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Abstract  38 

ATP release and subsequent activation of purinergic receptors has been suggested to be one of 39 

the key transduction pathways activated by mechanical stimulation of bone. The P2Y13 receptor, 40 

recently found to be expressed by osteoblasts, has been suggested to provide a negative feedback 41 

pathway for ATP release in different cell types. Therefore, we hypothesised that the P2Y13 42 

receptor may contribute to the mediation of osteogenic responses to mechanical stimulation by 43 

regulating ATP metabolism by osteoblasts. To test this hypothesis, wild type (WT) and P2Y13 44 

receptor knock-out (P2Y13R
-/-) mice were subject to non-invasive axial mechanical loading of the 45 

left tibiae to induce an osteogenic response. Micro-Computed Tomography analysis showed 46 

mechanical loading induced an osteogenic response in both strains of mice in terms of increased 47 

total bone volume and cortical bone volume, with the P2Y13R
-/- mice having a significantly 48 

greater response. The extent of the increased osteogenic response was defined by dynamic 49 

histomorphometry data showing dramatically increased bone formation and mineral apposition 50 

rates in P2Y13R
-/- mice compared with controls. In vitro, primary P2Y13R

-/- osteoblasts had an 51 

accumulation of mechanically induced extracellular ATP and reduced levels of hydrolysis. In 52 

addition, P2Y13R
-/- osteoblasts also had a reduction in their maximal alkaline phosphatase (ALP) 53 

activity, one of the main ecto-enzymes expressed by osteoblasts which hydrolyses extracellular 54 

ATP. In conclusion, deletion of the P2Y13 receptor leads to an enhanced osteogenic response to 55 

mechanical loading in vivo, possibly due to the reduced extracellular ATP degradation by ALP. 56 

The augmented osteogenic response to mechanical stimulation, combined with suppressed bone 57 

remodelling activities and protection from OVX-induced bone loss after P2Y13 receptor 58 

depletion as previously described, suggests a potential role for P2Y13 receptor antagonist-based 59 

therapy, possibly in combination with mechanical loading, for the treatment of osteoporosis. 60 
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Introduction 66 

Bone integrity is maintained throughout life via bone remodelling where the balance between 67 

bone resorption and formation is critical. Altered coupling of resorption and formation leads to 68 

bone disorders such as osteoporosis which is characterized by higher resorption and lower 69 

formation (1). Most current treatment strategies for osteoporosis have focused on anti-resorptive 70 

therapies such as bisphosphonates and more recently antibodies to RANKL (Denosumab) which 71 

can successfully reduce the risk of osteoporotic vertebral fractures (2,3). However, the only 72 

current anabolic agent for osteoporosis treatment available at the moment is Parathyroid 73 

hormone (PTH) (either as PTH1-34/ “teriparatide” or full-length PTH1-84). Due to the relatively 74 

poor anti-fracture efficacy at some skeletal sites with these current agents, the need for new 75 

anabolic targets is paramount. Mechanical loading of bone is widely accepted as a potent 76 

anabolic stimulus for bone formation (4) and its use as a preventative measure or treatment for 77 

osteoporosis is becoming increasingly attractive (5,6), especially in combination with drugs that 78 

target the osteogenic response pathway (7,8). Bone osteogenic adaption to mechanical loading is 79 

performed by regulating the activities of both osteoblasts and osteoclasts (9), mediated by the 80 

osteocytes and bone lining cells that are thought to act as the principal mechanosensors (10). At 81 

the cellular level, mechanical loading-induced osteogenic response is initiate via the release of 82 

intracellular molecules such as nitric oxide (NO) and prostaglandins (PG),  which are anabolic to 83 

osteoblasts (11,12). Mechanical stimuli can also induce extracellular ATP release from a variety 84 

of cells, including osteoblasts (13-15). This mechanism is now widely believed to be one of the 85 

transduction pathways by which mechanical stimulation initiates a cellular response. Upon 86 

stimulation, ATP not only mediates the secretion of other intracellular molecules such as PGs 87 

(16), but also activates the purinergic receptors such as the P2X7 receptor which acts as fluid 88 
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flow sensor for ATP-dependent phosphorylation of ERK in osteoblasts in vitro (11,17) 89 

stimulating proliferation (18). In vivo, P2X7 receptor knockout mice have been shown to have 90 

~70% reduction in the skeletal sensitivity to mechanical loading (19). Other purinergic receptors 91 

are activated by extracellular ATP and have been demonstrated to play a role in integrating local 92 

and systemic responses in the activation of bone remodelling (20). More recently the P2Y13 93 

receptor has been shown to be involved in the regulation of bone remodelling and protection of 94 

mice from estrogen deficiency-induced bone loss (21). In addition, the P2Y13 receptor was also 95 

found to provide a negative feedback pathway to inhibit ATP release from human red blood cells 96 

in response to low oxygen level (22). These findings suggest a role for P2Y13 receptors in ATP 97 

metabolism and potentially in the response to mechanical loading via other purinergic receptor 98 

such as the P2X7 receptor. Indeed, there is evidence showing P2Y13 and P2X7 receptors co-99 

mediate intracellular calcium responses to BzATP in rat cerebellar astrocytes (23). In addition, it 100 

was recently shown that blocking the P2Y13 receptor can mediate ERK1/2 involvement in く-cell 101 

