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Abstract 



 

Controlling polymer thin-film morphology and crystallinity is crucial for a wide range 

of applications, particularly in thin-film organic electronic devices. In this work, the 

crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-

coating is studied. PEO films were spun-cast from solvents possessing different 

polarities (chloroform, THF and methanol) and probed via in situ grazing incidence 

wide angle x-ray scattering. The crystallization behavior was found to follow the 

solvent polarity order (where chloroform < THF < methanol) rather than the solubility 

order (where THF > chloroform > methanol). When spun-cast from non-polar 

chloroform, crystallization largely followed Avrami kinetics, resulting in the formation 

of morphologies comprising large spherulites. PEO solutions cast from more polar 

solvents (THF and methanol) do not form well-defined highly crystalline 

morphologies and are largely amorphous with the presence of small crystalline 

regions. The difference in morphological development of PEO spun-cast from polar 

solvents is attributed to clustering phenomena that inhibit polymer crystallization. 

This work highlights the importance of considering individual components of polymer 

solubility, rather than simple total solubility, when designing processing routes for the 

generation of morphologies with optimum crystallinities or morphologies. 

 

Introduction 

Poly(ethylene oxide) (PEO) is a semicrystalline polymer that exhibits complex 

solution behavior owing to the interplay of hydrophilic and hydrophobic sites along 

the polymer chain. PEO finds a wealth of applications in the biomedical and energy 

fields,1 in addition to numerous industrial applications, such as adhesives,6 

detergents,7 inks,8 lubricants9 and textiles. As with all materials research there is 

strong link between the structure formed by the materials during processing and final 

material or device performance. PEO has therefore been the subject of intense 



research interest with regards to both its crystallization behavior and its rich and 

complex solution behavior. 

   Numerous studies have focused on understanding the crystallization of PEO from 

the melt in both bulk and thin-film systems, utilizing techniques such as x-ray 

scattering,2 atomic force microscopy,3 optical microscopy4 and FT-IR spectroscopy.5  

    Polymer thin-films, however, are often produced via solution processing methods 

such as spin-coating, where a polymer solution is deposited on a substrate that is 

rotated at high speed (typically between 1,000 & 10,000 rpm), resulting in the 

formation of a thin polymer film in a matter of seconds. There then exists a trade-off 

between the ideal physical processing steps required to produce a film of the 

required thickness and the structure and morphology of the film itself. Film thinning is 

often simplified as a two stage process, where initially, hydrodynamic thinning takes 

place due to the centrifugal force acting on the solution, which is then proceeded by 

film thinning dominated by solvent evaporation.6 Hydrodynamic thinning is dependent 

upon the solution viscosity, radial speed and acceleration,6b, 7 whilst, evaporative 

thinning is dependent upon the vapor pressure of the solvent.6a, 8  

   As solvent is rapidly removed via evaporation, a fine balance of complex self-

assembly processes take place, such as phase-separation,9 crystallization,10 

stratification,11 and agglomeration, resulting in the formation of highly complex and 

intricate morphologies. For shallow quenches (when solvent is lost slowly), the 

morphology will evolve towards thermodynamic equilibrium, whilst for deep quenches 

(when solvent is removed rapidly), the morphology may become frozen far from 

thermodynamic equilibrium or evolve down kinetic pathways. As such, through 

solution processing, a large range of morphologies are accessible from a relatively 

straightforward processing route.  

    When PEO is solution cast, it typically crystallizes with a monoclinic unit cell 

containing four 72 helices, which form chain folded lamellae that often organize into 



spherulites.12 The hierarchical crystalline structure of PEO is shown schematically in 

Figure 1. 

 

Figure 1: Typical hierarchical crystal structure of PEO, from individual chain 

conformation, packing and folding to spherulite. a) and b) have been taken and 

adapted from reference 13. 13
 

PEO has been found to exhibit sophisticated solution behavior, forming clusters 

(aggregates) in aqueous media and in other polar solvents, such as methanol.14 The 

origin of clustering has been the subject of intensive research efforts and is not fully 

understood, but could be due to: polymer crystallization, inter-chain physical cross-

links, hydrogen bonding or chain end effects.14a, 14d, 14f, 15 How the solution behavior of 

PEO may influence crystallization during thin-film processing is an area that has not 

yet been fully explored. 

