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Key points

� Mathematical and computational models of cardiac physiology have been an integral
component of cardiac electrophysiology since its inception, and are collectively known as
the Cardiac Physiome.

� We identify and classify the numerous sources of variability and uncertainty in model
formulation, parameters and other inputs that arise from both natural variation in experimental
data and lack of knowledge.

� The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood,
and this limits their utility as clinical tools.

� We argue that incorporating variability and uncertainty should be a high priority for the future
of the Cardiac Physiome.

� We suggest investigating the adoption of approaches developed in other areas of science and
engineering while recognising unique challenges for the Cardiac Physiome; it is likely that
novel methods will be necessary that require engagement with the mathematics and statistics
community.
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Abstract The Cardiac Physiome effort is one of the most mature and successful applications
of mathematical and computational modelling for describing and advancing the understanding
of physiology. After five decades of development, physiological cardiac models are poised to
realise the promise of translational research via clinical applications such as drug development
and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility
modulation therapies. For models to be included as a vital component of the decision process in
safety-critical applications, rigorous assessment of model credibility will be required. This White
Paper describes one aspect of this process by identifying and classifying sources of variability and
uncertainty in models as well as their implications for the application and development of cardiac
models. We stress the need to understand and quantify the sources of variability and uncertainty
in model inputs, and the impact of model structure and complexity and their consequences for
predictive model outputs. We propose that the future of the Cardiac Physiome should include a
probabilistic approach to quantify the relationship of variability and uncertainty of model inputs
and outputs.

(Received 30 September 2015; accepted after revision 28 February 2016; first published online 15 March 2016)
Corresponding author R. Clayton: Department of Computer Science, Regent Court, 211 Portobello Street, Sheffield S1
4DP, UK. Email: r.h.clayton@sheffield.ac.uk

Abstract figure legend In the conventional approach to cardiac modelling, model inputs and parameters are assigned
fixed values. These produce single outputs such as action potential time series or tissue activation sequences, as shown
in the top panel of the figure. In this White Paper we argue that for models to become valuable clinical tools it will be
important to treat model inputs as uncertain quantities, expressed as distributions, as shown in the lower panel of the
figure.

Abbreviations AP, action potential; APD, action potential duration; GKs, maximum conductance of the slow delayed
rectifier current; GK, maximum conductance of outward K+ current; UQ, uncertainty quantification.

Introduction

The Cardiac Physiome project is an international effort to
integrate different types of data across a range of time and
space scales into models that encode quantitatively our
understanding of cardiac physiology (Bassingthwaighte
et al. 2009). In this approach, models are simplified
representations of complex natural systems that can be
used to reconstruct the behaviour of cardiac cells, tissue
and the whole organ.

Models are a set of mathematical relationships,
implemented in software as computational models, which
produce outputs that are a function of inputs. Inputs can
include model parameters, initial conditions, boundary
conditions and tissue or whole organ geometry. Inputs
often have physiological meaning and are typically
obtained by direct measurement or indirect calibration
from experimental data, or inherited from other models
or model components.

Cardiac modelling has been enormously successful at
yielding insight into physiological mechanisms at cell and
tissue scales. For example, since the publication of the
first model of cardiac cellular electrophysiology more than
50 years ago (Noble, 1962), continuous development has
resulted in models with increasing biophysical detail (Fink

et al. 2011) and has enabled important contributions to
our knowledge of cardiac cellular physiology to be made.
These include mechanisms of spontaneous depolarisation
in sino-atrial node cells (Noble et al. 1992), the role of
re-entrant spiral waves in arrhythmias (Gray et al. 1995),
and the whole-cell consequences of ion channel mutations
(Roberts et al. 2012). In all these examples there was a tight
integration between modelling and experimental work.
Cellular level electrophysiology models are beginning
to be used in safety-critical situations such as safety
pharmacology (Mirams et al. 2012), where they now form
an integral part of a proposal to replace a human clinical
pro-arrhythmic risk trial (Sager et al. 2014).

Action potential models are one component of
multi-scale models of tissues and whole organs that can
reconstruct the electromechanical behaviour of cardiac
tissue (Trayanova, 2011), and there is the prospect of
such tissue models being utilised as safety-critical clinical
tools (Relan et al. 2011; Sermesant et al. 2012; McDowell
et al. 2013). While this is an exciting prospect, the trans-
lation from using models to test scientific hypotheses to
using models to aid in clinical therapy will require the
credibility of predictive model outputs to be rigorously
quantified and evaluated. Establishing credibility involves
an assessment of how well the model behaviour reproduces
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the heart function of a typical patient, as well as a
consideration of how uncertainties in the model inputs
and parameters influence confidence in predictive outputs
for an individual patient.

