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Abstract

Aquaporin 4 (AQP4) is a tetrameric water channel protein with a pore in

each monomer. AQP4 is the most abundant water channel protein in the

brain, highly expressed in astrocytes. AQP4 knockout mice are protected

against cytotoxic brain oedema. A cytotoxic brain oedema is where the

blood brain barrier remains intact and the oedema is thought to form as a

result of deterioration of cellular metabolism. There is no generally accepted

current therapy for cytotoxic oedema, in part due to a lack of understanding

surrounding the cellular signaling events. Work from our laboratory on a

novel trigger for sub-cellular redistribution of the homologous AQP1 kidney

protein has allowed us to investigate this phenomena in AQP4.

GFP tagged aquaporin constructs were created by inserting the Vector-N75

in the PcDNA-DEST47, by swapping out the ccdB gene which kills E.coli.

The Vector-N75 doesn’t contain a stop codon and is instead followed byattb

attachment sites then the GFP tag sequence. The cellular relocalisation of

GFP-tagged AQP4 was exposed to a hypotonic extracellular environment

transfected into a live Human Embryonic Kidney (HEK293) cell line using

confocal microscopy. Relative membrane expression (RME) of the AQP-

GFP was measured by comparing the fluorescence intensity profiles of GFP

tagged proteins across lines drawn using the image analysis software which

bisect the membrane and cytosol of cells exposed to isotonic and hypotonic

extracellular environments. These lines were drawn across the membrane,

cytosol and opposite membrane, without bisecting the nucleus. These pro-

file intensities were calculated using the software ImageJ. Cell volume was

estimated by converting the image, in ImageJ, to a binary form, then, us-

ing the analyse particle function the cell was scanned to find the edge, an



outline drawn and the area calculated.

AQP4 rapidly and reversibly translocated to the cell surface in response to

hypotonicity increasing RME from 29.3% ± 6.4% to 54.9% ± 6.6% (p<0.05;

N=3). The cellular signaling required for this translocation response was

investigated by exhibiting cells to di↵erent activation inhibitors. PKAi,

Cytochalasin D, and extracellular calcium-free media were found to fully

prevent the translocation and functional swelling response of HEK293 cells

transfected with AQP4 (p

Motif and conservation analysis was used to identify potential PKA acti-

vation sites. These sites were substituted from serine to both alanine and

aspartic acid using site-directed mutagenesis (SDM). One, highly conserved

serine residue of transmembrane region 1 (TM1) at position 52, when mu-

tated to aspartic acid (S52D) lost the hypotonicity-induced translocation

and cell volume increase (p<0.01; N=3 in all cases). The alanine substitu-

tion (S52A) was una↵ected. Molecular modeling of AQP4 and the mutant

suggest a potential hydrostatic interaction with nearby cysteine and serine

residues of TM2. Consequently the S52 residue was mutated to leucine,

which has a similar size but no charge to form the potential hydrostatic in-

teractions with neighboring residues. S52L also removed the translocation

and functional swelling in response to hypotonicity, suggesting steric hin-

drance as the most likely factor inhibiting the translocation process rather

than the interaction with neighboring residues.

This study demonstrates that a cellular signaling response to a change in

tonicity of the cellular environment leads to AQP4 translocation to and

from the cell surface. This involves the influx of extracellular calcium, the

activation of PKA and cytoskeletal reorganization.
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1

Introduction

This introduction describes the di↵erent water transportation methods within the hu-

man body, how they are regulated, and what specific physiological processes they are

involved in. This will identify specific mechanisms, and transportation proteins playing

key roles in maintaining homeostasis. There are a specific class of proteins involved in

the transportation of water in plants and mammals called aquaporins. All 13 aquapor-

ins will be described and the research into them summarised.

1.1 Transportation of Water and Solutes Around the Hu-

man Body

Water is involved in many vital functions within the human body, which can be char-

acterised into 5 di↵erent functions:

1. Cell life: - water is a carrier, distributing essential nutrients to cells, such as

minerals, vitamins, and glucose.