   Due to the numerous applications of polymer thin-films produced via solution 

processing, understanding how crystallization in thin solvent-rich films differs from 

crystallization from the melt is of both fundamental and commercial importance. 

Further significance arises from the field of organic electronics, where the crystallinity 

of the solvent-cast film plays a crucial part in determining device 

performance.16   Due to the rapid, non-equilibrium nature of the spin-coating process, 

we still do not fully understand the intricacies of crystallization occurring during 

processing and so are unable to rationally design processing strategies that yield 



materials with optimum crystallinities. Driven by the pursuit of increasing OPV device 

efficiencies, the majority of experimental studies have focused on understanding the 

crystallization of semiconducting polymers with solubilized fullerene derivatives. Such 

systems are directly applicable to applications in organic electronics but are highly 

complex due to the poor solubility of many semiconductor polymers in organic 

solvents and the combination of a polymer with a small molecule (itself with intricate 

aggregating and dimerizing behavior).17 In the work herein, the well-studied, semi-

crystalline PEO is used as a model polymer system to further the understanding of 

how solvent properties influence crystallization occurring during spin-coating. 

   A wide range of in situ experimental techniques have been developed to study 

processes that occurs during the spin-coating of polymers based upon microscopy, 

and laser/x-ray scattering,18 which have revealed information regarding phase 

separation,19 self-stratification11b, 11d and crystallization.17, 20 Recent, in situ 

microscopy studies have shown that polymer concentration and spin-coating process 

parameters (rotation speed and acceleration) affect both the crystallization kinetics of 

PEO. 20   Herein, we investigate how the complex solution behavior of PEO interplays 

with the rapid crystallization that occurs during spin-coating, by exploiting in situ 

grazing incidence wide angle x-ray scattering (GIWAXS). Through this approach we 

are able to identify the crystallization pathway (e.g. emergence of crystalline phases 

along with any intermediate phases) and obtain information regarding crystallization 

kinetics. 

   PEO is highly soluble in a wide range of organic solvents, such as chloroform, 

methanol and tetrahydrofuran (THF), which are interesting to study because they 

possess different polarities and solubilities, whilst having largely similar vapor 

pressures. As such, the drying kinetics, and hence the quench through the phase 

diagram, are likely to be highly similar and are unlikely to affect the crystallization 

process. Hansen solubility parameters give an indication of the solubility of a material 

in a specific solvent. The total solubility, įt, is divided into three parameters, įd, įp 



and įh, which represent the contribution of dispersion forces, polar interactions and 

hydrogen bonding (H-bonding), respectively. The Hansen solubility parameters of 

THF, chloroform and methanol are given in Table 1.22 Özdemir and Güner showed 

that the solvency power of the selected solvents for PEO decreases in the order: 

THF > chloroform > methanol,23 whilst the polarity of solvents increases as: 

chloroform > THF > methanol.  

   Through studying in detail the evolution of crystal structures of PEO when cast 

from chloroform, THF and methanol, this work provides insight into how both the 

overall solubility and polarity affect PEO crystallization. Put simply, if solubility 

dominates, the nature of PEO crystallinity should be determined by the solubility 

order, whereas if polar interactions dominate, PEO crystallinity will be dictated by the 

polarity order. 

 

Table 1: Dielectric constants and Hansen solubility parameters of solvents 

studied.22 

 

Solvent 

Vapour 

pressure / 

mm Hg 

(20 oC) 

Hansen solubility parameters (MPa1/2) 

at 25oC Dielectric 

constant hd 

(dispersion) 

hp 

(polar) 

hh 

(H-bond) 

ht 

(total) 

THF 143 16.8 5.7 8.0 19.4 7.56 

Chloroform 160 17.8 3.1 5.7 19.0 4.81 

Methanol 98 15.1 12.3 22.3 29.7 32.7 

 

Experimental 

Poly(ethylene oxide) (PEO) (Mn = 4 kDa, 10 kDa and 34 kDa) (Aldrich), used as 

supplied, was dissolved in either chloroform, methanol or tetrahydrofuran (THF) 



(Aldrich) at 10 wt% by stirring continuously for 12 hours. For clarity, the chemical 

structures are presented in Figure 2. 

