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Tensile fabric membranes present opportunities for efficient structures, combining the cladding and
support structure. Such structures must be doubly curved to resist external loads, but doubly curved
surfaces cannot be formed from flat fabric without distorting. Computational methods of patterning
are used to find the optimal composition of planar panels to generate the form, but are sensitive to
the models and techniques used. This paper presents a detailed discussion of, and insights into, the
computational process of patterning. A new patterning method is proposed, which uses a discrete model,
advanced flattening methods, dynamic relaxation, and re-meshing to generate accurate cutting patterns.
Comparisons are drawn with published methods of patterning to show the suitability of the method.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Tensile fabric structures are lightweight structural forms
comprising a fabric membrane tensioned between a boundary of
rigid structural elements and/or flexible cables. Such structures
are characterised by their ability to resist external loading only
through increased tension in the membrane surface, which is in
turn resisted by compression and bending in supporting elements.
To gain adequate stiffness, surface curvatures must be relatively
high [1], and such doubly curved forms provide greatest stability
under external loading. The surface shape of tensile fabric struc-
tures cannot be defined geometrically by the designer, but must
be generated through form finding [2,3] – a computational process
that finds the equilibrium position of a structure for a given stress
state.

Prescribing a uniform pre-stress at the form finding stage
results in a stable minimal surface – a surface with minimal area
[4,5]. Combining a uniform pre-stress and a boundary with an
appropriate number of alternately high and low points gives a min-
imal surface with sufficiently high curvatures to resist external
loading. Such a structure can be considered optimal owing to: (i)
an absence of stress concentrations under permanent loading,
and (ii) a minimum of material used to achieve the form. Uniformly
tensioned membranes are superior in their performance under
external load, as they are less likely to wrinkle or fail by fatigue,
as stated in the European Design Guide for Tensile Surface
Structures [6].

Unfortunately, doubly curved surfaces are not developable –
they cannot be flattened into a plane without distorting [2,7,8].
Structural fabrics are manufactured as flat panels, and conse-
quently tensile fabric structures cannot be formed without incur-
ring stresses in the surface. Structural fabrics are manufactured
with a typical width of 2–3 m [9], and a maximum width of 5 m
[10], requiring multiple panels for larger structures. The shape of
these panels affects the final form and stress distribution of the
membrane.

The combination of double curvature and manufacturing con-
straints necessitates a specialist design process, patterning, be con-
ducted. Patterning seeks to determine the arrangement of planar
fabric panels such that, when the panels are assembled, the desired
3D form is achieved, and the stress distribution is as close as pos-
sible to that intended during form finding. Fabric usage should also
be minimised.

This paper presents a review of existing patterning methods,
and proposes a new methodology for patterning. Insights into
the computational process of patterning are presented, challenges
are highlighted, and solutions are proposed through discussion of
the new method. Comparisons with two published methods are
included to demonstrate the suitability of the proposed method
for tensile fabric structures patterning.
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Fig. 1. Seams and extracted panel for a catenoid surface.

Fig. 2. Cloth unfolding.
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2. Computational patterning

Historically patterning was conducted using physical models.
Computational methods of patterning are now used, and the gen-
eral process of patterning is divided into four steps:

1. Subdivision of the membrane into panels by seams
2. Flattening of each 3D membrane panel into 2D
3. Stress reduction to reduce stresses from flattening
4. Compensation to give panels which are mostly stress-free and

suitable for cutting

An additional fifth step can be included:

5. Assembly of panels to realise the final 3D form and stresses.

Step 1 – Seam definition, concerns the division of the form-
found membrane surface into panels (Fig. 1). The divisions are
defined by seams which generally take the form of sewn and/
or welded overlapping panels of fabric [11].

It is considered good practice to establish seam lines along geo-
desics [7,9,12]. Geodesics are lines of minimum distance over a
surface [7,13], and are the path adopted by a constant stress cable
stretched over the surface. Consequently, geodesic seams do not
introduce undesirable stresses into the membrane. Seams physi-
cally dictate the panel size, and affect the subsequent flattening,
stress reduction and compensation of the individual panels. For
practical reasons, seams should, run through the regions of low
curvature to avoid possible wrinkling during sewing and welding.
At the same time, they should be spaced reasonably, to ensure the
curvatures across the panels remain low.

Step 2 – Flattening, concerns the development of a portion of
the 3D form-found membrane surface into the 2D plane. Flat-
tening is discussed further in Section 3.1.