apoptosis (24). Interestingly, ERK1/2 signalling was demonstrated to be involved in osteoblastic 102 

response upon mechanical strain and fluid flow (17,25). 103 

 104 

Given the expression of P2Y13 receptor by osteoblasts and the observed negative feedback 105 

pathway for ATP release in red blood cells, we hypothesised that the P2Y13 receptor would play 106 

a role in the osteogenic response to mechanical stimulation via regulating ATP metabolism in 107 

osteoblasts. To test this hypothesis, we examined the osteogenic response of P2Y13 receptor 108 

knockout (P2Y13R
-/-) mice to mechanical stimuli in vivo. Non-invasive controlled axial 109 

mechanical loading was performed on left tibiae of 4-month old P2Y13R
-/- and wild type (WT) 110 

mice in vivo (26,27). Microcomputed tomography (µCT) analysis and dynamic 111 
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histomorphometry were used to determine the osteogenic response. ATP release and hydrolysis 112 

by primary osteoblasts was determined. 113 

 114 

Materials and Methods 115 

Mice 116 

P2Y13R
-/- mice (28) were backcrossed onto the C57BL/6J background as previously described. 117 

Sixteen week old P2Y13R
-/- and WT mice were housed in the same environmentally controlled 118 

conditions with a 12hr light/dark cycle at 22°C and free to access 2018 Teklad Global 18% 119 

Protein Rodent Diet containing 1.01% Calcium (Harlan Laboratories, UK) and water ad libitum 120 

in RB-3 cages. All procedures complied with the UK Animals (Scientific Procedures) Act 1986 121 

and were reviewed and approved by the local Research Ethics Committee of the University of 122 

Sheffield (Sheffield, UK). 123 

 124 

Mechanical loading in vivo 125 

In this study, the non-invasive axial loading tibial model (26) was used to examine responses to 126 

mechanical loading in 16 week old WT and P2Y13R
-/- mice. The peak load (15N) was selected to 127 

induce bone formation in the loaded tibiae since evidence showed that similar peak load can 128 

induce osteogenic response in female C57BL/6 mice (26,29,30). Briefly, a 14.5N dynamic load 129 

was superimposed onto a 0.5N pre-load at rate of 160,000N/sec. Forty trapezoidal-waveform 130 

load cycles (0.2 sec hold at 15N) with 10 sec interval between each cycle were applied to mice 131 

tibiae, three times a week for 2 weeks. Mice were injected intraperitoneally with calcein (30 132 

mg/kg) on the first (day 1) and last day (day 12) of loading. Mice were then euthanized on day 133 

14 (27). Both tibiae were dissected and fixed in 70% ethanol for たCT and dynamic 134 
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histomorphometry analysis. The contra-lateral non-loaded limb (right tibia) was treated as 135 

internal control for loading [the functional adaption in both cortical and trabecular bone being 136 

controlled locally and confined to the loaded bones (27,31)] and the osteogenic responses were 137 

expressed as percentage change based on the non-loaded limb data ([Parameters of loaded tibia 138 

(left)/ Parameters of own non-loading tibia (right)] x 100%)(32). 139 

 140 

たCT 141 

Fixed tibiae were scanned using a SkyScan 1172 desktop たCT machine at a resolution of 4.3たm 142 

for the tibia proximal end and 17.3たm for the whole tibia, with the X-ray source operating at 143 

50kV, 200たA and using a 0.5mm aluminium filter. Two-dimensional たCT images were captured 144 

and reconstructed by Skyscan NRecon software at threshold of 0.0-0.16 and 0.0-0.14 for tibia 145 

proximal end and whole tibia scan respectively. For the tibia proximal end scan, trabecular 146 

morphometry was characterized by measuring structural parameters in a 1.0mm thick trabecular 147 

region which is 0.2mm below the growth plate. Cortical morphometry was quantified from the 148 

cortical regions locating in the proximal 20% (1.0mm thick, 1.0mm below the growth plate) and 149 

the midshaft of tibiae (1.0mm thick, 7.0mm below the growth plate). Bone tissue mineral 150 

densities (TMD) equal to grams of hydroxylapatite per cube centimetre were calculated based on 151 

image greyscale with the following equation: TMD = (0.012 x greyscale value) - 0.296 (21). 152 

Nomenclature and symbols were used to describe the たCT derived bone morphometries 153 

according to (33). 154 

 155 

Linear-elastic finite element analysis (FEA) 156 
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Linear-elastic finite element models of the tibiae were generated to simulate compression of the 157 

tibia and to verify strains induced by the 15N loading force in representative bones from WT and 158 

P2Y13R
-/- mice scanned post mortem. Briefly, cement blocks were added to the ends of the tibia 159 

to facilitate even application of compressive force at the bone ends. Models were generated 160 

directly from voxels of the whole contra-lateral non-loaded tibial たCT scans using a cube-shaped, 161 

8-node brick element with a side length of 0.0349 mm. Isotropic material properties were 162 

assigned to the bone elements using the following empirical equations of Somerville et al (34).  163 

 164 
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 166 

where とash and とCT are ash density and bone density from たCT respectively and E is modulus of 167 

elasticity of bone. The modulus of elasticity for cement was assigned to 2 GPa. The Poisson's 168 

ratio was set to 0.35 for bone and cement. The models were solved by a commercial FE package 169 