2. Chemical and Metabolic Reactions: - water removes waste products including

toxins that the organs’ cells reject, and removes them through urine and faeces.

3. Transport of Nutrients: - water particles in the biochemical break-down of what

we eat.

1



1. INTRODUCTION

4. Body Temperature Regulation: - water has a large heat capacity which helps limit

changes in body temperature in a warm or a cold environment. Water allows the

body to release heat when ambient temperature is higher than body temperature.

The body begins to sweat, and the evaporation of water from the skin surface

very e�ciently cools the body.

5. Lubrication: - water is an e↵ective lubricant around joints. It also acts as a shock

absorber for eyes, brain, spinal cord and even for the foetus through amniotic

fluid.

6. Elimination of Waste Products: Water is excreted from the body in the form of

urine. Water is used in urine as a solute and transporter of waste products, such

as toxins and unwanted ions.

As a result of water’s ubiquitous presence in the body, it is evident that a highly

sophisticated transportation system must exist to deliver water to every tissue and cell

in the human body, (1) (2). This is exemplified by urine concentration in the kidney

(3), formation of tears in nasolacimal ducts (4), and secretion of saliva from salivary

glands (5). The transcellular transportation of water is typically as a result of osmotic

stimuli often owing to the transportation of salts (6).

1.1.1 Methods of Solute Transportation

There are two main methods by which transmembrane proteins are able to transport

solutes across plasma membranes: active transport and passive transport. Active trans-

port is the movement of an ion/molecule across a lipid bilayer against the concentration

gradient, with the aid of energy from the system. However, passive transport (facili-

tated di↵usion) is the spontaneous transport of an ion/molecule across a lipid bilayer

down the concentration gradient without the aid of energy from the system. Figure 1.1

shows the classification of these transmembrane proteins based and their transportation

method and selectivity.

1.1.1.1 Active Transport

Active transport can occur by two di↵erent methods, primary active transport and

secondary active transport both of which are performed by specific transmembrane

2



1.1 Transportation of Water and Solutes Around the Human Body

Figure 1.1: Transmembrane Protein Classification - The figure shows the classifi-

cation of the di↵erent types of transmembrane proteins and their functionality
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1. INTRODUCTION

proteins.

Primary Active Transport or Direct Transport, directly uses Adenosine Triphos-

phate (ATP) to transport molecules across the membrane. This is usually performed

by transmembrane ATPases, with the most characterised being the sodium potassium

pump.

Secondary active transport, unlike primary active transport, does not require the

direct coupling of ATP. It relies on the electrochemical potential di↵erence caused by a

primary active transport system. These secondary active transport proteins can again

be divided into two subcategories, antiport and symport. Antiport proteins, have dif-

ferent molecules attached on opposite sides of the membrane. When both are attached,

this activates a conformational change allowing for the simultaneous transportation of

molecules across the membrane in opposite directions. In contrast, symport proteins

transport two molecules but from the same side of the membrane in the same direction.

1.1.1.2 Passive Transport / Facilitated Di↵usion

There are two main classes of proteins, which undergo facilitated di↵usion, channel pro-

teins, and carrier proteins. Channel proteins, are intrinsic proteins which span the lipid

bilayer. They can actively select for a specific molecule by having amino acid sequences

which ensure that only certain types of molecule can enter the channel, however, some

can be ambivalent to the structure of the molecule, and only di↵erentiate by size. Car-

rier proteins on the other hand are very selective and can be further characterised.

There are two main forms of carrier proteins; intrinsic gated proteins and extrinsic pro-

teins. On binding of the molecule of interest gated proteins change their conformation

and transport the molecule/ion across the membrane down the concentration gradi-

ent, whereas the extrinsic proteins transport a molecule/ion across the lipid bilayer by

internal translocation. Internal translocation is an active transport mechanism, and

does require energy from the system, as it is always against the concentration gradi-

ent. Gated proteins can be further characterised into Voltage-Gated and Ligand Gated

proteins. Voltage-Gated ion proteins are activated by changes in electrical potential

di↵erences near the channel. They are predominantly found in neurones, however, are
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1.1 Transportation of Water and Solutes Around the Human Body

common in other cells. Their structure comprises of several subunits with a central

pore through which ions can travel down their electrochemical gradient. Ligand-Gated

transport proteins open and close in response to the binding of a chemical messenger/li-

gand, independent of the ion they are transporting, and they are usually very selective

to one or more ions (Na+, K+, Ca2+, or Cl�). Unsurprisingly transport by channel

proteins is much faster than that of carrier proteins.