In this White Paper we therefore argue that a
detailed and systematic consideration of variability and
uncertainty in cardiac models is an important future
research direction for the Cardiac Physiome. Similar
problems have been encountered in other predictive
modelling fields, for example in weather forecasting, where
models are also computationally intensive, multi-scale
and multi-physics, and may be used in decisions such as
whether or not to evacuate towns and cities in advance of
severe weather (Bauer et al. 2015). A natural stage in the
development and adoption of this type of computational
model has been to establish a quantitative understanding
of uncertainties. This has proved to be a necessary step for
establishing the credibility of model predictions, especially
for safety-critical applications.

We begin by assessing the potential sources of
uncertainty in cardiac models, we then highlight lessons
that have been learned from other areas, enumerate some
relevant mathematical tools and approaches, review recent
progress in cardiac models and suggest potential areas
where progress could be made. Our focus in the examples
is on models of cardiac cell and tissue electrophysiology;
nevertheless the principles we cover are also applicable to
the rest of the Cardiac Physiome.

Uncertainty in models of natural systems

Models of natural systems involve parameters that are
either directly measured or indirectly inferred (calibrated)
using experimental data. However, even the most carefully
conducted experiments exhibit both intrinsic variability in
their temporal behaviour and extrinsic variability between
individual samples. For example, variability is reflected in
the intrinsic beat-to-beat fluctuation of action potential
duration (APD) in a single cell (Zaniboni et al. 2000)
and extrinsic cell-to-cell differences in action potential
duration.

Intrinsic and extrinsic variability describe fluctuations
that may be due to inherent randomness, or natural
differences between individuals. Variability is one cause
of uncertainty, the confidence or precision with which
a quantity can be assigned a value. Uncertainty can be
either due to variability or due to lack of knowledge.
Natural variation is sometimes characterised as aleatory
uncertainty, and uncertainty arising from lack of
knowledge as epistemic uncertainty.

Uncertainty is an important consideration not only for
model calibration, where inputs such as parameter values
are derived from experimental data, but also for model
validation (where model outputs are evaluated against

experimental data not used in the calibration stage) and
for model prediction. We stress that calibration, validation
and prediction are separate activities. Most models treat
inputs as quantities with a fixed value, and generate
outputs that are single values or a time series of single
values. However, model parameters and other inputs
are usually uncertain because of possible variability and
the inherent limitations of experiments and calibration.
This can be addressed by assigning probability distributions
rather than fixed values to model inputs. Uncertain inputs
result in uncertain model outputs, and the process for
considering the impact of input uncertainties on outputs
is uncertainty quantification (UQ).

This concept is illustrated in Fig. 1, where two inputs
are combined to produce an output. Grey lines indicate
the conventional approach, where each input is assigned
a fixed value (I1 and I2), producing a fixed value on the
output (O). Uncertainty on the inputs can be expressed
by assigning each input a distribution, and the black lines
indicate distributions on the two inputs as well as the
output distribution. In this illustrative example the input
distributions are normal, but the output distributions are
skewed to emphasise that it is not necessarily the case that
normally distributed inputs would result in a normally
distributed output. Changing the input distributions may
have different effects on the model output distribution. In
Fig. 1, doubling the width of the input 1 distribution has
a smaller effect on the output distribution (red line) than
a similar change to the width of the input 2 distribution
(blue line).

UQ can be used, for example, to determine a probability
distribution for an output such as APD predicted by a
cardiac action potential model, based on uncertainty in
selected model inputs. When the output is a time series,
such as membrane voltage, then the output is a time series
of probability distributions, or more precisely a stochastic
process. When the output is a binary quantity, such as
when whole heart models are used to address questions
such as, Does ventricular tachycardia degenerate into
ventricular fibrillation? UQ enables probabilities to be
assigned to the discrete possibilities.

A similar and related concept is parameter sensitivity,
which quantifies how sensitive model outputs are to
changes in model inputs, but does not require the
uncertainty in the input to be characterised. Sensitivity
analysis can be used to identify model parameters and
other inputs that have a dominant influence on model
outputs, and so should be measured as precisely as possible
(Romero et al. 2009; Sarkar et al. 2012; Pathmanathan
et al. 2015). Conversely, sensitivity analysis can also be
used to identify parameters and other inputs that do not
have a strong effect on a particular output, in which case
uncertainty in those inputs may be neglected in the UQ
process.

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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There is a substantial literature on uncertainty
quantification (see for example Smith, 2014), and several
sources of variability and uncertainty in computer models
can be identified (Kennedy & O’Hagan, 2001; Vernon
et al. 2010). These are illustrated in Fig. 2, which shows
how different types of uncertainty combine to influence
uncertainty in a model output.