Step 3 – Stress reduction, concerns the application of iterative
methods to the flattened panel geometry to reduce stresses.
Stress reduction is discussed further in Section 3.2.

Step 4 – Compensation, concerns the shrinking of the pattern
to account for tensioning of the membrane during construction.
Steps 3 & 4 can be performed in one process [8], and the rela-
tionship between the two is discussed in Section 3.3.

Step 5 – Pattern assembly, can be included in patterning
schemes to calculate the final geometry and stresses in the con-
structed membrane. The cutting pattern is assembled according
to the physical boundary conditions, and relaxed into its equi-
librium shape, giving the final geometry and stresses.

3. Approaches to computational patterning

Whilst the general computational process of patterning follows
the above structure, there are differences in its implementation,
particularly at the stress reduction and compensation stages.

3.1. Flattening

As stated earlier, the panels defined on the form foundmembrane
surface must be flattened into the plane, and this incurs distortions.
Historically, flattening was undertaken using so called ‘‘cloth unfold-
ing” [14] (Fig. 2) – membranes were reduced to a series of devel-
opable polyhedral strips that were unfolded [14–16]. These strips
were then compensated in consideration of the pre-stress [9], and
did not include stress reduction methods. Such strips required a
compromise on accuracy [16], as high curvatures across a strip ren-
dered polyhedral approximations to the surface inadequate [14].

Because of the poor patterns that trivial unfolding processes
(in the absence of stress reduction procedures) produce, recent
methods use more complex computational techniques to minimise
flattening distortions [16], as discussed further in the following
section. With the introduction of methods of stress reduction,
flattening is now most commonly used to generate an initial
geometry prior to using these procedures. Different flattening
methods are highlighted in Section 5.1.

3.2. Reduction of flattening stresses

The problem of minimising flattening stresses can be formu-
lated in two ways; as (i) a geometrical problem, independent of
mechanical properties [17], and as (ii) a mechanical problem in
which material properties are included (Fig. 3).

Solutions to both problem formulations may be further cate-
gorised. The first of the two main solutions, may be termed the
‘minimisation solution’, and is more common. Here, flattening is for-
mulated as an optimisation problem, where the intention is to
minimise (i) in the case of a geometrical problem formulation, dis-
tortions induced by flattening [17], and (ii) in the case of a mechan-
ical problem formulation, the stresses induced by flattening, or the
deviation of the actual stress from the design stress [2,14]. This is
achieved by seeking to minimise an objective function represent-
ing the strain or stress deviations. Minimisation solutions to geo-
metrical [18] and mechanical [2,14] problems have been
achieved, using, for example, methods such as least squares.

The second solution may be termed the ‘structural solution’, as
the un-equilibrated pattern is relaxed into an equilibrium state



Fig. 3. Relationship between stress reduction problem formulations and solutions.

Fig. 4. Stress reduction and compensation – integrated versus distinct methods.
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under the action of the out-of-balance forces resulting from the
flattening strains [9].

Fig. 3 summarises the problem formulations, solutions, and the
relationship between them. Both solutions commonly make use of
iterative procedures. Consequently, all solution methods require an
initial starting configuration, which is provided by the flattening
process (Fig. 3). The quality of the flattened panel configuration
generated by methods such as those outlined in Section 5.1, affects
the efficacy of both structural and minimisation solutions. This is
explored further in Sections 3.4 and 5.2.1.

3.3. Compensation

Because the 3D membrane geometry represents strained fabric,
and the fabric pattern must be cut from unstrained cloth, the cut-
ting pattern must have smaller characteristic dimensions (e.g.
panel width and length) than in the assembled membrane. Com-
pensation is applied to shrink the flattened panel and give a pat-
tern suitable for cutting from planar cloth. Compensation can be
applied using the same minimisation [2] or structural solution
methods [9] used to reduce flattening distortions, or by scaling
the characteristic dimensions of a panel, according to the elastic
properties of the fabric. If minimisation or structural solution
methods are used, they are typically integrated with reduction of
the flattening stresses.

It is possible to perform stress reduction and compensation on a
flattened panel as one process [8]. In this regard, there is division
among researchers, with some conducting the two processes sep-
arately [18], and others preferring to conduct them simultaneously
[8,9]. To achieve integrated stress reduction and compensation,
pre-stress terms must be included in the problem formulation.
Thus integrated reduction and compensation is achievable when
using the mechanical problem formulation only. Conducting the
processes separately results in a geometrical problem, independent
of the mechanical behaviour [17]. Mechanical properties must then
be introduced for compensation. The difference between distinct
stress reduction and compensation, and integrated stress reduction
and compensation is highlighted in Fig. 4.