ANSYS (ANSYS Inc., Canonsburg, PA, USA) for stress and strain at each element. The loading 170 

induced average strain in the cortical and trabecular compartment were calculated on a 1.0 mm in 171 

length region, 0.2 mm below the growth plate in tibia. An overall strain through the whole length 172 

of the tibia was defined as the compressive displacement derived from the FEA (L1 – L’1) 173 

divided by the original tibial length (L1) in the non-loading state (Figure 1A). 174 

 175 

Bone dynamic histomorphometry 176 

Following たCT analysis, tibiae were embedded into LR White resin (Taab Laboratory 177 

Equipment Ltd). Sections were cut (at 10m) longitudinally using a Leica Microsystems 178 

Microtome and were examined under UV illumination using a DMRB microscope (Leica 179 
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Microsystems, Milton Keynes, UK). The bone histomorphometry software Osteomeasure 180 

(Osteometrics) was used to measure the double labelled surface (dLS), single label surface (sLS), 181 

the separation width between the two fluorescent labels (Ir.L.Th), and total bone surface (BS) on 182 

a 3-mm length of both endocortical and periosteal surface, 0.25 mm from the growth plate (35). 183 

The time separating the two labels (Ir.L.t) was the interval between the two IP injects of calcein 184 

and was 12 days in all animals. Based on these measurements, mineralizing surface (MS), 185 

mineral apposition rate (MAR), and bone formation rate (BFR/BS) were calculated and reported 186 

in the results using nomenclature the based on the report of the ASBMR Histomorphometry 187 

Nomenclature Committee (36).  188 

 189 

Primary osteoblast isolation 190 

Primary osteoblasts were isolated from neonatal mouse calvariae (less than 72 hours old, 5-7 191 

pups per culture) as described before (21). Calvariae were dissected and the attached soft tissue 192 

were digested in 1mg/ml Collagenase 1A (Sigma) for 15 mins. Calvariae were then subjected to 193 

serial digestions in 1mg/mL Collagenase 1A for 30 mins; 0.25% Trypsin/EDTA (Gibco) for 15 194 

mins; and 1mg/mL Collagenase 1A for 30 mins, at 37°C. All cells were harvested from the 195 

digestion suspensions and seeded into a T75 flask and cultured until confluent in 196 

DMEM+GLUTAMAX medium with sodium pyruvate (Gibco), 100 Units/mL Penicillin and 100 197 

たg/mL Streptomycin (Gibco) and 10% foetal bovine serum (FBS) (Gibco). 198 

 199 

Endogenous ATP release 200 

Fluid flow-induced shear stress is a known stimulator for endogenous ATP release from cells 201 

including osteoblasts (11,16). The mechanical disturbances caused by simple medium 202 
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displacement or replacement in vitro are widely accepted methods to induce fluid flow-induced 203 

shear stress and stimulate ATP release (37,38) from cells including osteoblasts (39). Therefore 204 

medium replacement on primary osteoblast was used to mimic mechanical loading in vitro. First 205 

passage primary osteoblasts were seeded into 24 well plates at the density of 5 × 103 cell/well 206 

and cultured until 70% confluence in growth medium: DMEM+GLUTAMAX medium with 207 

sodium pyruvate (Gibco), 100 Units/mL Penicillin and 100 たg/mL Streptomycin (P/S) (Gibco) 208 

and 10% FCS (Gibco). The cells were washed three times with serum free medium: 209 

DMEM+GLUTAMAX medium with sodium pyruvate, 100 Units/mL Penicillin and 100 たg/mL 210 

Streptomycin, and 25 mM HEPES buffer and replenished with 500たL serum free medium. 211 

Samples were collected from four replicate wells at time points 0, 5, 10, 20, 30, 40, 50, and 60 212 

mins. ATP concentration was then determined using the HS ViaLight Kit (Lonza, Slough, UK) 213 

as previously described. To confirm that ATP release was not caused by cell death, the cell lysis 214 

marker lactate dehydrogenase was measured from non-heat inactivated medium samples using 215 

the CytoTox 96 well Non-Radioactive Cytotoxicity Assay (Promega, Southampton, UK) on a 216 

SpectraMAX M5e plate reader at 492nm. Samples showing increased LDH release were 217 

removed from analysis. Samples for luciferase assay were heated at 98C for 2 mins to inactivate 218 

soluble ATPases and frozen down immediately in liquid nitrogen and stored at -80C. Samples 219 

for LDH Assay were directly frozen down in liquid nitrogen and stored at -80C. 220 

 221 

Exogenous ATP hydrolysis 222 

Following sample collection for endogenous ATP release measurement, the media was removed 223 

completely from the wells. Fresh serum free medium (500 たL) was carefully added into each 224 

well and the plate incubated for 60 mins at 37C to return the medium pH and extracellular ATP 225 
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concentration to basal levels. Medium samples were collected from four replicate wells per time 226 

point for both luciferase and LDH assay prior (t=-1 mins) to the addition of 300nM ATP (Sigma: 227 

99.9% pure by HPLC, reconstituted in 25 mM HEPES buffer) and at time point t=0(immediately 228 

after addition), 5, 10, 20, and 30 mins. 229 

 230 

Alkaline Phosphatase (ALP) assay 231 

First passage primary osteoblast cells isolated from P2Y13R
-/- and WT neonatal calvariae were 232 

seeded at 1.5x104 cells per well in a 12-well cell culture plates and cultured for six days. At the 233 

end of this time period the cells were washed with PBS and harvested by addition of nuclease-234 

free water into each well and the samples snap frozen at -80°C. Cell lysates were obtained after 235 

three freeze thaw cycles. Alkaline Phosphatase (ALP) activity was measured using p-nitrophenyl 236 

phosphate (pNPP) (Sigma) as the chromogenic ALP substrate in the presence of Mg2+ ions in a 237 

buffered solution. The absorbance was read at 405nm using the SpectraMax M5e Microplate 238 

