√

A2
2 + 2A1

2
. (IV.26)

Next we examine the properties of Ex[τ ]. Since

{infs∈[0,t]Xs ≤ x∗|X0 = x} = {τ ≤ u|X0 = x}

We have

P{infs∈[0,t]Xs ≤ x∗|X0 = x} = P{τ ≤ u|X0 = x} = 1− P{τ > u|X0 = x}

By conditional Markov Inequality,

P{τ > u|X0 = x} ≤ Ex[τ ]

u

we get

Ex[τ ] ≥ uP{τ > u|X0 = x}

≥ u(1− P{infs∈[0,t]Xs ≤ x∗|X0 = x})

= u(1− P (x, u))

So, given u, if we can control P (x, t), we can also control Ex[τ ].

D. Value at Risk Regulation with Asymmetric Information

From the previous section we know that if the regulator is able to observe

the bank’s characteristics ( x
D

, µ, σ), then it is possible to control the bank’s
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risk-taking problem. However, in practice it is very difficult to get informa-

tion on σ. The regulator must try to induce the bank to accurately report

their risk. Otherwise, the bank might misrepresent their risk exposure. In

this section, we study the case of asymmetric information.

The timing of this game can be described by two situations:

Situation 1: first, the banker chooses the project to invest; then he

reports the risk of this project to the regulator; finally, the regulator chooses

the VaR contract.

Situation 2: first the bank reports the risk of this project to the regula-

tor, then the regulator chooses the VaR contract, finally, the banker chooses

the project to invest.

We give the following definition:

Definition: A VaR regulation contract is a truthful signaling contract if

the bank’s choice of risk to report is accurately the risk of the project under

consideration. If the bank does not report the true risk of his investment to

the regulator, we have a pooling contract.

Then, we get the following Proposition.

Proposition D.1. VaR regulation Contracts are truthful signaling contract

for Situation 1 and Situation 2.

Proof. Under the VaR regulation, the shareholders’ objective function will

change to

B(x) = (
x

ρ− µ
− rD

ρ
) + [

rD

ρ
− x∗

ρ− µ
](1 +

V aR

x∗
)m2i (IV.27)
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and

−
2(µ− σ2

2
) ln(1 + V aR

x∗
)

σ2
= A1 (IV.28)

Combine these two equations we get

B(x) = (
x

ρ− µ
− rD

ρ
) + [

rD

ρ
− x∗

ρ− µ
]e

A1m2i
µ

σ2−2 (IV.29)

We write the risk of the project the banker chooses and the risk he

reports as σ2
c and σ2

r respectively.

First, we consider Situation 1:

We use backward induction and consider the final stage first. If the

banker has chosen his investment project, before he reports the risk of this

project to the regulator, his indirect utility function can be written as:

max
σ2

r

B(x, σ2
c , σ

2
r) = (

x

ρ− µ
− rD

ρ
) + [

rD

ρ
− x∗(σ2

c )

ρ− µ
]e

A1m2i(σ
2
c )

µ

σ2
r
−2

(IV.30)

Since dB(x,σ2
c ,σ2

r)
dσ2

r
> 0, the bank will choose to report σN , so σr = σN .

Then, we consider the first stage. Before the bank chooses the project

to invest, his indirectly utility function can be written as

max
σ2

c

B(x, σ2
c , σ

2
N) = (

x

ρ− µ
− rD

ρ
) + [

rD

ρ
− x∗(σ2

c )

ρ− µ
]e

A1m2i(σ
2
c )

µ

σ2
N

−2

(IV.31)

Since dB(x)
dσ2

c
> 0, the bank will choose σN to invest, so σc = σN .

Then we have σc = σr. By definition, we know a VaR regulation contract

is truthful signaling contract.

Next, consider Situation 2:

We consider the final stage first. If he bank has reported the risk of this

project to the regulator and the regulator has chosen the VaR contract, then
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his indirect utility function can be written as:

max
σ2

c

B(x, σ2
c , σ

2
r) = (

x

ρ− µ
− rD

ρ
) + [

rD

ρ
− x∗(σ2

c )

ρ− µ
]e

A1m2i(σ
2
c )

µ

σ2
r
−2

(IV.32)

Since dB(x,σ2
c ,σ2

r)
dσ2

c
> 0, the bank will choose to report σN , so σc = σN .