3.4. The influence of the flattened panel configuration on stress
reduction and compensation

Whether the stresses due to flattening are reduced simultane-
ously with those owing to pre-stress or not, the procedures used
to find the equilibrium stress-state are iterative. The accuracy
and stability of iterative schemes are dependent on the initial con-
ditions and the chosen method of solution, as mentioned in [2,8]
with respect to the Newton–Raphson procedure. Such issues with
convergence of the Newton–Raphson iteration are representative
of a more general issue affecting iterative stress reduction meth-
ods: the need for a suitable starting configuration. While efforts
have been made to circumvent or mitigate issues of convergence
[2] associated with poor starting geometry, computational effi-
ciency is enhanced when the starting geometry is close to the solu-
tion geometry, as reported in reference to form finding in [8]. Thus,
a method of defining the starting (flattened) geometry, which min-
imises distortions that must be reduced by stress reduction meth-
ods is desirable.

To the authors’ knowledge, no investigation into the effects of
different flattening methods, or comparison of different methods
has been conducted. Here the emphasis is on the process by which
one generates the starting (flattened) geometry for an iterative
stress-reduction or structural relaxation scheme. Some examples of
flattening methods include: simple direct projection to the plane
[8,15]; projection of surface points to the tangent plane of the sur-
face at each point [18]; and projection to a defined intermediate
developable surface that is subsequently unrolled to give a planar
un-equilibrated pattern [9]. It is possible, with discrete element
models (discussed in Section 3.6), to employ unfolding methods
for flattening relatively easily.

3.5. Pattern assembly and equilibrium finding

Pattern assembly can be included in the patterning process to
evaluate the suitability of the patterns generated by previous steps
[15]. The cutting pattern is assembled, and translated into the
boundary configuration. It is then analysed to find the equilibrium
state. During the stress reduction process, it is usually not possible
to nullify the stresses due to flattening. Therefore the reverse of the
residual stresses from flattening and stress reduction would be
expected to appear along with the pre-stress in the assembled
equilibrated structure. The suitability of the cutting pattern can
be evaluated by comparing these stresses with the prescribed
pre-stress, and by measuring the deviation of the geometry from
the form-found geometry.

3.6. Fabric modelling

Architectural fabrics are heterogeneous, comprising woven
fibres with a polymer topcoat. Their tensile stiffness and load car-
rying capacity is derived principally from the fibres [19]. The coat-
ing makes a negligible contribution to the tensile stiffness, but is
the main contributor to the shear stiffness. The fibres are bidirec-
tional, and are generally orthogonal in the planar cutting pattern,
but to adopt a doubly curved geometry the weave must shear
[12,20]. At the design stage, fibre directions are known only in
the planar fabric that forms the cutting pattern – fibre directions
in the assembled membrane are unknown.

In addition, structural fabrics are anisotropic, and material
properties must be known in the two fibre directions; the (stiffer)
warp, and weft; such material data is not readily available. Strains
in the computational model must be related to stresses using
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appropriate stiffness values, and the relation is complicated by the
changing fibre directions. Computational modelling must account
for this changing material basis, and accommodate the relative
changes of the warp and weft directions.

There remains discussion concerning the most appropriate
model for modelling of tensile structures [16]. Here, the specific
implications of different models for patterning are discussed.

Fabric models can be divided into two broad categories; those
employing continuum assumptions [2,8,9,15], and those treating
the fabric as a structural mechanism comprising discrete compo-
nents [21]. Continuum models, solved using finite element meth-
ods, provide efficient models for analysis [21], but assume
homogeneity of the surface. This assumption precludes continuum
models from accounting for stiffness variations in sheared geome-
tries, such as those present when assembling the structure from
planar panels.

Discrete models have received most attention in modelling fab-
rics for non-structural textiles and computer graphics [22–24], but
offer an attractive proposition for the modelling of structural tex-
tiles, because they reflect the heterogeneous micro-structure beha-
viour of the fabric. The changing behaviour of the fabric when
undergoing shear deformation can be more accurately modelled
using discrete models. However, discrete models suffer from inef-
ficiency as the fabric behaviour becomes more complex, which is
captured in ‘‘composite crimp” [16] models. The discrete
‘‘particle-spring” model proposed in [23] utilised extension
springs, shear springs, bending springs and twisting springs. Such
a model is unnecessarily complex for tensile structures patterning
owing to the negligible bending and twisting stiffness of architec-
tural fabrics. However, a model derived from similar tensile and
shear elements would provide a good basis for fabric patterning.
The discrete element method proposed in [21] used fibre tensile
elements, fibre shear elements, fibre crimp elements, coating ten-
sile elements, and coating shear elements. Similarly, such a model,
for patterning, would benefit from simplification, for example by
retaining only fibre tensile elements and coating shear elements.