Observational or measurement uncertainty takes into
account errors in experimental measurements, and
residual variability describes intrinsic randomness in the
system as well as extrinsic variability. These types of
uncertainty influence both direct parameter measurement

and indirect model calibration from experiments, and
contribute to input uncertainty in the model. Input
uncertainties include parameter uncertainty and condition
uncertainty, which account for uncertainties in boundary
conditions and initial conditions. Geometry uncertainty
may also arise due to observational uncertainty related
to the resolution of imaging, image segmentation and
mesh fitting, as well as variability in the underlying
heart structure. There are often additional input
uncertainties associated with more complex inputs such
as the spatial distribution of various parameters including
heterogeneity of cellular kinetics. The effect of the
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Figure 1. Illustrative example showing how model inputs (I1, I2) and outputs (O) can be characterised
as probability distributions rather than fixed values
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Figure 2. Diagram showing how
different sources of uncertainty
combine to produce output uncertainty
(continuous arrows), and how
structural uncertainty is important for
model calibration (dashed arrows)
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Table 1. Examples of sources of uncertainty, drawing parallels between weather forecasting and cardiac modelling

Weather/climate modelling
Source of uncertainty example Cardiac modelling example

Residual variability

Intrinsic variability Brownian motion of water vapour
and particles influencing cloud
formation in the atmosphere

Stochastic opening of ion channels

Extrinsic variability Long-term climate variability, rising
greenhouse gas concentrations,
volcanic eruptions

Cell–cell variation in ion channel
expression

Measurement
uncertainty

Errors in temperature and pressure
measurements

Errors from instrument noise or
calibration in ionic currents from patch

Lack of information

Observational
uncertainty

clamp recordings
Lack of coverage, gaps between
monitoring stations

Total not individual ionic currents are
recorded from a myocyte using
whole-cell patch clamp

Parameter uncertainty Threshold of relative humidity for
cloud formation

Maximal conductance of ion channels

[Initial/boundary] Condition uncertainty Initial conditions measured on
irregular grid. Coupling of heat
transfer between oceans and
atmosphere

Intracellular and extracellular ion
concentrations and ion channel states.
Degree of coupling between excitable
and inexcitable cardiac cells

Geometry uncertainty Topography of every mountain and
ocean on Earth.

Dimensions and detailed microstructure
of heart tissue in a given individual

Structural [model] uncertainty Phenomenological models for
radiative heat transfer, cloud
formation and convection.

Continuum approximation of electrical
activation in tissue. Number of Markov
states for ion channel models

Functional uncertainty Predictions for weather conditions
under increasing levels of
greenhouse gases

Predictions for conditions/individuals
outside the calibration data set

Simulator uncertainty Numerical errors associated with grid resolution, time steps, tolerances,
convergence and any emulator approximations

Output uncertainty Forecast mean and confidence
interval of pressure, temperature
and rainfall at specific locations
and times in the future

Likelihood of spontaneous termination
of fibrillation, or mean change in QRS
duration following cardiac
resynchronisation therapy, with
confidence interval

uncertainty in the model equations themselves, such as
model assumptions and complexity are termed structural
uncertainty, model discrepancy or model inadequacy.
The model may be operated under conditions or with
parameters that are beyond the scope of the data used
to calibrate the model; this effect is termed functional
uncertainty and sometimes extrapolation. When the model
is implemented (usually in software) and a simulation
is run, there are simulator uncertainties arising from
numerical approximations in the implementation and in
the convergence of the solver (Pathmanathan et al. 2012).
These numerical errors and implementation uncertainties
should be quantified in the calculation verification stage
when the implementation of the model is verified
(Pathmanathan & Gray, 2014). Output uncertainty is then

the uncertainty in specific outputs of a deterministic
computational model, given the other types of uncertainty
listed above.

Uncertainty in cardiac physiome models

These different categories of uncertainty provide a helpful
framework for thinking about uncertainty propagation in
cardiac models, and several important issues arise from
these considerations. To further consolidate these ideas,
examples of these different types of uncertainty in weather
and climate models as well as Cardiac Physiome models
are given in Table 1. We discuss two further examples of
parameter uncertainty and condition uncertainty in detail
below, and then consider other types of uncertainty.

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Parameter and output uncertainty in a cardiac action
potential model

To extend the illustrative example of input and output
uncertainty shown in Fig. 1, we demonstrate the
importance of parameter uncertainty with an implemen-
tation of the ten Tusscher–Panfilov 2006 model for human
ventricular myocytes (ten Tusscher et al. 2004; ten Tusscher
& Panfilov, 2006). In its default configuration for epicardial
cells, the model produces an action potential at 1 Hz
steady pacing with an APD of 306 ms (blue line in
Fig. 3A). If we were to assume that there is uncertainty
of around 20% in the maximal conductance of the slow
delayed rectifier current (GKs), then we can examine the
effect of this parameter uncertainty on action potentials
produced by the model. In practice uncertainty in the
value of GKs could arise from a combination of under-
lying residual variability and observational/measurement
uncertainty in the data used to calibrate the model. A
simple approach would be to simulate the action potential
with GKs set to ±20% of its default value, and this produces
action potentials with APD of 296 and 319 ms (red lines
in Fig. 3A). A refinement would be to run a series of
simulations, each with a value of GKs drawn at random
from this range of values. This initial refinement generates
action potentials with APD uniformly distributed in the
range 296–319 ms (Fig. 3B). A further refinement is
to select samples of GKs from a normal distribution,
which may be a more faithful representation of parameter
uncertainty and yields a different (not necessarily normal)
distribution of APD (Fig. 3C). For a given uncertainty in
GKs, we can therefore estimate uncertainty in APD. This
is distinct from previous studies involving a population of
models, where parameter space is widely and uniformly
sampled and regions of parameter space leading to
plausible action potentials are selected (e.g. Britton
et al. 2013).

