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Abstract 

 
Classical conditioning is at the heart of most learning 
phenomena. It is thus essential that we develop accurate 
models of conditioning; since, psychological models rely 
heavily in verbal accounts that are necessarily imprecise it 
has become apparent that the development of computational 
models is imperious. However, we need to separate the 
wheat from the chaff. In this paper we review the main uses 
of the term computational model in conditioning. 
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Introduction 
 
It is universally accepted that conditioning is at the basis 

of most learning phenomena and behavior: Indeed, models 

of associative learning have proved to be relevant to 

human and non-human learning both theoretically and in 

practice (Wasserman & Miller, 1997; Pearce & Bouton, 

2001; Hall, 2002; Schachtman & Reilly, 2011). It is thus 

paramount that we develop accurate models of 

conditioning. In this enterprise, collaboration between 

computer scientists and psychologists has enjoyed 

considerable success (Schmajuk, 2010a; Alonso & 

Mondragón, 2011): Connectionist models have been used 

to better predict discrimination and categorization 

phenomena (Shanks, 1995). In addition it has been argued 

that classical conditioning rules can be naturally 

interpreted as an instance of more comprehensive 

computational neuroscience models (Dayan & Abbott, 

2001; Schmajuk, 2010b).  

This collaboration is sustained on various arguments: 

Expressing models in the form of algorithms provides us 

with formal ways of representing psychological insights 

and of calculating their predictions accurately and quickly; 

from computational models we also borrow a view on 

how information is processed, a computer analogy that has 

proved useful in understanding cognition; moreover, the 

underlying architectures of computational models, for 

instance the hidden units of an artificial neural network or 

the way feedback is computed in recurrent networks, 

resemble the mechanics of associative learning both at a 

conceptual and neural level; finally, machine learning 

models, such as  temporal difference learning and 

Bayesian learning, can be understood as effective 

abstractions of the way associations are formed and 

computed.  

In this paper we analyse critically the assumptions upon 

which such arguments are built. We identify two main 

trends in so-called computational psychology, more in 

particular in the use of computational models in the study 

of conditioning, namely, as simulators and as 

psychological models in themselves.  

 

Computational Models as Simulators 
 
Firstly, a computational model can be understood to be an 

implementation of a (pre-existing) psychological model. 

Simulations serve two main purposes: On the one hand, 

implementing a model requires precise definitions –be it 

in the form of a specific programming language or as a 

formal model, that in turn makes the original 

psychological model “accountable”. On the other hand, 

algorithms allow us to execute calculations rapidly and, 

most importantly, accurately. Automation is critical, 

particularly when the models are described in non-linear 

equations that can only be solved numerically as it is the 

case of recent psychological models of conditioning 

(Balkenius & Morén, 1998; Vogel et al., 2004; Mitchell & 

Le Pelley, 2010; Schmajuk & Alonso, 2012). Crucially, 

the outputs of a simulation feedback the psychological 

models –thus becoming an essential part of the cycle of 

theory formation and refinement.  

It is worth noting though that the benefits derived from 

using implementations do not spring exclusively from the 

formal specification of the psychological models in 

equations and algorithms. Per se, such descriptions 

constitute a mathematical model, a necessary yet no 

sufficient condition for a formal model to be 

computational. The essence of a computational model lies 

in the fact that it is implemented. According to this view, 

in psychology, the same as in computational physics and 

in computational biology, a computational model is a 

model that has been simulated.  

This view it is not without detractors: It has been argued 

that a model is computational if it is “implementable” –

even if it was not originally described as a full-bodied 

computational model. We think that this is an abuse of the 

term computational since any psychological model of 

conditioning would fit this definition. To use a 

parallelism: This use of the term “computational” would 

make all models of physics since Galileo’s computational. 

This brings up a subtler issue: We are using the term 

computational model in a “modern” sense. Indeed, a 

computational model is just a formal model of 



 

computation and “computation” does not necessarily 

require its implementation in a computer. Mathematically, 

the notion of computation is a formalization of the concept 

of algorithm, a mechanical or automated procedure to 

prove theorems proposed by Alan Turing to attack 

Hilbert’s Entscheidungsproblem (Turing, 1937). Modern 

computers are mere physical instantiations of the abstract 

machines that would compute such procedures. But they 

don’t play a fundamental part in the definition of 

computation. Indeed, such definition was proposed well 

before the first digital general-purpose computers had 

even been designed. Contrarily, our position is that a 

computational model needs to be implemented in a 

computer. Otherwise, a computational model does not add 

anything to what constitutes a mathematical model in its 

own right. 