A further alternative is that presented in [25], in which angular
deformations between tensile elements were related to forces at a
node. In this paper, in Sections 4 and 5, we present a new discrete
model which preserves some elements of the approach used in
[25] and incorporates tensile and shear elements.
3.6.1. Challenges in computational modelling
As mentioned in Section 3.4, the flattened panel configuration

affects the results of the subsequent stress reduction and compen-
sation processes. The research is motivated by the need to have
easily defined projections that reduce distortions in the flattened
panel configuration, before stress reduction schemes are applied.

The direction of the fibres, as defined by the design engineer
when orienting the fabric with respect to the overall structure,
has been shown to affect the structural behaviour of the membrane
under external load [26]. Differing fibre directions along the seam
line of adjacent panels [20] also affect the behaviour of the mem-
brane. However, the effect of the disparity between assumed fibre
directions during computational modelling and actual fibre direc-
tions in the erected membrane structure has not yet been
quantified.
Fig. 5. Configuration of discrete element model.
4. Proposed fabric mechanical model

With a form found shape generated from continuum elements
using RhinoMembrane [27], a spline surface interpolated through
the mesh nodes facilitates the construction of geodesics for panel
seams and mesh line definition. For modelling the fabric and com-
puting stresses with respect to warp and weft directions during
flattening, stress reduction and compensation, a moment-less dis-
crete element model, solved by the dynamic relaxation method [7],
is proposed. This has the advantage of offering a straightforward
modelling method, in which elements representing the fabric are
assigned axial stiffness properties representing either warp or weft
fibre directions, and retain this stiffness throughout the modelling.
Changes in the orientation of the fibres are directly reflected in the
stress computation.

As architectural fabrics are considered to have negligible bend-
ing stiffness [1], it is similarly assumed that their twisting stiffness
is negligible. The shear stiffness of architectural fabrics is low [16],
and in the proposed model is taken as 1/20 of the tensile stiffness
[12,26]. Fig. 5 shows the configuration of our proposed discrete ele-
ment model in which tension and shear actions are decoupled.

A further description of the shear model is given in the follow-
ing section.
4.1. Shear modelling

The shear resistance of the fabric is formulated in the proposed
discrete model by examining the rotation between warp and weft
elements at a node, and considering the shear forces required to
produce this shear deformation. In this way the proposed method
is similar to that described in [25], but overcomes several limita-
tions. The original method required four elements to calculate
shearing, a regular spacing of tensile elements, and for the ele-
ments to remain in-plane. Similarly, the unstrained geometry of
the fabric was used to derive the directions of the resulting forces,
limiting the formulation to small deformations.

The proposed method models the shear response of the fabric
using two neighbouring elements only. Forces derived from the
rotation between elements are apportioned to the common node
only. The direction of the resultant force is derived from the
deformed configuration of the elements, accommodating larger
deformations.

Fig. 6 shows the rotation between two elements at a node due
to shearing. The shear strain c is calculated from the change in
angle between the elements, from an initial rest angle /0. This
shear strain is related to a shear stress s through the shear modu-
lus G. The shear forces, Fij and Fik, required to produce such a shear
stress, act along the directions of the tensile elements, and are
resolved into force F at the common node between the two tensile
elements. Force F is the force required to produce the shear defor-
mation, and thus represents an external force. The resistance of the
fabric to this deformation is thus the vector opposite of F, defined
as R. Thus force R is apportioned to the node.

In the computational discrete element model, this process is
achieved using shear elements between warp and weft elements,
as indicated in Fig. 5.



Fig. 6. Rotation between elements, resulting shear strain, and force due to shearing.
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5. Proposed patterning method

5.1. Flattening methodology

As discussed previously, the fibre directions (and consequently
principal stiffness directions) are not known in the 3D configura-
tion before patterning. When meshing a panel prior to flattening
and stress reduction, the choice of mesh impacts on the calculated
strain, and consequently the suitability of the patterns generated. A
robust material relationship that accommodates the varying aniso-
tropy of the fabric is required, and this is achieved using a discrete
element model. However, there is still a choice to be made as to the
initial directions of the elements.