Then, we consider the first stage. Before the bank chooses the project

to report, his indirect utility function can be written as

max
σ2

r

B(x, σ2
c , σ

2
N) = (

x

ρ− µ
− rD

ρ
) + [

rD

ρ
− x∗(σ2

N)

ρ− µ
]e

A1m2i(σ
2
N )

µ

σ2
r
−2

(IV.33)

Since dB(x)
dσ2

r
> 0, the bank will choose σN to invest, so σr = σN .

Then we have σc = σr. By definition, we know the VaR regulation

contract is a truthful signaling contract.

So, the VaR contracts can induce the banker to report the true characters

of the project he invests.

E. Conclusion

In this chapter, we study how to control the risk-taking behavior of a

bank. First we drive the expected bankruptcy time and conditional proba-

bility distribution of bankruptcy for a given time. We show that the risk-

shifting behavior will increase the probability of bankruptcy during a given

time. The higher risk investments will make higher profit for the sharehold-

ers, but they hurt the depositors.

Then we use these results to analyze the regulation policies and show

that capital requirements alone can not control the risk taking behaviors of

bank at finite future point in time. We also prove that if we use the time
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horizon as an additional instrument, we can control the risk shifting problem.

So, we give a theoretic explanation for the VaR regulation.

Finally, we discuss the VaR contracts with asymmetric information and

show that VaR contracts can induce the banker report the real risk of the

project.
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CHAPTER V

CONCLUSION

This dissertation studies several problems of monetary policy and bank-

ing regulation.

Chapter II develops a model to examine the equilibrium behavior of

the time inconsistency problem in a continuous time economy with stochas-

tic nature rate and endogenized distortion. First, we introduce the notion

of sequentially rational equilibrium, and show that the time inconsistency

problem may be solved with trigger reputation strategies for stochastic set-

ting. We provide the conditions for the existence of sequentially rational

equilibrium. Then the concept of sequentially rational stochastically stable

equilibrium is introduced. We compare the relative stability between the

cooperative behavior and uncooperative behavior and show that the coop-

erative equilibrium in this monetary policy game is a sequentially rational

stochastically stable equilibrium and the uncooperative equilibrium in this

monetary policy game is sequentially rational stochastically unstable equi-

librium. In the long run, the zero inflation monetary policies are inherently

more stable than the discretion rules, and once established, they tend to

persist for longer periods of the time.

Chapter III studies the time inconsistency problem on monetary policy

for central banks using a unified approach that combines reputation forces

and contracts. We first characterize the conditions for reputation forces to

eliminate the inflation bias of discretionary policy. We then propose an opti-

mal contract that can be used with reputation forces to implement a desired
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socially optimal monetary policy rule when the reputation forces alone are

not large enough to discourage a central bank to use a surprise inflation

policy. In contrast to most of the existing contracts that are contingent on

realized inflation rates which are in turn contingent on production shocks,

like the standard reputation model, a central banker in our hybrid mechanism

is punished only when she uses a surprise inflation rate. Since the penalty

proposed is the lowest one that discourages the central bank from attempting

to cheat and the sum of the loss, reputation forces, and the penalty for the

central bank to cheat is the same as the loss at the socially optimal inflation

rate, our hybrid mechanism is the most efficient and robust mechanism that

implements the socially optimal monetary policy rule. We also provide an

upper bound of the penalty that is lower than that of the existing contracts

when realized inflation rate is greater than a certain level.

Chapter IV studies how to control the risk taking behaviors of the bank.

First we get the expected bankruptcy time and conditional probability dis-

tribution of bankruptcy for a given time. We show that the risk-shifting

behavior will increase the probability of bankruptcy during a given time.

Then we use these results to analyze the regulation policies and show that

capital requirements can not control the risk taking behaviors of bank at

finite future point in time. We also prove that if we use the time horizon

as an additional instrument, we can control the risk shifting problem. We

give a theoretic explanation for the VaR regulation. Finally, we discuss the

VaR contracts with asymmetric information and show that VaR contracts

can induce the banker report the real risk of the project.
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