Reader. The ALP activity was then normalized to DNA content quantified using Quant-iT™ 239 

PicoGreen dsDNA Assay Kit (Invitrogen) according to the manufacturer’s instructions. 240 

 241 

Statistical analysis 242 

All data are expressed as mean ± SEM. Statistical significance was tested for using either 243 

univariate analysis of variance (PASW Statistics, NY) or a t-test (Prism 5,GraphPad, La Jolla). 244 

 245 

Results 246 

Osteogenic response of whole tibia  247 
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After 2 weeks axial loading of the left tibiae of 16 week-old mice, µCT analysis at the level of 248 

the whole bone demonstrated that the loaded tibia of the P2Y13R
-/- mice had a significant greater 249 

increase in total bone volume (BV) than WT in response to mechanical loading, when compared 250 

to the BV of the non-loaded control (126.7% ± 1.2 versus 121.6% ± 1.4, p = 0.0140) (Figure 1 251 

B). The morphological changes were compared on the loaded and non-loaded tibia of WT and 252 

P2Y13R
-/- mice using µCT 3D models of the whole bone (Figure 1 C). The FEA showed that 253 

there was no significant difference in the simulated loading-induced strain through the full length 254 

of the tibia between WT and P2Y13R
-/- mice (5081 ± 254.4 versus 5048 ± 258.8 microstrain, p = 255 

0.9306) (Figure 1 D). The FEA based average strain across the trabecular (696.0 ± 60.0 versus 256 

693.4 ± 94.5, p = 0.9820) and cortical compartments (757.8 ± 20.3 versus 758.2 ± 20.2, p = 257 

0.9894) were also not significantly different between WT and P2Y13R
-/- mice (Figure 1 E, 1 F).  258 

 259 

Osteogenic response of trabecular bone  260 

Analysis of the trabecular bone structure of the tibial region by µCT demonstrated that both 261 

P2Y13R
-/- and WT mice had significantly increased trabecular bone volume (BV/TV), trabecular 262 

thickness (Tb.Th), trabecular number (Tb.N),and trabecular pattern factor (Tb.Pf) in loaded tibia 263 

compared to internal non-loaded controls. The quantitative data are summarized in Table 1 and 264 

thicker trabeculae were clearly visible in images of 3D models of the loaded tibia trabecular bone 265 

from both P2Y13R
-/- and WT mice (Figure 2 A). 266 

 267 

When compared to the parameters from the contra-lateral non-loaded tibia, P2Y13R
-/- mice 268 

showed a significant higher Tb.Th increase compared to the increase in WT mice (134.1 ± 1.9 % 269 

versus 126.3 ± 3.0 %, p = 0.0316) (Figure 2 B), whilst the increase of BV/TV of P2Y13R
-/- was 270 
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not significantly higher than WT (149.1 ± 5.1 % versus 146.4 ± 4.1 %, p = 0.6982) (Figure 2 C). 271 

P2Y13R
-/- mice had almost 21% lower Tb.Pf decreases in the loaded tibia (80.1 ± 3.7 % versus 272 

66.2 ± 3.8 %, p = 0.0185) (Figure 2 D). More interestingly, the P2Y13R
-/- trabecular bone had 273 

positive changes to the structure model index (SMI) compared to negative changes in the WT 274 

(107.0 ± 2.8 % versus 95.4 ± 3.7 %, p = 0.0189) (Figure 2 E). 275 

 276 

Osteogenic response of cortical bone  277 

Cortical bone volume of the tibia at 20% proximal and at the mid-shaft (Figure 3 A) was 278 

measured by µCT and demonstrated that both P2Y13R
-/- and WT had significantly increased 279 

cortical bone volume (Ct.V) in the loaded tibia (Table 1). Compared to the osteogenic response 280 

of WT, P2Y13R
-/-mice showed significantly greater responses in both regions (Figure 3 B, 3 C), 281 

including significantly increased Ct.V response in both the proximal 20% region (136.4 ± 2.3 % 282 

versus 128.2 ± 1.5 %, p = 0.0130) (Figure 3 D) and the mid-shaft region (148.3 ± 4.1 % versus 283 

136.6 ± 2.8 %, p = 0.0362) (Figure 3 E).  284 

 285 

Rate and extent of mineralization induced by mechanical loading of the tibia  286 

Two distinctive calcein labels (14 and 2 days prior to sacrifice respectively) on both 20% 287 

proximal and midshaft endocortical surfaces of tibiae can be visualized using a fluorescent 288 

microscope and confirmed the endocortical lamellar bone formation (Figure 4 A). Calcein labels 289 

on both endocortical and periosteal surfaces were measured to calculate the parameters including 290 

MAR, BFR/BS, and MS. P2Y13R
-/- mice showed a significant increase in all three parameters in 291 

both endocortical and periosteal surfaces of loaded tibiae, compared to non-loaded control tibiae. 292 
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Whilst WT mice only showed significant changes in periosteal BFR/BS and MAR on both 293 

periosteal and endocortical surfaces. The quantitative data are summarized in Table 2. 294 