1.1.2 Transcellular Transportation of Water

As already discussed transcellular water flow, like any transcellular movement, is de-

pendent on the permeability of the plasma membrane. There are three main methods

by which water can move, passive co-transport, osmosis, and aquaporin transportation.

Many people would think that simple di↵usion should be documented in this section,

however, di↵usion is the process by which molecules intermingle in space, as a result of

their kinetic energy. If molecules of water were to di↵use they would come in contact

with the barrier and rebound away. Although, if the barrier was removed the brow-

nian motion of the molecules would encourage the two solutions to mix until water

was evenly distributed. Therefore, water cannot move across plasma membranes via

di↵usion, which is why this method will not be discussed any further in this section.

There is a lot of controversy around true co-transportation of water, as many believe

the flow is osmotic due to an increase in osmolarity. However, molecular dynamic

simulations performed by Choe et al (7) showed that a significant number of water

molecules cross the plasma membrane through the sugar-binding site in the presence

and absence of galactose for a sodium dependent galactose co-transporter vSGLT. They

identified that 70-80 molecules of water accompany galactose as it moves from the

binding site into the intracellular space. During this, the majority of water molecules

are unable to di↵use around the galactose, resulting in water being pushed into the

intracellular space and replaced by extracellular water. This supported the notion that

co-transporters acted as both passive water channels and active water pumps with the

transported substrate acting as a piston to rectify the motion of water (7). These

finding have been further substantiated by Santacroce et al and their investigations
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into wild type and mutagenised amino acids co-transporters and their permeability to

water.

Osmosis is the di↵usion of water through a semipermeable membrane from an area of

low solute concentration to an area of high solute concentration, until the concentration

on both sides is equal or more scientifically put the system reaches equilibrium. Osmosis

does also not require the addition of energy, in the form of ATP.

1.2 Aquaporins

For many years it was assumed that all biological membrane’s permeability allowed for

the osmotic motion of water down its concentration gradient, making the mere notion

of a family of water channel proteins to be absurd. However, biophysical studies in

eurythrocytic kidney tubules between 1960 and 1990, revealed that some membranes

were more permeable to water than others. This gave rise to proposals suggesting

that water movement may be through pore-like structures. This consequently led to

experimental investigations resulting in the identification of the first water channel,

aquaporin 1 (AQP1), in 1992 by Preston and Agre, (8), for which Agre, jointly, won

the 2003 Nobel prize in chemistry. AQP1 was found to have little similarity to other

known proteins except for the Major Integral Protein (MIP) of lens fibre, which was

consequently named AQP0. This lead to a flurry of research trying to identify more

AQPs in animals, yeast, bacteria and plants, with so far, 13 AQPs being identified in

humans.

1.2.1 Aquaporin Structure

High resolution X-ray crystal structures have been determined for several mammalian

AQPs. Each 30kDa AQP monomer comprises six tilted transmembrane helices and

two half-helices that extend into the inner and outer leaflets of the lipid bilayer. Four

AQP monomers coordinate and interact to form tetramers in the plasma membrane,

see Figure 1.2.