 

 

Figure 2: Chemical structures of systems studied in this work: PEO (10 wt%) in 

either chloroform (CHCl3), methanol (MeOH) or tetrahydrofuran (THF). 

 

Time resolved grazing incidence wide-angle x-ray scattering (GIWAXS) was 

performed at I07 (Diamond Light Source, Rutherford, UK) using a Pilatus 2M 

1475 x 1679 pixel detector. The q max of the detector was determined as 

qx = 6.35 Å-1 and qy = 7.23 Å-1 using a silver behenate standard. The spin-coater 

comprised of a brushless DC motor [Premotech, BL48 EB (4 wire)] fitted with an 

aluminum chuck (20 mm diameter) on top of which circular glass substrates were 

placed (Fisher Scientific, used as received). Approximately 200 l of polymer solution 

was deposited via a syringe pump with a needle placed above the center of the 

circular substrate.  

   The in situ x-ray scattering procedure is shown schematically in Figure 3. Data 

were collected at a rate of 20 fps for; (i) the glass substrate, denoted as time, t = -60 

to -30 s (background); (ii) deposition of polymer solution, t = -30 to 0 s (solution 

scattering in a grazing geometry); (iii) substrate acceleration to 1500 rpm at t = 0 to 

3 s; (iv) film formation dynamics at t = 3 to 63 s; (v) substrate deceleration from 1500 

to 0 rpm at t = 63 to 66 s; and (vi) the final cast film at t = 66 to 126 s.  

 



 

Figure 3: Schematic of data collection process. Time = 0 is defined as the 

instance the motor begins to turn.  

  



Results 

Crystallization in thin polymer films is determined by both the properties of the 

polymer (e.g. chemistry, architecture, molecular weight) and the processing route 

(e.g. solvent, substrate, spin speed, temperature, evaporation rate). Figure 4 

presents optical microscopy images taken using crossed polarizers and shows a 

range of crystalline morphologies that form when PEO of varying molecular masses 

(Mn = 4 kDa, 10 kDa and 34 kDa) was spun-cast from; chloroform, THF or methanol. 

When spun-cast from chloroform, the final films are highly crystalline with 

morphologies consisting of large well-defined spherulites, with the spherulite size 

decreasing with increasing molecular weight.24 Conversely, when low molecular 

weight PEO was spun-cast from THF or methanol, the morphology was 

predominantly amorphous with some small crystalline regions. For PEO spun-cast 

from either THF or methanol, the crossed polarized optical microscopy images show 

that as the PEO molecular weight increased, the size of the crystalline regions also 

increased, however, well-defined spherulite crystalline domains were not formed. 

    Clearly, solvent plays an important role in determining how PEO crystallizes and 

thus drives the final morphology that is obtained. Interestingly, the crystallization 

behavior of PEO does not simply follow the solubility order (where THF > chloroform 

> methanol), as might be expected and is thus the motivation behind this study. 

 

 



 

 

Figure 4: Optical micrographs taken using crossed polarizers of PEO (Mn = 4 

kDa, 10 kDa, 34 kDa) spun-cast from either chloroform, THF or methanol at 

1500 rpm. 

In order to further investigate the effect of solvent on polymer crystallization that 

occurs upon processing, in situ GIWAXS was performed during the spin-coating of 

PEO from different solvents (chloroform, THF & methanol). Figure 5 presents radially 

averaged x-ray scattering data as a function of time for PEO of different molecular 

masses spun-cast from 10 wt% chloroform solution, which correspond to the left 

column of final crystalline morphologies shown in Figure 4.a 

     

                                                        

a Radially-averaged scattering data is presented as a colour-mapped intensity chart in 

Supplementary Figure S1. 



 

Figure 5: In situ grazing incidence scattering data showing the development of 

crystallinity for PEO (Mn = 4 kDa, 10 kDa and 34 kDa) films spun-cast from 

10 wt% chloroform solutions at 1,500 rpm. a-c) Radially integrated scattering 

data as a function of time with corresponding cross sections at between 0 and 

60 s, for 4 kDa (a), 10 kDa (b) and 34 kDa (c) PEO.  