 295 

To determine if the response of the P2Y13R
-/- mice was different to WT, the loaded tibia data was 296 

compared to contra-lateral non-loaded tibia. In the endocortical surfaces, loaded tibia of P2Y13R
-297 

/- showed more than a two-fold increased response in MAR (355.4 ± 88.4 % versus 140.5 ± 298 

16.4 %, p = 0.0276) (Figure 4 B), a 5-fold increased response in BFR/BS (714.7 ± 235.4 % 299 

versus 171.1 ± 41.1 %, p = 0.0338) (Figure 4 C), and almost a 2-fold higher response in MS 300 

(186.6 ± 30.8 % versus 115.6 ± 16.1 %, p = 0.0599) (Figure 4 D). The same trend was found on 301 

the periosteal surface, but only the increased response in MAR by P2Y13R
-/- mice reached 302 

statistical significance (973.7± 108.2 % versus 586.6 ± 116.4 %, p = 0.0402) (Figure 4 E). 303 

 304 

Endogenous ATP release from primary osteoblasts in vitro 305 

Endogenous ATP release after medium change from primary osteoblasts was examined using the 306 

luciferase assay. LDH assay was used to exclude ATP release due to cell lysis. After medium 307 

change (t0), the initial extracellular ATP released from P2Y13R
-/- osteoblasts into the medium 308 

showed no significant difference compared to WT cells (18.6nM ± 3.6 versus 20.5nM ± 3.4, p = 309 

0.7063). The extracellular ATP concentration in the medium of WT osteoblast cultures gradually 310 

returned to basal level 60 mins (t60) after medium change (t0 = 20.5nM ± 3.4 versus t60 = 9.6nM ± 311 

1.6, p = 0.0227). However, the extracellular ATP concentration in the medium of P2Y13R
-/- cells 312 

did not return to baseline and demonstrated a trend towards accumulation instead of degradation, 313 

with the ATP concentration being significantly higher than the initial concentration from 50 mins 314 

onwards (t0 = 18.6nM ± 3.6 versus t50=32.7nM ± 4.2, p = 0.0182). The extracellular ATP 315 
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concentration in the medium of P2Y13R
-/- osteoblast cultures was also significantly higher than 316 

that of WT cultures from 50 mins after medium change (32.7nM ± 4.2 versus 15.6nM ± 2.6, p = 317 

0.0023) (Figure 5 A).  318 

 319 

Exogenous ATP hydrolysis by primary osteoblasts 320 

After measuring endogenous ATP release, primary osteoblast cells were incubated in serum free 321 

medium to let ATP concentration and pH settle back to basal levels. Exogenous ATP (300nM) 322 

was added into each well and the concentration of ATP in the medium determined over a time 323 

course. The hydrolysis of exogenous ATP in P2Y13R
-/- osteoblast cultures was slower than that in 324 

WT cultures. The ATP concentration in WT osteoblast cultures reduced by 50% within 5 mins, 325 

whilst the ATP concentration of P2Y13R
-/- cultures was significantly higher than WT from 5 326 

mins and remained at 200 nM level even after 30 mins (Figure 5 B). 327 

 328 

ALP activity of primary osteoblasts 329 

ALP is a nucleotidase highly expressed by osteoblasts that is capable of hydrolysing extracellular 330 

ATP. The basal level of ALP activity was measured in primary osteoblast cultures using the 331 

pNPP assay. P2Y13R
-/- mice showed a 15% reduction in ALP activity compared to osteoblasts 332 

from WT mice when normalized to DNA content (0.72 ± 0.02 versus 0.85 ± 0.03, p = 0.0002, 333 

Figure 5 C). 334 

 335 

Discussion 336 

The P2Y13 receptor has been suggested to be involved in ATP metabolism in different cell types 337 

and ATP release and purinergic signalling is one of the main transduction pathways of 338 
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mechanical stimulation. Therefore, we hypothesised that the P2Y13 receptor would play a role in 339 

regulating ATP metabolism by osteoblasts and in mediating the osteogenic response upon 340 

mechanical stimulation. To test this hypothesis, we examined the osteogenic response of P2Y13R
-341 

/- mice subject to mechanical stimuli both in vivo and in vitro. The results provide compelling 342 

evidence for a role for the P2Y13R in bone homeostasis. Whilst the effect of the deletion of the 343 

P2Y13R on the normal bone phenotype is modest, the response to loading in vivo is dramatically 344 

enhanced in the KO mice, possibly due to the lack of a P2Y13R regulated negative feedback 345 

pathway for ATP release, as demonstrated in vitro. 346 

 347 

Non-invasive axial mechanical loading at peak loading force of 15N was performed on left tibiae 348 

of both P2Y13R
-/- and WT mice in vivo using a method as described before (26,27). Compared to 349 

the contra-lateral non-loaded right tibia, the total bone volume of loaded tibia demonstrated 350 

significant increases in both WT and P2Y13R
-/- mice although bone length did not change. This 351 

indicated that mechanical loading successfully induced osteogenic response mainly in the tibia 352 

cross-sectional dimensions (40). High resolution たCT analysis showed that trabecular bone in 353 

both WT and P2Y13R
-/- loaded tibia had significantly increased BV/TV, Tb.Th and Tb.N. Similar 354 