Condition and output uncertainty in a cardiac
tissue model

It is recognised that the choice of initial and boundary
conditions can have an important influence on model
behaviour (Fenton et al. 2002). Some model behaviours
are highly nonlinear, and so are very sensitive to initial
conditions. Figure 4 illustrates the impact of this effect
on a model of re-entry and fibrillation. The breakup of a
re-entrant wave is a nonlinear process, and perturbation of
the initial conditions for the simulation has an important
effect on the subsequent breakup and patterns of electrical
activation.

Other sources of uncertainty in cardiac models

Quantification of parameter uncertainty in cardiac models
depends on whether the parameter can be directly
measured (for example resting heart rate), or has to be
indirectly inferred or calibrated using other experimental
data (the vast majority of cardiac model parameters). For
direct measurement, characterising and quantifying the
uncertainty is a purely experimental task. For the latter,
there are numerous statistical techniques for performing
calibration while also accounting for uncertainty in the
data to establish the uncertainty in the parameter being
calibrated.

Cardiac action potential models are typically calibrated
from experimental data by fitting the model to averages
of experimental data without taking into account
observational uncertainty or residual variability. The
weakness of this approach is exposed in a recent study
that shows how a simple averaging of data can result in a
model that is not faithful to the data on which it is based
(Pathmanathan et al. 2015). Given the uncertainty in data
used to construct models, this raises a question about what
the models actually represent.
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Figure 3. Uncertainty propagation in an action potential model
A, action potentials produced by the ten Tusscher–Panfilov 2006 model when paced at a 1000 ms cycle length for
20 beats in its default configuration (blue), and with GKs altered by ±20% (red). B, a series of 20 action potentials
in which the values of GKs are drawn from a uniform distribution with range ±20%. C, a series of 20 action
potentials in which GKs is drawn from a normal distribution with a coefficient of variation (standard deviation
divided by mean) of 10%.
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A further complication arises because cell and tissue
models are ‘modular’, and frequently make use of
components (such as the description of an ion channel
current) that have been developed for models of a different
species or cell type. A consequence of this approach is that
the provenance of model parameters is not always easy to
establish (Niederer et al. 2009), and the consequences for
parameter and structural uncertainty, as well as how these
uncertainties influence the behaviour of tissue and organ
scale models, are largely unknown.

Inputs that are more complex than scalar or vector
parameters, for example heart geometries and anisotropy
information, introduce further difficulties and contribute
to geometry uncertainty (Delingette et al. 2012). When
quantifying uncertainty in inputs that are functions of
space or time (e.g. the principal fibre and sheet directions
in whole-heart models), the inputs need to be treated as
random fields or random processes rather than random
variables. One approach for handling this complexity is
to approximate the random field using a (truncated)
Karhunen–Loeve expansion (for example, see Smith,
2014), which in other settings is known as principal
component analysis or proper orthogonal decomposition.
This type of approach has been used to construct statistical

shape models (Frangi et al. 2002), which address variability
in heart shape and size.

For whole heart models, it is important to distinguish
between the generic and patient-specific inputs and
parameters. When model inputs are patient-specific,
uncertainty results from observational error and residual
variability about the properties of that individual. For
generic inputs and parameters, the uncertainty is due to
observational error combined with intrinsic and extrinsic
variability, the latter of which may be significant and
dependent on factors such as age and sex.

Cardiac action potential models have many outputs,
because each state variable has a time series and so
can be considered an output. However, the focus is
often on membrane voltage and intracellular Ca2+
concentration since these outputs directly influence
electrical propagation and tension generation and may
be measurable. Specific features such as APD have been
used to characterise the action potential (Britton et al.
2013; Chang et al. 2015), and so these can also be treated
as model outputs that correspond to inputs such as model
parameters and initial conditions. Larger scale models may
have a scalar output such as QRS duration, a binary output
such as arrhythmia or sinus rhythm, or a tensor output
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Figure 4. Simulations of fibrillation in an ellipsoid geometry representing the human LV, with membrane
kinetics described by a phenomenological model (Bueno-Orovio et al. 2008) set to steep APD restitution
(Clayton, 2013)
Three snapshots of a baseline simulation are shown (left column), along with four further simulations (P1–P4)
in which the initial conditions of a single re-entrant wave with a transmural filament are perturbed by adding a
random voltage drawn from a uniform distribution in the range ±5 mV to the initial voltage at each grid point
(Qu et al. 2000). The graph on the right shows the nonlinear growth of the average absolute difference at each
grid point between the voltage in the baseline simulation and each of the perturbations.
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such as a strain field. Careful identification of the outputs
that are of most importance is a key component of the UQ
process.