Structural data, coupled with mutagenesis, and molecular dynamics simulations

have identified two highly conserved asparagine-proline-alanine motifs (NPA motif)
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1.2 Aquaporins

Figure 1.2: Aquaporin 4 Monomeric and Tetrameric Structure - Monomeric and

Tetrameric Structure of AQP4 with each colour representing one of the monomers (9), and

the red circles representing the location of the water pores.
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4.1, at the entrance and exit of each narrow pore, to be crucial for water transport

and selectivity (10), (11). These motifs form hydrogen bonds with water molecules

in the pore, whilst also maintaining steric blocking of the passage towards other large

molecules. The single file orientation through the protein, and the coordinated rotation

of hydrogen ions towards the exterior of the pore, prevents the conduction of protons

(hydrogen ions) via the Grotthuss mechanism (12). In 2000, Verkmann and Mitra (13),

found that plasma membranes expressing AQPs had an ⇠5 to ⇠50-fold higher osmotic

water permeability than membranes without. Some AQPs have been identified to

transport glycerol, and are subsequently named aquaglyceroporins. Aquaglyceroporins

have a less constricted pore (3.4Å), and more hydrophobic residues lining that pore,

compared with that of water-selective AQPs (2.8Å) (14).

1.2.2 Characterisation of Di↵erent Aquaporins and Their Function-

ality

Over the past 40 years aquaporins have been identified throughout the human body,

in a number of di↵erent tissues. Each tissue is specific to its function and therefore

needs to be permeable to a variety of di↵erent molecules. So far, 13 AQPs have been

characterised along with the molecules they transport, as shown in table 1.1 and figure

1.3, however, this does not mean that more can not be discovered, in the future. Many

AQPs have been extensively researched owing to the molecules they transport and the

tissues they are expressed in. This section will discuss the impact of those specific areas

of research, identifying similarities and di↵erences between the 13 AQPs.

1.2.2.1 Aquaporin 1

Agre et al (37), identified the first water channel protein, which was initially named

CHIP28 (channel like integral protein). The discovery was made in pursuit to identify

the Rh blood group antigens. One of the Rh antigens was isolated from the radio-

labeled red blood cell membranes hydroxylapatite chromatography and was found to

be approximately 32kDa (38). The protein did not stain well with Coomassie Blue,

however when silver reagent was used, another protein of 28kDa was detected. Initially

it was thought that the protein was a fragment of the 32kDa protein, however, further

characterisation identified that an antibody for the 28kDa protein, did not bind to
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Aquaporin Location in the Body Molecules Transported

0 Lens Fibre Tissue Water

1

Erythrocytes, Renal Tubules,

Water and NH3

Retinal Pigment Epithelium, Heart,

Lung, Skeletal Muscle, Kidney, Pancreas,

Brains, Placenta, and Liver

2 Renal Collecting Duct Water

3

Epithelial Cells of Collecting Ducts,

Glycerol and WaterEpithelial Cells of Airways, Keratinocytes,

and Immature Dendritic Cells

4 Brain, Heart, Kidney, Lung, Trachea Water, CO2, and NH3

5
Mouth, Tear-ducts,

Water and NH3
and in Pulmonary Secretion Tissue

6 Loop of Henle Anions and Water

7 Adipose Cells Water, Glycerol, and Urea

8 Pancreas, and Colon Water

9
Peripheral Leukocytes, Water, Glycerol, Urea,

Liver, Lung, and Spleen and also permeable to other solutes

10
Duodenum, and the Epithelial cells

Water, Glycerol, and Urea
at the tips of villi in the Jejunum

11 Intracellular in Proximal Tubules Water

12 Pancreas Water

Table 1.1: Localisation of all Characterised AQPs in the Human Body, (15), (16),(17),

(18), (19), (20), (21), (22), (23), (24), (25), (26), (27), (28), (29), (30), (31), (32), (33),

(34), (35).
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Figure 1.3: AQP expression in humans - a)Retina-AQP4 b)Olfactory epithelium-

AQP4 c)Inner ear-AQP 4, 1 d)Astrocytes-AQP4. Choroid plexus-AQP1 e)Spinal cord-

AQP 1, 4, 8. Nucleus pulposus-AQP 1, 3. Osteoclasts-AQP9 f)Blood endothelium-AQP1

g)Heart-AQP4 h)Kidney-AQP 1, 2, 3, 4, 7 i)Salivary glands-AQP5 j)Intestinal tract-AQP

3, 4, 5, 9 k)Liver-AQP 1, 8, 9 l)Pancreas-AQP 1, 8 m)Lungs-AQP 3, 4, 5 n)Adipocytes-

AQP7. Skin-AQP 1, 3, 5, 10 o)Ovaries-AQP 7, 8, 9. p)Sperm Cells-AQP 3, 7, (36).
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1.2 Aquaporins

the 32kDa protein. Denker et al (39), was the first to name the protein CHIP28 as it

resembled the physical properties of an integral membrane channel protein.