increases in Ct.V were also found in cortical bone. Therefore, the total BV increase was a 355 

combined result of new bone formation activities from both trabecular and cortical bone. This 356 

was confirmed with the increased BFR and MAR in both WT and P2Y13R
-/- loaded tibiae using 357 

dynamic histomorphometry analysis, especially the lamellar bone formation on the endocortical 358 

bone surfaces. In addition, increased bone remodeling activities led to coarse surface which was 359 

observed specifically in the periosteal surface of tibial proximal end 3D µCT image. This result 360 

was consistent with previous findings that there was a greater osteogenic response in the 361 
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corticocancellous proximal metaphysis (41) and periosteal formation surface was predominantly 362 

woven bone (42,43). 363 

 364 

To compare the extent of the osteogenic response between P2Y13R
-/- and WT mice, the 365 

parameters from loaded tibia were compared to those from the corresponding contra-lateral non-366 

loaded tibia controls. The P2Y13R
-/- mice had a further 20% response in total BV increase in the 367 

loaded tibiae compared to WT. This was mainly the result of the increased osteogenic response 368 

of cortical bone because P2Y13R
-/- had a significant greater response in the increases in Ct.V but 369 

not in trabecular BV/TV over that of WT. The higher osteogenic response in P2Y13R
-/- mice 370 

under mechanical stimulation mainly involved osteoblastic bone forming activities. This was 371 

confirmed by the results of fluorochrome double labelling in the cortical compartment which 372 

showed dramatically higher MAR and BFR increases in P2Y13R
-/- bones compared to WT, 373 

indicate enhanced activities of osteoblasts (36). 374 

 375 

The trabecular structure of P2Y13R
-/- mice after loading did not alter towards the ideal load 376 

bearing architecture as the WT mice did; the P2Y13R
-/- mice showed less of a decrease in Tb.Pf 377 

and significantly increased SMI, indicating that the trabecular did not improve connectivity in 378 

any great extent and remained a rod-like structure (44,45). However, WT mice showed better 379 

structure alteration with significantly decreased Tb.Pf and slightly reduced SMI. The reduced 380 

change in Tb.Pf could be the result of a weaker primary trabecular structure in P2Y13R
-/- bones, 381 

whereas, the possible reason for an increased SMI could be due to a failure in osteoclast 382 

resorption of the P2Y13R
-/- mice as demonstrated previously (21). This would lead to an 383 
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abnormal capacity to remodel the trabecular structure since osteoclasts are suggested to control 384 

the conversion of trabecular from plate elements to rod elements (45).  385 

 386 

One possible explanation for the different osteogenic response could have been that the lower 387 

bone volume in the P2Y13R
-/- mice led to an increase in the strains engendered by the 15N 388 

loading. However, our FEA studies, a widely recognized method to predict loading induced 389 

strain (46), demonstrated that this is not the case because the bones of the WT and P2Y13R
-/- 390 

mice experienced the same overall strains and average strain across trabecular and cortical 391 

compartments under modelled loading. The overall strains calculated were in the region of 5,000 392 

microstrain and are relatively higher than previous studies using strain gauge to measure strain 393 

(26,27,30) but are consistent with other new findings using FEA (43). This is because applying 394 

the 15N loads to the tibia in silico is not the same as loading tibia in vivo, where several layers of 395 

other tissues including skin, subcutaneous tissues, and at least two thicknesses of cartilage are 396 

compressed as well. The important issue is therefore not the absolute values derived from the 397 

FEA measurement but the lack of strain difference between WT and P2Y13R
-/- bones and hence 398 

the observed enhanced osteogenic response to mechanical loading in P2Y13R
-/- mice is real.  399 

 400 

Another possible cause of the different osteogenic response could have been the result of 401 

enhanced woven bone formation due to an increased inflammatory response (47). However, our 402 

dynamic histomorphometry results clearly show lamellar bone formation on the endocortical 403 

bone surface, where the increases in both MAR and BFR/BS in loaded tibiae were significantly 404 

higher in P2Y13R
-/- than those in WT mice. On the periosteal surface, where woven bone 405 

formation was predominant, there is a similar trend of enhanced bone formation in P2Y13R
-/- 406 
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mice but it is not as dramatic as on the endocortical bone surfaces and only the MAR reached 407 

statistical significance at this site. Therefore, there may be an element of an inflammatory 408 

response but we believe it is not the main cause of the different adaption to mechanical loading 409 

between WT and P2Y13R
-/- mice.  410 

 411 

Many mechanisms has been suggested to be involved in the alteration of osteogenic response to 412 

mechanical loading in mice, including aging and changes in other signalling pathways such as 413 

Wnt, ER and BMP/TGFく pathways (48,49). The in vitro findings in this study may provide a 414 

possible explanation for the reason why P2Y13R
-/- mice had enhanced osteogenic response to 415 

mechanical loading. The constitutive endogenous ATP release was investigated in the primary 416 

osteoblasts isolated from neonatal mice calvariae using luciferase assay. After medium change, 417 

the extracellular ATP concentration in the medium of P2Y13R
-/- osteoblast cultures showed a 418 

trend towards accumulation of ATP instead of gradually degrading ATP as in WT osteoblast 419 

cultures. As a result, P2Y13R
-/- osteoblasts showed three fold higher extracellular ATP 420 

concentration than WT cells one hour after medium change. This confirms that the deletion of 421 