It would appear that, for maximum accuracy of flattening, a
geodesic mesh should be used on the 3D form, as it would repre-
sent minimum distances over the curved surface. However, initial
investigations by the authors into the use of meshes with geodesic
generator curves highlighted a problem of numerical ill-
conditioning, due to an uneven spacing of elements negatively
affecting the surface stiffness. Constructing the mesh from geode-
sic curves along the direction of higher curvature, and interpolated
curves in the second direction, was found to produce a superior
mesh for further analyses.
5.1.1. Proposed un-roller method – advantages over direct projection
flattening

As mentioned in Section 3.4, the extent of deformation resulting
from flattening affects the subsequent stress reduction and com-
pensation analyses. Flattening methods that give planar panel con-
figurations with reduced stresses are therefore desirable. As part of
the patterning method presented in this paper, we propose an un-
roller method for flattening. This method generates initial planar
panel configurations, which improve the subsequent stress reduc-
tion and compensation processes. In this and the following sec-
tions, the un-roller method is compared with a trivial projection
method, to highlight the advantages of the method.

The un-roller method takes a row of elements along the centre-
line of the panel, and unrolls this centreline to the plane. Rows of
elements in the other direction are unrolled in the plane using
the planar centreline. Elements in the direction of the original cen-
treline are then interpolated using the planar nodes. Fig. 7 illus-
trates this method. The flattened panel configuration generated
using this method, for a panel on the catenoid shown in Fig. 1, is
shown in Fig. 8.

An alternative, direct projection method is a more extreme and
simpler method that has been used by some researchers [8], and
confirmed by others [15], in which nodes are projected directly
to the plane. In effect, the global coordinates of each node ðx; y; zÞ
are set to ðx; y;0Þ. The flattened panel configuration generated
using this method, for the same panel as in Figs. 1 and 8, is shown
in Fig. 9.

The strains in the model are calculated using the 3D doubly
curved shape as the un-deformed element reference lengths. The
tensile stiffness of the fabric is modelled as 500 kN/m in both
warp andweft directions, giving rise to the stresses shown in Figs. 8
and 9.

It is immediately clear that the stresses in the configuration
generated by the direct projection method are much higher than
those in the configuration generated using the un-roller function,
and are out of the working range of stresses of the fabric.
Section 5.2.1 highlights the issues these high stresses incur when
trying to remove the flattening stresses.

It is possible to use a developable surface instead of a direct
plane projection, and then unroll the surface to obtain a flattened
configuration, as proposed in [9]. This, however, adds to the
computational effort and does not avoid errors associated with
the projection onto a developable surface.
5.2. Proposed compensation – integrated stress reduction and
compensation

Here, integrated compensation to remove the pre-stress and
reduce flattening stresses is employed. Referring to the termino-
logy in Section 3, the mechanical problem formulation is solved
using a structural integrated compensation method. Dynamic relax-
ation [7] is the chosen analysis method for finding the equilibrium
geometry of the panel. Under imposed flattening stresses during
compensation, element forces at nodes are summed and resultant
nodal forces are found. Dynamic relaxation with kinetic damping is
then used to find the equilibrium geometry, with motion being
first initiated from the initial resultant nodal forces. Specific nodes
in the panel must be restrained to prevent rigid body translations
and rotations.
5.2.1. The effect of flattened panel configuration on integrated stress
reduction and compensation

The panel has a large number of degrees of freedom compared
with the restraints. Consequently, the quality of the flattened panel
configuration, on which dynamic relaxation is conducted, affects
the performance of the analysis. If dynamic relaxation is conducted
on the flattened panel geometry shown in Fig. 8, the analysis con-
verges, and the residual stresses in the panel are negligible, as
shown in Fig. 10. It is not possible to entirely nullify the stresses,
owing to the non-developability of the form found shape.

However, if the flattened panel configuration in Fig. 9 is anal-
ysed, the analysis diverges, as shown in Fig. 11. The large stresses



Fig. 7. Unrolling of the mesh to the plane.

Fig. 8. Stresses when flattened using a simple un-roller method.

Fig. 9. Stresses when flattened using direct projection.

Fig. 10. Successful convergence when relaxing a panel of good initial geometry
(shown in Fig. 8).