Deeper concerns arise from considering functional
and structural uncertainties. Cardiac action potential
models are typically developed and parameterised from
voltage-clamp data, yet are used to reconstruct singular
action potentials as well as more complex tissue behaviours
such as fibrillation. Extrapolation of these models outside
the parameter envelope of experimental data used in
their construction is a potential source of functional
uncertainty, which may be very difficult to quantify.
Sources of structural uncertainty in the present generation
of cardiac action potential models are the representation
of Ca2+ storage, release and uptake. Other examples of
structural uncertainty include the number of states in
Markov models of ion channel behaviour, the topology
of state transitions, and in tissue the difference between
mono- or bi-domain representations and reality. Like
functional uncertainty, structural uncertainty is difficult
to characterise, and is an active area of research (Kennedy
& O’Hagan, 2001; Strong et al. 2012).

Experience in climate modelling and weather
forecasting

These concerns are not unique to cardiac models, and
uncertainty quantification has a long history of application
in other fields, where probabilistic approaches have been
found to be essential. Early work was in engineering
(Sacks et al. 1989; Forrester et al. 2008) and in flow
through porous media, in particular the modelling of
radioactive waste disposal and oil field reservoirs (e.g.
Christie et al. 2006). Climate modelling has applied
similar techniques (Challenor et al. 2010; Sexton et al.
2012; Williamson et al. 2013). Weather forecasting (Bauer
et al. 2015) is a combination of data and model brought
together in a very large data assimilation process. Because
the system is believed to be chaotic, most work on
uncertainty in weather forecasting has been concerned
with uncertainty in the initial conditions for the forecast.
Current practice in all weather forecasting centres is to
run an ensemble of forecasts, each with perturbed initial
conditions, with perturbations chosen to capture rapidly
changing conditions. This spread gives a probabilistic pre-
diction. In practice relatively small numbers of runs are
possible due to computational costs, and the spread of pre-
dictions has often been found to be small, giving too little
probability to extreme weather. To counteract this trend,
more detailed representations of model uncertainty are
increasingly embedded in the ensembles (Palmer, 2012),
and calibration techniques can be used with observation
at a series of time points to choose ensemble perturbations
that produce outputs that more closely match the spread
of observations (Gneiting et al. 2007).

Tools for uncertainty quantification

The basis of UQ techniques is a statistical model,
which describes a probability distribution of model
output(s) as a function of uncertain model inputs
(including parameters), where inputs are also probability
distributions rather than fixed values. Many approaches
operate within a Bayesian framework, so that the model
and its outputs or predictions are conditional on inputs
and assumptions.

Monte Carlo techniques. The simplest approach to the
problem of uncertainty propagation is to use Monte
Carlo techniques. In this approach we sample from a
statistical distribution of model inputs, simulate using
the model and build up the statistical distribution of
the outputs. This is the method used above in Fig. 3 to
illustrate model uncertainty. The problem with Monte
Carlo methods is that they are slow, requiring large
numbers of runs (typically thousands) to estimate even
the mean of an output distribution, let alone the full
probability distribution. This is particularly true for
large numbers of uncertain inputs. For larger and more
complex models the problem gets worse. Thus Monte
Carlo methods can soon become impractical.

This problem can be reduced with a surrogate model
or emulator, a fast-running statistical approximation of
the computational model that predicts an output (or a
small number of outputs) as a function of the inputs. We
detail two types of emulator, which have a track record
of successful use in other fields and have recently been
applied to cardiac models: polynomial chaos expansions
and Gaussian process emulation. Both approaches fit an
emulator to a set of training data, which are model inputs
and outputs obtained from a small number of model runs.
The fast running emulator can then be used to make
inferences about uncertainty in the model.

Polynomial chaos expansions. The term ‘polynomial
chaos’ was first coined by Wiener (1938) who studied
decompositions of Brownian motion, and does not relate
to non-linearity or ‘chaos theory’. The main idea is to
represent the model output as a series of polynomials in
terms of the inputs, and the method was first applied to
computer models by Ghanem & Spanos (1991). The poly-
nomials are carefully chosen according to orthogonality
properties and the probability distributions of the inputs.
Training data are then used to determine the coefficients
of the polynomial expansion. Regression methods can
be used to fit the polynomial surface to training data
for a general design (Berveiller et al. 2006). Quadrature
approaches are also popular (Le Maı̂tre et al. 2002), but as
the number of inputs increases, these methods suffer from
the curse of dimensionality as the number of training data
points required is large. This problem has led to the use

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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of sparse grid methods (Xiu & Hesthaven, 2005) that can
reduce the computational burden. Once the coefficients of
the polynomial expansion have been found, the series of
polynomials can be used to estimate model outputs for a
given set of inputs.