We would also like to comment on a second potential 

source of confusion about the term computational –that 

comes from cognitive science rather than from 

mathematics. The term “computational” has been linked 

to David Marr’s Tri-Level Hypothesis on vision where the 

“what” refers to the computational level, the “how” to the 

algorithmic level and the “where” to the implementational 

level (Marr, 1982). However insightful such analysis may 

be, clearly what Marr referred to as “computational” is 

“psychological” –when applied to cognition. Insisting on 

talking about psychological models as if they were 

computational based on such taxonomy is, in our opinion, 

a source of misunderstanding. 

 

Computational Models as Psychological 

Models 
 
The second use of the term “computational” is more 

controversial: A computational model can be considered a 

psychological model in itself. We argue that this position, 

a milestone in cognitive science and artificial intelligence, 

is a misuse of the term. Let’s illustrate our contention 

using a paradigmatic example: The use of Artificial 

Neural Networks (ANNs) in the study of conditioning has 

been advocated at several, inter-related levels that we are 

now analyzing. 

 

Ontological Level  
ANNs are considered material models of conditioning. 

The underlying reasoning is that (a) ANNs model by 

analogy natural neural networks and that (b) psychological 

processes, including conditioning, are ultimately 

embedded in natural neural networks; hence, indirectly, 

ANNs model conditioning.  

However appealing this line of argumentation may be, it 

is widely acknowledged that ANNs do not resemble 

natural neural networks in any fundamental way (Enquist 

& Ghirlanda, 2005); besides, there is no strong evidence 

suggesting that electrical or chemical neural activity and 

associative learning are related (Morris, 1994) –or for that 

matter, that psychological processes can be localized in 

specific brain regions as recently exposed in (Vul et al., 

2009), but already advanced in (Uttal, 2001).  

Even if it did, a neural analysis would not necessarily be 

the right level to study associative learning phenomena. In 

the words of Burruhs F. Skinner “The analysis of 

behaviour need not wait until brain science has done its 

part. The behavioural facts will not be changed (…). Brain 

science may discover other kinds of variables affecting 

behaviour, but it will turn to a behavioural analysis for the 

clearest account of their effects” (Skinner, 1989, pp. 18). 

Regardless of the antipathy that Skinner’s radical 

behaviorism provokes among neuroscientists such an 

statement does not contradict a version of reductionism 

that most of them would endorse, namely, Richard 

Dawkin’s hierarchical reductionism (Dawkins, 1986).  

 

Formal Level 
 
Relatedly, that a version of Dirac’s rule can be taken as a 

model of both neural plasticity and long-term potentiation 

effects –the Hebbian rule (Hebb, 1949)– and association 

formation –for example, Rescorla and Wagner’s rule 

(Rescorla & Wagner, 1972)– cannot be considered as 

proof of any common underlying structure and should not 

be used as an argument to reduce psychological 

phenomena to their alleged neural substratum.  

Likewise, that Rescorla and Wagner’s rule is essentially 

identical to the Widrow-Hoff rule (Widrow & Hoff, 1960) 

for training Adeline units and that, in turn, such a rule can 

be seen as a primitive form of the generalized delta rule 

for backpropagation only tells us that, computationally 

speaking, associative learning follows an error-correction 

algorithm
1
. What a computational model does not tell us, 

however, is which underlying psychological processes 

(attention, motivation, etc.) intervene in associative 

learning or how the physical characteristics of the units 

involved (e.g., the salience of the stimuli) affect such 

processes. 

Clearly, sharing a common formal expression does not 

imply that the phenomena so expressed are of the same 

nature: For instance, power functions can be used to 

express the relationship between (1) the magnitude of a 

stimulus and its perceived intensity (Stevens’ law), (2) the 

metabolic rate of a species and their body mass (Kleiber’s 

law), and (3) the orbital period of a planet and its orbital 

semi-major axis (Kepler’s third law). Stressing this point, 

allow us to quote Richard Shull “The fact that an equation 

of a particular form describes a set of data will does not 

mean that the assumptions that gave rise to the equation 

are supported. The same equation can be derived from 

very different sets of assumptions” (Shull, 1991, pp. 246). 

Put it another way, if the meaning of a 

mathematical/formal model is in the linguistic expression 

it takes (that is, if there is a unique isomorphism between 

phenomena and algorithms) then either (a) we cannot 

explain how a theory can be expressed in different sets of 

equations or (b) we will not be sure about the effect the 

addition or the removal of a simple parameter may have. 

Paraphrasing (Chakravartty, 2001), theories and models 

can be given linguistic formulations but theories and 

models should not be identified with such formulations.  

 

 

                                                
1
 Incidentally, backpropagation is merely a mathematical 

procedure to deriving partial derivatives –that was originally 

proposed to model nationalism and social communications not 

neural networks (Werbos, 1974). 