Fig. 11. Divergence of solution when attempting to relax a panel of poor initial
geometry (shown in Fig. 9).
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in the flattened panel configuration generated with direct
projection cause numerical ill-conditioning. Large stresses in the
elements lead to high residual forces at the nodes, and dispropor-
tionately large displacements compared to the nodes with
lower residual forces. In the worst cases this leads to divergence,
as in Fig. 11, but in cases where convergence is achieved, the
equilibrium panel geometry suffers from large local distortions
and is unsuitable for a final cutting pattern.
5.3. Panel assembly and re-meshing

To evaluate the suitability of patterns generated using
integrated stress reduction and compensation, the proposed
patterning method includes assembly of the planar pattern. To
increase the accuracy of the fabric model, the planar panels are
re-meshed, before assembly, with an orthogonal mesh to give a
realistic representation of the warp and weft directions.
5.3.1. Orthogonal re-meshing
As discussed in Section 3.6, the fabric weave is orthogonal in

plane, but must shear to adopt a doubly curved geometry
[12,20]. Prior to flattening, assumptions must be made concerning
the fibre directions. However, after flattening and compensation, it
is possible to re-mesh the cutting pattern with an orthogonal
mesh.

Our proposed method uses orthogonal re-meshing to give a
more accurate representation of the fabric. The planar boundary
of the compensated panel is intersected with a series of orthogonal
gridlines to generate a mesh, as shown in Fig. 12. Similar to the
mesh prior to flattening, mesh conditioning is an important
feature. It is generally beneficial to ensure the mesh is triangulated
along the boundaries; if the mesh is not triangulated, issues with
convergence can occur, as explained below.

A close up of a non-triangulated mesh is shown in Fig. 12. It can
be seen that there are elements with comparatively short lengths
along, and neighbouring, the boundary. These elements cause
similar problems to those outlined in Section 5.2.1; their compar-
atively short lengths lead to large variations of stress between



Fig. 12. Generation of mesh by intersection with grid and resulting ill conditioning.
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adjacent elements. Additionally, where elements along the bound-
ary form a polygon with greater than four vertices/edges, as shown
in Fig. 12 where the elements form a pentagon ABCDE, numerical
ill-conditioning will occur due to unrestricted movement. This
effect is particularly pronounced where the boundary elements
represent constant force cables; in this case, the boundary element
between nodes C & D will reduce in size until the nodes are
virtually coincident.

To ensure triangulation along the boundaries, the orthogonal
gridlines used to generate the mesh should be defined using the
panel boundary. Defining nodes along the boundary of the panel,
and constructing lines along two orthogonal vectors for the
relevant nodes, results in a triangulated mesh, shown in Fig. 13.
Careful definition of the boundary nodes is required to ensure
the resulting elements are appropriately spaced.

In addition to ill conditioning, re-meshing can result in a loss of
accuracy. The boundary of the compensated panel is represented
by a polyline. Intersecting a grid with this polyline, and regenerat-
ing the boundary elements, can result in a deviation of the boundary
geometry from the original, if the mesh is not sufficiently fine. This
can be avoided by constructing the orthogonal grid with the
boundary nodes of the compensated panel as the starting points
for defining the orthogonal lines.

5.3.2. Dynamic relaxation of panel assembly
With a suitable orthogonal mesh defined on each of the planar

panels, the pattern can be mapped into the physical 3D boundary,
and adjacent panels joined. At this stage, the assembly is not
in equilibrium. Dynamic relaxation is again used to find the
Fig. 13. Generation of a triangulated mesh through orthogonal grid lines defined
using the planar cutting pattern boundary.
equilibrium geometry and estimate the final stresses in the mem-
brane. There are sufficient restraints at this stage of the process for
the dynamic relaxation analysis to converge, even in the presence
of large local distortions caused by the mapping. Consequently, the
mapping of the 2D panels to the 3D boundary geometry does not
have to be sophisticated, unlike the flattening of the 3D panels
for stress reduction and compensation.
6. Comparative studies

The efficacy of the proposed patterning method is now illus-
trated by comparison with two published results. The results
are first shown without modelling the shear resistance when
re-assembling the cutting patterns (Sections 6.1 and 6.2). The
effect of the shear stiffness of the fabric is then presented by a fur-
ther analysis (Section 6.3).

6.1. Comparison with Moncrieff & Topping [15]

The methods used in [15] employed a continuum model for
patterning, except for the final step in which the surface was
converted to tension links. Three procedures for patterning were
employed: cloth unfolding, dynamic relaxation and least squares
minimisation. Here, we compare with the third example from
[15], where the flattening method used geodesic lines to extract
panels from the 3D surface followed by least squares minimisation
to reduce distortions due to flattening. The panels were assembled
using an orthogonally meshed cutting pattern, and analysed to find
the final stresses and geometry.