Gaussian process emulators. An alternative to poly-
nomial chaos also fits an output surface to the model,
although the rationale is very different. This is the Gaussian
process emulator, also known as a Kriging model. A good
introduction to the ideas is given in O’Hagan (2006) and
the methodology laid out in Challenor (2012). A Gaussian
process is a continuous stochastic process, defined by a
mean function and a covariance function, which produces
an output that is characterised by an expectation (mean)
and variance for a given set of possibly uncertain inputs
(Rasmussen & Williams, 2006). As with polynomial chaos
expansions, the Gaussian process is fitted to a set of
training data comprising model inputs and outputs. The
fitting process assumes that the output surface is smooth,
without any steps or discontinuity. No other assumptions
are necessary, but with a linear mean and Gaussian
covariance function, as well as an assumption that both
inputs and outputs are normally distributed, it is possible
to calculate directly the mean and variance of outputs given
the mean and variance of each uncertain input (Oakley &
O’Hagan, 2002, 2004; Chang et al. 2015). A simple example
is shown in Fig. 5, and explained in more detail below.

An important aspect of emulation is the design of the
training set. We need a design that is sparse, since we
assume it is expensive to run the model, but which also
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Figure 5. A simple Gaussian process emulator, which relates a
single output (APD) to a single input (GK) for the Luo–Rudy
1991 model (Luo & Rudy, 1991)
Circles denote training data, blue line is mean of emulator, green
lines are two standard deviations, red lines show distribution of
output for a given input distribution. See text for further details.

‘fills’ the input space. The most common design is the
Latin Hypercube (McKay et al. 1979), but alternatives are
available such as Sobol sequences (Sobol, 1967).

Validation is also an important part of the process of
building an emulator. Since emulators are built from a
limited set of training data, it can be easy to build an
emulator that is a poor fit to the model. To validate
an emulator we need to compare the emulator output
with model output for inputs that have not been used
in training. There are two ways of doing this. The first
is leave-one-out validation. Each model run in turn is
removed from the training set; the emulator is then
built without that point, and the missing output is
then estimated using this emulator. Using the difference
between the model output and the mean and variance
of the emulator output, we can build up statistics on
the accuracy of the emulator. An alternative is to use a
separate set of validation data, and this method is
explained in detail in Bastos & O’Hagan (2009).

Once we have built and validated a Gaussian process
emulator there are a number of problems we can use it for.
The first is predictive. The emulator can be used to pre-
dict the model output at some new set of inputs. Because
the emulator includes a measure of its uncertainty we not
only get an estimate of what the model would have given
but also how accurate that prediction is. Beyond simple
prediction the next application is sensitivity analysis.
Sensitivity analysis gives the change in the output for a
small change in one or more of the inputs. It is used
to identify important (and not important) inputs and
how these interact. Methods for sensitivity analysis using
emulators are described in Oakley and O’Hagan (2004)
and applied to cardiac models in Chang et al. (2015). The
third application is UQ itself. If we are uncertain about
model inputs and describe that uncertainty in terms of
a probability distribution, then UQ describes how that
uncertainty propagates through the model to the model
outputs.

These ideas are illustrated in Fig. 5, which shows a
very simple emulator where a single output is the APD
of the Luo–Rudy model (Luo & Rudy, 1991), and the
single input is the K+ channel maximum conductance
GK. The emulator is fitted to five runs of the model using
the approach described previously (Chang et al. 2015),
and each run used a different value of GK. These training
data are plotted as circles. The emulator then predicts a
mean value of APD for any new value of GK, shown as the
blue line. The predicted output is a distribution, and the
green lines denote two standard deviations. At the training
points, the emulator fits the data exactly, but where there
are gaps between the training data the emulator output is
more uncertain. An additional training point with GK set
to its default value would reduce the uncertainty of the
emulator. The distributions shown in red on the x- and
y-axes demonstrate that if GK is considered to be normally
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distributed, then we can calculate the corresponding
distribution of APD.

Model calibration. Another important application of UQ
methods is model calibration or model tuning; estimating
model inputs given some data on the model outputs. If
we are calibrating a model, it is important to realise that
models embed simplifying assumptions, and so structural
uncertainty or model discrepancy becomes an important
consideration. In Kennedy & O’Hagan (2001) a Gaussian
process emulator is fitted to the model and at the same time
a second Gaussian process is used to model the discrepancy
between the model and the data. Even for simple models
there are problems of identifiability with this approach
because it is difficult to separate uncertainty about model
parameters from model discrepancy. Brynjarsdóttir and
O’Hagan (2014) show that prior information on either
the model parameters or the discrepancy (or ideally both)
is necessary to successfully estimate model parameters.