 

 

Representational Level  
ANNs are connectionist models according to which 

information is not stored explicitly in symbols and rules 

but rather in the weights (strengths) of the connections; 

learning would consist of changes in such weights. It is 

claimed, rightly, that these are precisely the assumptions 

associative learning models are based upon and hence, 

wrongly, that ANNs are an ideal candidate to model 

associative learning. This quite straightforward argument 

is, in fact, a fallacy: As connectionists (at least 

implementational connectionists) themselves concede the 

way we represent learning, either as continuous changes 

of weighted connections or as the result of discrete 

symbolic processing, is a matter of convenience and 

therefore irrelevant to the study of the structures involved. 

Interestingly, this debate has centered in the difference 

between associative models and computational models of 

conditioning (Leslie, 2001): It is understood that 

associative models are historically and conceptually 

linked to connectionism (Medler, 1998) whereas 

computational (aka symbolic) approaches take their ideas 

from information processing (Gallistel & Gibbon, 2001). 

In this debate we agree with Peter R. Killeen in 

identifying both approaches as formal (Killeen, 2001): 

Turing machines and ANNs (as well as RMA machines, 

the Game of Life, and any programming language) are 

both computational models
2
; in particular, Turing 

Machines and ANNs are equivalent in their input/output 

behaviour, that is, they compute the same problems and 

accept the same languages (Chomsky, 1956)
3
.  

 

Functional Level  
ANNs typically approximate solutions by iteratively 

minimizing an error function. And this can be understood 

as a type of learning that resembles learning by “trial and 

error” of which associative learning is an example. 

However, it is worth emphasizing that ANNs merely 

implement numerical methods. They are statistical tools –

with a misleading name, and certainly not the simplest, 

fastest or most efficient techniques (see, e.g., Mitchie et 

al., 1994). On the other hand, associative learning models 

such as Rescorla and Wagner’s express dynamic laws: 

Against public opinion, animals do not make predictions 

and iteratively update an associative value through error 

minimization towards an optimal one. The associative 

value at a given time is the right associative value –that 

exactly describes to which extend the CS has become 

associated to the US. Let’s put it another way: In standard 

conditions, if the animal “learned” a CS-US association 

after one single exposure then the animal would be wrong 

and its corresponding behaviour un-adaptive (unless, of 

course, we exposed it to a very salient US like in flavor-

aversion learning). That the system described by Rescorla 

                                                
2
 It should be noticed moreover that the first mathematical 

models of (A)NNs, in particular McCulloch and Pitts’s 

(McCulloch & Pitts, 1943) and Turing’s B-type machines 

(Turing, 1948) were intended to formalize logically, i.e., 

symbolically,  the notion of learning.  
3
 Provided that the values of the weights are restricted to rational 

numbers (Orponen, 1994). 

and Wagner’s rule is limited by an asymptote (the 

reinforcing value of the US) does not confer any special 

status to such value –rather it just defines a constraint of 

the system. 

 

Structural Level  
We are told that the layout of an ANN, the way units are 

connected between layers, can be seen as a cognitive 

architecture and, as such, as a psychological model. Let’s 

take a computational example to counter-argue this point: 

In computer science network communication is modeled 

according to the so-called Open Systems Interconnection 

model (OSI) (Zimmerman, 1980), moving from the 

physical layer that describes the electrical specifications of 

the devices the networks consist of up to the application 

layer that describes how the user interacts with a given 

piece of software. The question is: Why don’t we use the 

OSI model as a psychological model? At the end of the 

day, structurally, OSI would make as good a 

psychological model as an ANN. In fact, the OSI model 

implements a hierarchical and integrated architecture, that 

is, the type of cognitive architecture that a computational 

model should allegedly support (Sun, 2008). Thus that 

ANNs are networks implemented in architectures that take 

advantage of massive computational parallelism – not 

surprisingly, the new connectionism landmark paper 

introduced the Parallel Distributed Processing paradigm in 

cognition (Rumelhart & McClelland, 1986), does not 

confer them any psychological advantage: Any complex 

network would do (Newman et al., 2006).  

 

Philosophical Issues 
  
A final more general reason to explain the appeal of 

computational models in psychology rests on the idea that 

both computers and the brain are information processing 

systems, instantiations of a universal Turing machine or 

any other model of computation. But this alone does not 

justify the support the “computer metaphor” enjoys. After 

all, any phenomena can be expressed in terms of some sort 

of computation. If this is such a powerful metaphor is 

because it is deeply rooted in Western philosophy and the 

mechanization of (formal) reasoning, reformulated in the 

twentieth century in terms of computation. That 

computation has been effectively embedded in computers 

has reinforced the idea that so it is in the brain, that the 

study of the former will help understand the latter and, in 

a tour the force, that computers may be capable of 

displaying intelligence. Indeed, every scientific theory is 

shaped in the context of its age's achievements and 

prejudices: Like Newton's laws of mechanics strengthened 

the view of the Universe as a deterministic machine that 

worked as the sophisticated clocks so popular at the time 

our conception of the mind as an information processing 

machine has certainly been influenced by the development 

of computing technology.  