The radially integrated x-ray scattering data presented in Figure 5a-c gives an 

overview of how the scattered x-ray signal changes with respect to both film 

formation dynamics and the crystallization of PEO of different molecular weights 

spun-cast from chloroform solutions. 

    From these data, several distinct stages can be identified: 

i) -30 to -25 s: the polymer solution is deposited onto the substrate surface, 

resulting in a sharp decrease in the scattered intensity, as the beam is now 

passing through the thick polymer solution ’droplet’. 



ii)  0 to ~5 s: the polymer film thins due to a combination of hydrodynamic and 

evaporative thinning, the scattered intensity increases accordingly and 

additionally a broad scattering feature (with a maximum at q = ~1.59 Å-1) 

emerges at 2.5, 2.55 and 2.95 s for 4 kDa, 10 kDa and 34 kDa PEO, 

respectively. This broad scattering feature is indicative of a pre-ordering 

stage, prior to crystallization.  

iii) ~5 to ~7: the intensity of this broad scattering feature proceeds to increase 

until the onset of two distinct scattering peaks (q = ~1.42 and 1.73 Å-1) at 

6.85, 9.15 and 11.35 s, for 4 kDa, 10 kDa and 34 kDa PEO, respectively.b 

The scattering peaks at 1.42 and 1.73 Å-1 are identified as the 120 and 032 

reflections and are indicative of PEO crystallization.2, 12  

iv) ~7 to 60 s: the intensity of the 120 and 032 reflections increases as 

crystallization proceeds.  

    The radially averaged data profiles (Figure 5a-c, right) show that for all of the PEO 

molecular masses studied here, the 120 crystalline reflection is split, with two 

maxima at q = 1.37 and 1.44 Å-1, and that for 4 kDa and 10 kDa PEO, the 032  

reflection shows significant broadening between q = 1.71 and 1.79 Å-1. This peak 

splitting/broadening is ascribed to a consequence of both the grazing incidence 

geometry giving rise to reflections of the incident beam from both top and bottom 

faces of the glass substrate and the large size of the PEO spherulites. 

   The development of the 032 reflection as a function of time is shown in Figure 6a 

and is related to the relative degree of crystallinity in the system. These data show 

that upon substrate acceleration to 1,500 rpm, the intensity of the 032 reflection 

rapidly increases due to crystallization of the PEO (owing to a rapidly increasing 
                                                        

b Onset times for the emergence of crystalline 120 and 032 reflections were determined through 

observation of the first frame in the kinetic data set, where distinct peaks at q = ~1.42 and 1.73 Å-1 

are discernable from the initial broad scattering feature.  



polymer concentration as the solvent evaporates). The crystallization process 

appears to take place in two stages; an initial rapid crystallization, followed by a 

slightly slower growth step. Such two-stage crystallization has previously been 

observed for doctor bladed P3HT:PCBM thin-films.25 The rate and duration of 

crystallization are seen to decrease and take longer with increasing molecular 

weight, due to decreased mobility of the polymer chains and hence the longer 

rearrangement times. The normalized intensity data for the 34 kDa PEO system 

exhibit large-scale fluctuations between 20 and 60 s. Such oscillations are ascribed 

to constructive interference between the motor rotation speed, the camera frame rate 

and motor precession. At 65 s the intensity of the intensity of the 032 reflection shifts 

as the substrate decelerates and the substrate stops spinning, which removes any 

time averaging effects brought about by any precision of the rapidly rotating 

substrate. 

    The kinetics of PEO crystallization can be explored further using the Avrami 

model, commonly used to describe the kinetics of the transformation of phases under 

isothermal conditions and is given in Equation 1:26 

  ൌ ͳ െ ݁ି௭௧   (Eq.1) 

 

where  is the crystallinity in the crystallizable material at time t, z is a constant 

dependent upon nucleation and growth rate and n is related to the type of nucleation 

and growth geometry. 