A catenoid with dimensions taken from [15], with ring diame-
ters of 3.2 m and 12 m respectively, a ring separation of 2.0 m,
and an isotropic pre-stress of 3 kN/m, was form found and
patterned for comparison. Owing to symmetry, ¼ of the surface
was modelled. The surface was patterned using the methods pro-
posed in Sections 4 and 5, and using 6 panels for the ¼ surface;
24 panels having been used for the whole surface in [15]. Following
flattening, stress reduction and compensation, the panels were
re-meshed in plane, with an orthogonal mesh, for assembly and
tensioning into the boundaries. Dynamic relaxation was then used
to find the equilibrium shape for the assembled, in boundary,
geometry. Since no shear stiffness was given in [15], the analyses
were conducted with a shear stiffness of zero throughout.

The equilibrium geometry and final stress deviations for the
warp and weft directions are shown in Fig. 14. The greatest stress
deviation where stresses are higher than the intended pre-stress is
+0.43 kN/m, and occurs in the warp elements near the seams,
towards the upper fixed ring boundary. The greatest stress devia-
tion where stresses are lower than the intended pre-stress is



Fig. 14. Deviation from intended pre-stress of 3 kN/m after pattern assembly and relaxation for Moncrieff & Topping [15].
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�0.846 kN/m, and occurs in the weft elements near the seams,
towards the upper boundary. The maximum and minimum
stresses represent deviations from the assumed pre-stress of
+14.3% and �28.2% respectively, in comparison with [15], where
the maximum and minimum stress deviations could only be
estimated from the graph, giving values of 20% and �18% respec-
tively. Although the ranges of stress deviations are similar, the
areas affected in the case of [15] were in the main body of the
surface (not near the boundaries). The differences in the mapping
and in surface representations contributed to differences in the
results.

6.2. Comparison with Linhard et al. [8]

The methods used in [8] employed a continuum model, and
used a mechanical problem formulation with a stress minimisation
solution to simultaneously reduce stresses and achieve compen-
sated patterns.

A catenoid with dimensions taken from [8], with ring diameters
of 1.2 m and 5.6 m respectively, a ring separation of 1.0 m, and an
isotropic pre-stress of 2 kN/m, was form found and patterned for
comparison. Owing to symmetry, again ¼ of the surface was
modelled. The surface was patterned using the methods proposed
in Sections 4 and 5, and using 3 panels for the ¼ surface; 12 panels
having been used for the whole surface in [8]. Following flattening,
stress reduction and compensation, the panels were re-meshed
in plane, with an orthogonal mesh, for assembly and tensioning
into the boundary. Dynamic relaxation was then used to find the
equilibrium shape for the assembled, in boundary, geometry. The
shear stiffness of the fabric was not included.

Fig. 15 shows the final geometry and resulting deviations of
the stresses from the intended pre-stress of 2 kN/m in the warp
and weft directions. The greatest stress deviation where stresses
are higher than the intended pre-stress is +0.964 kN/m, and occurs
in the weft elements where the seams meet the lower fixed ring
boundary. High stresses also concentrate in the weft elements
where the seams meet the upper boundary, in the warp elements
neighbouring the seams, and in the warp elements towards the
upper boundary.

The greatest stress deviation where stresses are lower than
the intended pre-stress is �1.84 kN/m, and occurs in the warp
elements adjacent to the seams, where the seams meet the upper
boundary. These stresses occur over a very small area, and indicate
an excess of fabric in the cutting pattern in this area. Lower stresses
also occur in the weft elements in the centres of the panels,
towards the lower boundary.

The maximum and minimum stresses represent deviations of
+48.2% and �92.0% respectively from the prescribed pre-stress. In
[8] principal stresses are given, corresponding to the maximum
and minimum deviations of +2.08 kN/m (+104%) and �0.83 kN/m
(�41.5%) respectively, with higher stresses than the intended
pre-stress seen near the seams towards the upper boundary, and
lower stresses are seen in the centre of the panel towards the
upper ring boundary. The stress distribution in Fig. 15 bears some
similarities to that of [8], with higher stresses concentrating near
the seams, towards the upper boundary, corresponding to the
areas of higher curvature.
6.3. Comparison with Linhard et al. [8] including shear

The same geometry from Linhard et al. [8] was analysed
again, using the methodology discussed in Sections 4 and 5, but
this time including the shear resistance of the fabric. No explicit
value for shear stiffness was given in [8], so the shear stiffness
was taken as 1/20 of the tensile stiffness, as recommended
in [12,26]. For the tensile stiffness of E = 220 kN/m, this rule of
thumb gives the shear stiffness, G = 11 kN/m. This value of shear
stiffness was included when generating the cutting pattern
through flattening, stress reduction and compensation, and again
when re-assembling and relaxing the orthogonally meshed panels.