P2Y13R results in a lack of the negative feedback pathway for ATP release in P2Y13R
-/- 422 

osteoblasts. Interestingly, when a higher concentration of exogenous ATP was added to the 423 

primary osteoblasts, P2Y13R
-/- cells have a decreased capacity to hydrolyse ATP, whilst WT 424 

osteoblasts degraded the exogenous ATP back to basal levels within 5 minutes. Thirty minutes 425 

after exogenous ATP treatment, extracellular ATP concentration of P2Y13R
-/- osteoblasts was 426 

double that of WT cells. Osteoblasts are known to have numerous membrane-bound 427 

nucleotidases which are responsible for breaking down ATP to adenosine and are critical in the 428 

ATP turnover process (50). One particular nucleotidase, ALP, is highly expressed by osteoblasts 429 
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and interestingly, the ALP activity in vitro was found to be 15% lower in P2Y13R
-/- osteoblasts 430 

than WT under basal conditions, possibly due to the down regulation of RhoA/ROCK I 431 

signalling pathway as a consequence of P2Y13R deletion (21,51). Therefore, one possible 432 

mechanism leading to the observed higher osteogenic response to mechanical loading in P2Y13R
-433 

/- mice may be as a result of a reduction in nucleotidase activity. Under basal conditions, it 434 

appears that the reduced level of ATP hydrolysis to ADP is still sufficient to provide a negative 435 

feedback pathway to regulate ATP release. However, under mechanical stimulation, increased 436 

and sustained ATP release may not be matched by hydrolysis to ADP due to basal reduced ALP 437 

levels, and therefore a lack of the negative feedback loop leads to extracellular ATP 438 

accumulation. This extracellular ATP accumulation may in turn trigger other P2 receptor 439 

signalling pathways and cause an increased osteogenic response possibly via ATP-dependent 440 

phosphorylation of ERK (11,17), which then stimulates osteoblastic proliferation and drives the 441 

osteogenic response (18).  442 

 443 

In conclusion, this study examined the role of P2Y13 receptor in bone osteogenic response to 444 

mechanical loading in vivo and in vitro. Deletion of the P2Y13R leads to higher bone formation, 445 

mainly in cortical compartment, than WT upon mechanical loading in vivo, possibly due to the 446 

lack of P2Y13R regulated negative feedback pathway for ATP release. This was further 447 

supported by our in vitro findings of abnormal extracellular ATP accumulation from primary 448 

osteoblast under mechanical stimulation. Reduced ALP activity caused by P2Y13R gene deletion 449 

and the following reduction in extracellular ATP degradation might be one reason for this 450 

phenomenon. This augmented osteogenic response to mechanical stimulation, combined with 451 

suppressed bone remodelling activities and protect from OVX induced bone loss after P2Y13R 452 



 22 

depletion as recently described (21), suggests a potential role for P2Y13R antagonist-based 453 

therapy, possibly in combination with mechanical loading, for the treatment of osteoporosis in 454 

the future. 455 
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Tables 

Table 1. Quantitative results of tibia trabecular and cortical bone after mechanical loading using 

µCT analysis. 

 WT 

n=9 

P2Y13R
-/- 

n=12 

Loaded Non-loaded p value  Loaded Non-loaded p value  

TMD (g/cm3) 1.12 ± 0.00 1.13 ± 0.01 b 1.12 ± 0.00  1.13 ± 0.00 a 

BV/TV 12.30 ± 0.39 8.42 ± 0.19 c 8.60 ± 0.37 5.80 ± 0.24 c 

BS/BV (1/mm) 65.00 ± 1.05  85.41 ± 1.33 c 67.80 ± 0.60 91.50 ± 1.24  c 

Tb.Th (mm) 0.064 ± 0.001 0.051 ± 0.001 c 0.065 ± 0.001 0.048 ± 0.001 c 

Tb.N (1/mm) 1.93 ± 0.07 1.66 ± 0.04 a 1.33 ± 0.06 1.20 ± 0.05 a 

Tb.Pf (1/mm) 16.93 ± 0.95 25.62 ± 0.57 c 24.38 ± 0.89 30.72 ± 0.94 c 

Tb.Sp (mm) 0.25 ± 0.01 0.26 ± 0.01  0.29 ± 0.01 0.31 ± 0.01  

SMI 2.06 ± 0.06 2.16 ± 0.03  2.53 ± 0.05 2.37 ± 0.05 a 

DA 2.04 ± 0.08 2.28 ± 0.10  1.66 ± 0.05 1.90 ± 0.06 a 

Proximal 20% 

Ct.V (mm3) 

1.16 ± 0.02 0.91 ± 0.01 c 1.17 ± 0.02 0.86 ± 0.01 c 

Midshaft Ct.V 

(mm3) 

0.98 ± 0.02 0.71 ± 0.01 c 1.00 ± 0.02 0.67 ± 0.01 c 

 

Values are mean ± SEM, a  p < 0.05,b  p < 0.01,c   p < 0.001 (paired t-test)  
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Table 2. Quantitative results of endocortical and periosteal tibia dynamic histomorphometry. 