An alternative approach to model calibration is known
as ‘history matching’ (Vernon et al. 2010; Williamson
et al. 2013). Rather than trying to estimate the ‘best’
values of the parameters (or more formally their post-
erior distributions), history matching seeks to find those
values of the model inputs that could not possibly have
produced the data. This is done by using an emulator to
calculate an implausibility value for all values of the inputs,
which measures the scaled distance of the emulator mean
from the data. The scaling depends on three terms: the
variance of the data, the variance of the emulator and a
model discrepancy term. The variance of the data is usually
known as part of data collection, and the emulator variance
is a property of the emulator. The final term is harder to
define. It expresses structural uncertainty as in Kennedy
& O’Hagan (2001) and must be elicited. An alternative
interpretation of this term is as our tolerance to error. Any
set of inputs with a value of the implausibility greater than
a threshold is considered implausible and excluded from
further analysis. This exclusion is done in a sequential way,
and at each ‘wave’ more runs of the model are produced
in the ‘not implausible region’. Building new emulators
at each wave reduces the emulator uncertainty and refines
the implausibility measure. Eventually the not implausible
region no longer contracts and either more accurate data
or a greater tolerance to error is required to reduce the
region further.

Recent developments

Applications of these tools and approaches to cardiac
models are in their infancy, but there has been some
important initial progress.

Many studies have been published on different methods
to fit a point parameter estimate in cardiac models, all
of which involve some kind of optimisation procedure

resulting in a single optimal parameter set. Of particular
note amongst these studies are those that suggest new
experiments to assist in the parameter fitting process,
i.e. reduce epistemic/observational uncertainty (see e.g.
Dokos & Lovell, 2004; Kaur et al. 2014; Groenendaal et al.
2015). A formal methodology for experimental design
based on various ‘optimality criteria’ has a long history
in the statistics and control theory literature (Goodwin
& Payne, 1977). Fink & Noble (2009) applied one such
method to design novel voltage clamp protocols that are
optimised to identify parameters in ion current models,
with the added benefit of an experiment with a shorter
duration than traditional methods; and other studies have
developed ideas based on analysis of the Hodgkin–Huxley
model (Raba et al. 2013). These formal methods have also
been applied in systems biology and extended to address
model selection (see e.g. Liepe et al. 2013; Silk et al. 2014),
and so there are grounds to believe the application of
optimal experimental design to cardiac modelling will be
very fruitful.

Within cardiac modelling, the sensitivity of outputs to
variations in parameter sets, or the model formulation,
has also been examined (see e.g. Romero et al. 2009;
Huberts et al. 2013a,b; Bear et al. 2015). Other approaches
have taken a range of possible parameter values calibrated
against experimental recordings to capture experimental
variability (e.g. Sarkar & Sobie, 2011; Sarkar et al. 2012;
Britton et al. 2013). Below we will highlight a selection
of studies that take a probabilistic approach to variability,
or attach probability distributions to parameter values,
which will be necessary to enable rigorous uncertainty
quantification.

The intrinsic variability of ion currents, due to the
stochastic opening and closing of ion channels, has been
studied in some detail in papers such as Geneser et al.
(2007), Pueyo et al. (2011) and Heijman et al. (2013).
These studies examine the consequences of the intrinsic
variability on behaviour such as macroscopic currents,
beat-to-beat variability of APs, and the emergence of
pro-arrhythmic behaviour. More of this type of work
is required to examine the situations under which the
consequences of intrinsic variability need to be taken into
consideration, and to generate computationally simple
ways to capture the effects of intrinsic variability without
having to simulate the activity of every individual ion
channel.

Ion channel state transition parameters were given
probability distributions in a study by Siekmann et al.
(2011), and the authors also showed how Bayesian
inference could assist in studying epistemic uncertainty
(Siekmann et al. 2012). The ion current densities
(‘maximum conductances’ for ion channels) are perhaps
the most important determinants of cellular-scale
electrical properties and variability between cell types and
species. Sarkar & Sobie (2010) explored the use of Bayesian
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inference to attach a probability distribution to current
densities, given different datasets, and explored how
variation in densities might explain extrinsic variability
between patients.

Studies have been performed where inputs to action
potential simulations were given probability distributions,
and simple Monte Carlo uncertainty propagation was
performed to quantify uncertainty on model outputs
(Elkins et al. 2013). Surrogate models have been applied
to make this process fast and cheap to calculate (simple
lookup table interpolation was used in Mirams et al.
(2014), and a Gaussian Process emulator in Chang et al.
(2015)). Pathmanathan et al. (2015) performed perhaps
the first multi-scale uncertainty quantification study in
cardiac electrophysiology: identifying the variability in fast
sodium inactivation curves between individuals and the
uncertainty in the population average, and propagating
this through to both AP and tissue simulations, to examine
the influence of variability at the sodium channel on
emergent behaviour at different scales.