   Although the spin-coating process is not strictly isothermal,27 the Avrami equation 

offers an initial framework for understanding the underlying crystallization 

mechanisms. The normalized apparent degree of crystallinity as a function of time is 

shown in Figure 6b for PEO with Mn = 4 kDa (black line), 10 kDa (red line) and 34 

kDa (blue line), spun-cast from 10 wt% chloroform solution at 1,500 rpm, where the 



apparent degree of crystallinity is defined as the ratio of the area under the 120 and 

032 reflections to the total scattering area.28 The data does not exhibit a stereotypical 

“s” shaped curve commensurate with Avrami processes. However, good Avrami fits 

(Figure 6b magenta lines, with associated fitting parameters given in Table 2) were 

obtained when the data were modeled between 9 to 13, 10 to 17, and 11 to 19.5 s, 

for PEO with Mn = 4 kDa, 10 kDa & 34 kDa, respectively, with Avrami exponent n 

around three, consistent with spherulitic crystallization from heterogeneous nuclei. 

The Avrami rate constant, z, decreased with increasing molecular weight, as 

expected, due to decreasing polymer mobilities. This data show that when PEO is 

spun-cast from chloroform, the majority of the crystallization from solution is 

consistent with theory. However, during both the early and late stages of 

crystallization, the data do not fit the Avrami equation. This could be due to 

crystallization being coupled with other transitions competing with crystallization, 

such as gelation, late on in the spin-coating process, leading to rapidly increasing 

viscosities that significantly reduce polymer mobility and the early emergence of a 

pre-ordering structure (q = ~1.59 Å-1). 



 

Figure 6: a) Normalized intensity of the 032 peak as a function of time and b) 

normalized crystallinity of PEO Mn = 4 kDa (black line), Mn = 10 kDa (red line) 

& Mn = 34 kDa (blue line) spun-cast from chloroform, with respective Avrami 

fits (magenta lines). 

 

Table 2: Avrami parameters n and z corresponding to fits of the normalized 

crystalinity of PEO spun-cast from chloroform. 

 n z 

PEO Mn = 4 kDa 2.81 0.087 



PEO Mn = 10 kDa 3.02 0.063 

PEO Mn = 34 kDa 3.32 0.057 

 

So far, data have been presented for the spin-coating of PEO of various molecular 

weights from chloroform, which shows that crystallization from a non-polar solvent 

occurs in a highly similar manner to that from the melt, where the process may be 

largely described via Avrami kinetics and large well-ordered spherulites form. 

However, the polymer-solvent interactions are pivotal in controlling this kinetic 

process, and thus can direct the final morphology obtained. To study the effect of 

solvent polarity on crystallization, PEO was spun-cast from solvents with increasing 

polarity (with respect to chloroform): THF and methanol. The radially averaged 

scattering data are presented in Figure 7 & 8, respectively. 

 



 

Figure 7: In situ grazing incidence scattering data showing the development of 

crystallinity for  PEO (Mn = 4 kDa, 10 kDa and 34 kDa) spuncast from 10 wt% 

THF solutions at 1,500 rpm. a-c) Radially integrated scattering data as a 

function of time with corresponding cross sections at between 0 and 60 s, for 4 

kDa (a), 10 kDa (b) and 34 kDa (c) PEO.  

For the PEO films spun-cast from THF (Figure 7 a-c), the data show that upon 

deposition of the polymer solution prior to spin-coating there is an intense broad 

scattering feature at q = 1.49 Å-1, which is of a consequence of scattering from the 

pure solvent (scattering data for pure solvents is presented in Supplementary Figure 

S2). When the PEO solutions are subsequently spun-cast, the solvent scattering 

feature rapidly decays as solvent is lost from the system and the 120 and 032 

reflections emerge as PEO crystallization occurs. 



 

 

 

Figure 8: In situ grazing incidence scattering data showing the development of 

crystallinity for PEO (Mn = 4 kDa, 10 kDa and 34 kDa) films spun-cust from 

10 wt% methanol solutions at 1500 rpm. a-c) Radially integrated scattering data 

as a function of time with corresponding cross sections at between 0 and 60 s, for 

4 kDa (a), 10 kDa (b) and 34 kDa (c) PEO. 