And precisely because of its generality the information 

processing model is not necessary or sufficient: Working 

physicists do not model electrons, atoms or galaxies as 

information processing entities –be it in the form of a 

cellular automaton as envisaged in (Zuse, 1969) or as a 

participatory universe (Wheeler, 1990); on the other hand, 



 

neither (computational) physicists nor the public would 

presume that the simulation of a nuclear reaction 

generates real energy or that a flight simulator really flies. 

Of course, this does not preclude physicists from 

theorizing about what type of information is contained in a 

physical system (see, for example, literature on quantum 

entanglement or black holes) or about exploring the 

physical limits of computers (pioneered by Richard 

Feynman (Hey & Allen, 2000) and followed up to 

contemporary theories of quantum computing (e.g., 

Vedral, 2006)). 

 

Model Selection 
 
The discussion on what a computational model of 

psychology constitutes affects how we select models and 

in turn may help us determine what a computational 

model “truly” is.  
Selecting a model, psychological or not, described in 

natural language or mathematically, is a difficult task that 

relies in formal definitions and methods as well as on 

scientific practice and common sense (Kuhn, 1962; 

Feyerabend, 1975). Indeed, quantitative formulas have 

been developed to compare models based on the average 

size of the deviations from predicted values, the number 

of data points and the number of free parameters (Akaike, 

1974; Schwarz, 1978). However, relying exclusively on 

such formalisms or applying blindly Occam’s razor is not 

advisable –evaluating a model requires good judgment 

based on careful consideration of many factors, both 

technical and logical (Baum, 1983). The very essence of a 

model refers to the choices scientists make –choices that 

reflect what they consider relevant beyond the mere 

quantitative.  

Nonetheless, this analysis begs the question: When we 

assess computational models of psychology, what do we 

assess?  

If computational models are simulators we would need 

to select amongst them according to their computational 

complexity, that is, according to the time and space they 

take to make computations –complexity that is related to 

but not reducible to the algorithms they implement. In 

addition, computing tools must be tested for reliability and 

dependability against failures –which, in turn, depends on 

various factors such as programming languages, operating 

systems, memory capacity, processing speed, as well as on 

software engineering and management requirements. 

Computational models as simulators add a new level of 

sophistication. But this sophistication comes at a price: A 

computer program is not as “aseptic” as a mathematical 

description. A computer program takes life in algorithms 

and data structures that must comply with software and 

hardware specifications.  

On the other hand, if computational models are 

considered as a valid alternative to psychological models. 

Which criteria should we used to evaluate them and 

choose amongst them? There is no a clear answer to this 

question. 

 

Conclusions  
To sum it up, although the need to get influx from 

‘outsiders’ is recognized within the psychology 

community (see Townsend, 2008) computational models 

should be taken with caution. Computational models may 

provide us with complementary idealized models of 

psychological phenomena and with powerful statistical 

tools to construct models of psychological data but they 

alone are not the appropriate instruments to answer 

psychological questions. This is an obvious, hardly 

original, conclusion –and yet more often than not we read 

flamboyant news about robots that learn, think and 

experience emotions or ANNs that can do anything 

psychological models do only better. On the other hand, 

given the increasing complexity of psychological models 

developing accurate and rapid simulators to test their 

predictions is, in our opinion, a must. 

We would like to conclude with two warnings: An 

extreme case of the use of computational models as 

psychological models is what we call the “engineering” 

approach: We take psychological data and build a 

program that fits it. Since the data is psychological, it is 

argued, the program must constitute a psychological 

model. It should be obvious, however, that that 

psychological models, as any scientific model, are 

assessed against experimental data does not automatically 

make a theory that fits experimental data "psychological". 

Another variant of this approach is to propose models of 

machine/computational learning as psychological models 

of learning. As an illustration, simple programs that, to 

some extent, learn to maximize a numerical signal by trial 

and error have been presented as a “theory of mind” 

(Sutton, 2003).  

To summarize: The adjective "computational" in 

computational physics or computational biology refers to 

the use of computational tools, typically simulators and 

numerical processors but also data mining and data 

analysis techniques, to study data and phenomena as well 

as to assess the predictive power of theories and models. 

We suggest we “limit” the use of the term 

“computational” the same way when applied to 

psychology. 
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