Uncertainty calculations can also be performed for
spatial problems (see e.g. Xiu & Sherwin, 2007; Konukoglu
et al. 2011; Wallman et al. 2014), and special methods to
visualize the results of these have also been developed
(Burton et al. 2013). Cardiac geometry atlases have
included statistical measures of variability for some time
(Frangi et al. 2002), and so many of the tools are already
in place to examine the consequences of variable tissue
geometry and properties on tissue-level simulation results.

Opportunities, challenges and future directions

In this White Paper, we have argued the importance of
uncertainty and variability in the Cardiac Physiome, and
the need for techniques and approaches that can quantify
confidence in model predictions. We consider this to be
a critical next step, especially for models that could be
deployed in safety critical applications.

Two opportunities are immediately apparent. The first is
to benefit from links to other communities with experience
of working on related problems. In particular, the statistics
community have developed tools and approaches for
handling uncertainty in multi-scale and computationally
expensive models, and there is enthusiasm for engagement
with a new and challenging set of problems. The second
opportunity is for Cardiac Physiome models to become
far more robust because they take account of uncertainty,
enabling not only improved hypothesis testing for basic
science, but also greater suitability for clinical applications.

Cardiac models are highly detailed, and adapting
existing modelling paradigms and software to take account
of uncertainty is a significant challenge. Throughout
this White Paper we have highlighted specific examples
in cardiac models where uncertainty is important,
although we have not attempted a full systematic analysis.

Nevertheless, it is clear that there are very many sources of
uncertainty and variability, and another major challenge
is to enumerate these carefully. We consider it highly
likely that application of existing tools and techniques for
uncertainty quantification to cardiac models will unearth
new mathematical and statistical questions, and so serious
engagement with mathematicians and statisticians will be
essential in this process.

Consideration of uncertainty in Cardiac Physiome
models is therefore an important future research direction.
There is much to accomplish, and we identify the following
as important research questions:

� How reliable are the present generation of action potential
models? An answer to this question will involve
systematic analysis of input uncertainties, including an
assessment of how model parameters were fitted to data,
as well as the effect of assumptions and simplifications in
model components, in particular Markov state models
of ion channels, and components of the Ca2+ handling
system.

� Can we compare action potential models in a rigorous
way? Many different action potential models have been
developed, often for the same species and cell type,
yet can show different behaviours (Cherry & Fenton,
2007; Cooper et al. 2016). The UQ approaches we have
described have the potential to offer a rigorous and
quantitative framework in which the behaviour action
potential models can be compared with each other, as
well as with experimental data.

� How do uncertainties at the cell scale contribute to
uncertainties in tissue scale models? Propagation of
uncertainties is a critical question for multi-scale
cardiac models because there are many situations where
tissue scale responses might be sensitive to cell scale
behaviour (APD restitution, Ca2+ handling, tension
generation) combined with tissue scale properties
(tissue conductivities, passive mechanical properties,
tissue microstructure, distribution of cell types).
Examples would include the onset of alternans and the
stability of re-entry for models of electrophysiology, and
deformation sequence and myocardial work in models
of mechanics.

� What criteria should be used to choose a cell, tissue and
geometrical model for a particular context of use? At pre-
sent, the choice of model is often pragmatic, based on
personal preference and the imaging modalities and
codes that are available. However, reliable estimates of
model output uncertainties potentially enable a rational
scheme for model selection based on a trade-off of
output uncertainty against computational cost. Context
of use will establish the output uncertainties that
are acceptable, with more stringent requirements for
safety-critical applications such as guidance for catheter
ablation.
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� How should uncertainties in Cardiac Physiome models be
visualised and communicated to users such as clinicians?
The clinical environment can be characterised as
data rich and information poor. Clinicians are often
provided with overwhelming data, and for Cardiac
Physiome models to make an impact as clinical tools,
it will be important to communicate uncertainty and
model credibility clearly.

As these and other research questions are addressed,
we expect that Cardiac Physiome models will not only
continue to make important contributions to basic science
physiology, but also be deployed in clinical tools and
applications for the benefit of human health.
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The Managing Uncertainty in Complex Models web pages
(www.mucm.ac.uk) provide a good background to the tools
and approaches discussed in this White Paper, as well as

others. The MUCM Toolkit (http://mucm.aston.ac.uk) is an
on-line resource that gives the mathematical underpinning
to Gaussian process emulators and hints on how to do
the computation. Software resources that implement some
of these techniques include https://dakota.sandia.gov/, http://
dice.emse.fr/ (in French), http://www.uqlab.com and https://
github.com/SheffieldML/GPy.
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