 WT 

n=6 

P2Y13R
-/- 

n=5 

Loaded Non-loaded p value  Loaded Non-loaded p value  

Endocortical MS (%) 85.68 ± 6.26 78.20 ± 6.85  88.83 ± 0.87  51.97 ± 6.77 b 

Endocortical MAR 

(たm/day) 

1.87 ± 0.16 1.38 ± 0.11 a 2.60 ± 0.59 0.80 ± 0.15 a 

Endocortical BFR/BS 

(たm3/ たm2/day) 

1.58 ± 0.14 1.11± 0.16  2.32 ± 0.55 0.44 ± 0.13 a 

Periosteal MS (%) 94.91 ± 3.47  78.83 ± 11.01  92.09 ± 3.71 52.53 ± 9.12  b 

Periosteal MAR 

(たm/day) 

3.62 ± 0.56 0.65 ± 0.06 b 3.28 ± 0.39 0.34 ± 0.03 b 

Periosteal BFR/BS 

(たm3/ たm2/day) 

3.45 ± 0.57 0.54 ± 0.01 b 3.05 ± 0.42 0.19 ± 0.05 b 

 

Values are mean ± SEM,a  p < 0.05,b  p < 0.01,c   p < 0.001 (paired t-test) 
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Legends 

Figure 1 Whole bone response to mechanical loading 

(A) Finite element models of the mice tibia showing the loading and constraint conditions and 

length changes before (L1) and under compressive load (L'1). (B) Percentage change in whole 

tibial bone volume of the loaded compared to unloaded internal control. All values are mean ± 

SEM, P2Y13R
-/- n=12; WT n=9. a p<0.05 (unpaired t-test). (C) The 3D models of whole tibia 

from P2Y13R
-/- and WT loaded and non-loaded animals were constructed from µCT images, 

scale bar = 2.0mm. (D) The overall strain based on compressive displacement of the whole tibia 

was analysed by FEA and compared between WT and P2Y13R
-/-. The average strain in the (E) 

trabecular and (F) cortical compartment were also calculated from a 1.0 mm in length region, 0.2 

mm below the growth plate in tibia. n=5 (unpaired t-test). 

 

Figure 2. Trabecular bone response to mechanical loading  

(A) Three dimensional images of a region of 1.0mm thick trabecular bone 0.2mm below the 

growth plate of mechanical loaded and non-loaded tibiae, scale bar = 0.5 mm. The contra-lateral 

non-loaded right tibiae were used as internal controls. The percentage change of (B) trabecular 

thickness (Tb.Th), (C) trabecular bone volume (BV/TV), (D) trabecular pattern factor (Tb.Pf), 

and (E) structure model index (SMI) for loaded tibia compared to unloaded controls. All values 

are mean ± SEM, P2Y13R
-/- n=12; WT n=9. a p<0.05 (unpaired t-test). 

 

Figure 3. Cortical bone response to mechanical loading. 

(A) Mouse tibial 3D models indicating the two regions analysed for determining cortical bone 

parameters, including proximal 20% and the mid-shaft of tibiae (1.0mm in thickness, 1.0mm and 
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7.0mm below the growth plate respectively). The cross section たCT images of loaded and non-

loaded tibiae were compared between WT and P2Y13R
-/- at (B) 2.0mm and (C) 8.0mm below the 

growth plate. The Ct.V in loaded tibiae normalized to contra-lateral non-loaded right tibiae at (D) 

the proximal 20% region and (E) the mid-shaft region. All values are mean ± SEM, P2Y13R
-/- 

n=12; WT n=9. a p<0.05 (unpaired t-test). 

 

Figure 4. Rate and extent of mineralization induced by mechanical loading of the tibia  

Double calcein labelling was used to determine the bone formation activities on both 

endocortical and periosteal surface. (A) Clear double labelling of calcein on endocortical 

surfaces confirmed lamellar bone formation at this site. The percentage change of loaded tibia 

compared to contra-lateral non-loaded right tibiae of (B) Mineral apposition rate (MAR), (C) 

bone formation rate (BFR/BS), and (D) mineralizing surface (MS%) on the endocortical surface. 

(E) MAR, (F) BFR/BS, and (G) MS on the periosteal surface. All values are mean ± SEM, 

P2Y13R
-/-  n = 5, WT n = 6, a p<0.05 (unpaired t-test). 

 

Figure 5. Regulation of extracellular ATP levels in osteoblast cultures. 

(A) A time course of ATP release and degradation in osteoblast cultures following medium 

change. P2Y13R
-/- osteoblasts showed a trend of extracellular ATP accumulation compared to the 

gradual degradation seen in WT cultures. All values are mean ± SEM, n = 4 per experiment, with 

3 independent experiments, a p<0.05, b p<0.01 (unpaired t-test). (B) Exogenous ATP (300nM) 

was hydrolyzed to half the amount within 5 mins in WT osteoblast cultures. However, the 

degradation of exogenous ATP in P2Y13R
-/- osteoblasts was slower than WT, with extracellular 

ATP concentration in the P2Y13R
-/- cultures being significantly higher than WT from 5 mins 
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onwards. All values are mean ± SEM, n = 4 per experiment, with 3 independent experiments, b 

p<0.01, c p<0.001 (unpaired t-test). (C) ALP activity of WT and P2Y13R
-/- osteoblast cultures 

was measured using pNPP assay and normalized to dsDNA content. All values are mean ± SEM, 

n=3 repeat experiments with 12 replicates per experiment, c p < 0.001, (Univariate analysis of 

variance). 
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Figure 1  
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Figure 3 
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Figure 4 
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Figure 5 

 

 