The PEO films spun-cast from methanol solutions (Figure 8a-c) show an initial 

solvent scattering feature prior to spin-coating [as observed for PEO THF solutions, 

but at higher q (~1.8 Å-1) that decays once spin-coating begins]. The highest 

molecular mass PEO spun-cast from methanol (Mn = 34 kDa, Figure 8c) exhibits the 

development of pronounced 120 and 032 reflections as observed when PEO was 



spun-cast from chloroform and THF, whilst for the lower molecular weight PEO spun-

cast from methanol (Mn = 4 kDa and 10 kDa, Figure 8a and b, respectively), the 120 

and 032 reflections are significantly weaker. The scattering data show that only the 

high molecular weight PEO (Mn = 34 kDa) exhibits a significant degree of crystallinity, 

whilst the lower molecular weight PEO films (Mn = 4 kDa and 10 kDa) only exhibit a 

low degree crystallinity, in agreement with the crossed polarized microscopy images 

shown in Figure 4.  

   The in situ scattering data show that when PEO was processed from both THF and 

methanol, scattering from the solvent dominates the early stages of the spin-coating 

process and once the majority of solvent is removed, PEO crystalline features are 

observed. Interestingly, when PEO was spun-cast from chloroform no initial solvent 

scattering features were observed. As chloroform is the most electron dense of the 

solvents studied, it would be expected to show the strongest solution scattering 

features. The PEO chloroform solutions do not exhibit features commensurate with 

solution scattering, as-such, PEO must be well solubilized by the chloroform leading 

to a high proportion of solvent-monomer interactions. Comparatively, THF and 

methanol PEO solutions exhibit strong solution scattering features, indicating a high 

proportion of solvent-solvent interactions, within these systems. 

    When PEO was processed from a non-polar solvent (chloroform), polymer 

crystallization proceeds via the formation of large, highly ordered spherulites, which 

correlate well with Avrami kinetics. When the solvent polarity was increased the final 

morphologies of the PEO films are largely amorphous containing small crystalline 

regions.  

    It is well reported that PEO forms clusters in polar solvents,14a, 14c, 14d where inter- 

and intramolecular dipole-dipole interactions result in clustering and has been 

extensively studied using Small Angle Neutron Scattering (SANS).14d Clearly, such 

interactions have a dramatic affect on the morphological development and 



crystallization behavior of PEO. This is attributed to the fact that clustering reduces 

the propensity of PEO to form highly ordered crystalline structures through increasing 

the kinetic barrier for polymer chain straightening, required for packing to form chain 

folded lamellae that organize into higher order structures.  

   To further test our hypothesis, the role of solvent interactions on PEO 

crystallization was extended to include two further non-polar solvents, toluene and 

dichloromethane. The findings are provided in the Supporting Information, including 

microscopy images taken under crossed polarizers (Supplementary Figure S3). In 

short, as predicted from our discoveries discussed herein, toluene and 

dichloromethane do not appear to induce clustering and therefore produce films 

comprising well-defined spherulitic structures. Importantly, all of the solvents selected 

in our study are considered to be ‘good’ solvents for PEO, however, our work herein 

clearly reveals that importance should be placed on individual solvent contributions, 

such as polarity, rather than overall solubility. 

Conclusions 

    This work has provided new insight into how PEO crystallizes from solution during 

spin-coating and the important role that solvent plays in controlling the crystallization 

process. When PEO was spun-cast from non-polar solvents, crystallization was 

observed to occur in a similar manor to that of crystallization from the melt. When the 

solvent polarity was increased, the ability of PEO to form highly ordered crystalline 

morphologies was inhibited. We attribute this to be a consequence of PEO forming 

cluster-type structures that increase the barrier to chain-straightening required for the 

formation of aligned, chain-folded lamellae. It is therefore important to note that while 

a molecule as a whole may dissolve well, clustering can occur when the subunits of a 

molecule tend to demix. As such, we find that the degree of crystallinity for solution-

processed PEO does not follow the solubility order: THF > chloroform > methanol, 

but instead follows the polarity order: chloroform > THF, methanol. 

Such studies, as shown here, show the complex interplay between processing 



conditions, molecular mass, and solubility. It further shows how understanding of the 

individual components contributing to polymer solubility has a pronounced effect on 

the final morphology and crystallinity of the final processed film. Given the strong 

correlation between crystallinity and conductivity/mobility in polymer electronic 

devices, our work herein highlights that when designing processing routes, greater 

consideration of the disparate solvent parameters, beyond the total solubility of the 

polymer solute, is critical in order to achieve optimum thin-film properties. 
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