Fig. 16 shows the final geometry and resulting deviations
of the stresses from the intended pre-stress of 2 kN/m in the
warp and weft directions. The greatest stress deviation where
stresses are higher than the intended pre-stress is +2.06 kN/m,
and occurs in the warp elements near the seams, towards, but
not immediately adjacent to, the upper boundary. High stresses
concentrate along the seams in the warp direction, towards the
upper boundary. Stresses above the intended pre-stress also occur
in the weft elements near the seams, where the seams meet the
upper and lower boundaries.

The greatest stress deviation where stresses are lower than
the intended pre-stress is �0.395 kN/m, and occurs in the warp
elements in the centre of the panel. Some stresses below the
intended pre-stress also occur in the weft elements near the panel
centres, adjacent to the boundaries. The stress distribution pre-
sented in Fig. 16 is very similar to that of [8], with higher stresses
concentrating near the seams, towards the upper boundary. The
stresses reduce in magnitude away from the upper ring. A patch
of low stress within the centre of the panel, towards the upper ring
boundary is seen in both Fig. 16 and [8].
6.4. Final comparison of results

Table 1 shows the greatest stress deviations for all analyses. The
proposed model and patterning method show good agreement



Fig. 15. Deviation from intended pre-stress of 2 kN/m after pattern assembly and relaxation for Linhard et al. [8].

Fig. 16. Deviation from intended pre-stress of 2 kN/m after pattern assembly and relaxation for Linhard et al. [8], including shear resistance in the discrete model.

Table 1
Table of final stress deviations for all analyses.

Analysis Prescribed Positive stress Negative stress
Pre-stress Deviation Deviation

(kN/m) (kN/m) (%) (kN/m) (%)

Geometry from Moncrieff & Topping [15]
Moncrieff & Topping [15] 3.00 Not given 20% Not given �18%
Gale & Lewis (without shear) 3.00 +0.430 14.3% �0.846 �28.2%

Geometry from Linhard et al. [8]
Linhard et al. [8] 2.00 +2.08 +104% �0.83 �41.5%
Gale & Lewis (without shear) 2.00 +0.964 +48.2% �1.84 �92.0%
Gale & Lewis (with shear) 2.00 +2.06 +103% �0.395 �19.8%
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with Linhard et al. [8], particularly when shear is included. It is
evident that the inclusion of the shear stiffness is important, for both
generating a suitable cutting pattern, and for analysing the assembly
of this pattern. It has been suggested previously that since the shear
stiffness of fabrics is low, it can be ignored [16]. However, results
presented in Figs. 15 and 16 indicate that this is not a safe assump-
tion, even for relatively low values of shear stiffness.
7. Conclusions

This paper presents a review of patterning methodologies and
highlights challenges in computational modelling of the problem.
It is against this background that a new patterning approach, based
on a discrete element model is proposed. This approach gives good
representation of the fabric membrane behaviour, allows for
easy re-meshing prior to panel assembly, and is particularly suited
to the method of dynamic relaxation employed at the integrated
stress reduction and compensation stage.

Examples of patterning applied to a catenoid surface highlight
the importance of investigating different methods of flattening
and their effect on the stress distribution in the compensated
(cutting pattern) panel. It is shown that poor flattening can not
only adversely affect the solution, but can lead to a lack of
convergence of the numerical solution.

The proposed discrete element model in conjunction with
orthogonal re-meshing of the cutting patterns gives a realistic
description of the fabric surface, most effectively at the pattern
assembly step. Geodesic curves in the direction of highest
curvature and interpolated curves in the second direction, prior
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to flattening, give evenly spaced meshes that converge to suitable
solutions, when reducing stresses and compensating the panel
using dynamic relaxation. Meshes based on geodesics in two direc-
tions were found to give rise to ill-conditioning of the numerical
solution.

The inclusion of the shear stiffness throughout the analysis
(cutting pattern generation and pattern assembly) has been shown
to affect the final distribution of stresses in the assembled 3D
shape. The results show the residual stresses after assembly to
be within the ranges reported in literature where continuum, or
hybrid: continuum/discrete models have been used. Our proposed
discrete model is a simple alternative, shown to be suitable for cut-
ting pattern generation. However, further work is needed to come
up with guidance on suitable mesh configurations for various sur-
face geometries.
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