1.2.2.2 Aquaporin 2

The discovery of AQP 1 sparked the idea that there may be more AQPs in the human

body regulating water permeability. Further investigation resulted in the isolation of

the full-length cDNA and subsequent functional assay in oocytes. Four months later

the confirmation of its immunohistochemical localisation with newly generated anti-

bodies was established, (40). This newly identified channel protein demonstrated 42%

amino acid homology with AQP1 (CHIP28). This protein was exclusively localised to

the apical and subapical regions of the principal cells and intracellular vesicles of the

renal collecting ducts, (41). This newly identified water channel protein was named

AQP2 and is the only AQP known to always be regulated by vasopressin(42), (43).

Vasopressin is a neurohypophysial hormone, found in most mammals, with its main

function to retain water in the body and constrict blood vessels. Vasopressin type 2 re-

ceptors found in the basolateral membrane of the renal collecting duct, bind vasopressin

after its release is triggered by the increase in serum osmolarity and a reduction in the

circulating blood volume, (44), (45), (46). The binding of vasopressin to its receptor

causes a transformation of the G Protein-Coupled Receptor (GPCR) to release the cou-

pled adenylate cyclase. Adenylate cyclase catalyses the conversion of ATP to cAMP.

cAMP then causes activation of PKA which leads to the phosphorylation of AQP 2

at Serine256, (47), (48). At least three of the four monomers in the AQP2 tetramer

must be phosphorylated at Ser256 for successful cell surface localisation, indicating the

importance of phosphorylation at this site (49). This phosphorylation event is required

for AQP2 to be translocated, along the microtubules from intracellular storage vesicles

to the apical membrane see figure 1.4, (50), (51).

Owing to technological advancement, large scale proteomic analysis has led to re-

markable progress in the field of phosphorylation site identification. Ho↵ert et al (52),

identified 714 phosphorylation sites on 223 unique phosphoproteins in isolated rat inner

medullary collecting duct segments, and found that for the first time three new serine

phosphorylation sites had been discovered at serine 261, 264, and 269 in addition to
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Figure 1.4: Vasopressin Signalling Cascade, Activation, and Translocation of

AQP2 - Schematic representation of the vasopressin signalling cascade to facilitate the

readsorption of water from the renal collecting duct into the blood stream. Vasopressin

in the blood binds to the vasopressin type II receptor, which signals to the neighbouring

GPCR. GPCR then undegoes a conformational change releasing Adenylate Cyclase (AC

in green circle). Adenylate Cyclase, with the use of ATP, produces cAMP which then,

activates PKA. PKA phosphorylates AQP2 in intracellular vesiclas at the S256 phospho-

rylation site. This phosphorylation then activates the translocation of AQP2 along the

microtubules and inserts the protein into the apical membrane. AQP2 then facilitates

the transport of water from the renal collecting duct into the principal cells down the

concentration gradient.
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known serine 256 in the c-terminus of AQP2. Subsequent studies have shown that

vasopressin increases phosphorylation at Ser264 and that this phosphorylation event

also translocated AQP2 to the plasma membrane (53). Alternatively vasopressin was

found to decrease the phosphorylation of Ser261 and the localisation of phosphorylated

Ser261 AQP2 di↵ered from that of phosphorylated Ser256 AQP2, (54). However, an-

other report by Lu et al (55) showed no e↵ect of Ser261 phosphorylation on AQP2

translocation. Quantitative phosphorylation analysis identified that Ser256 phosphory-

lated AQP2 is more constitutively expressed and not responsive to vasopressin, and

that Ser269 expression in the apical membrane increases in response to vasopressin,

(56). This suggests that Ser269 phosphorylation is essential for membrane retention,

(57). However, phosphorylation of Ser264 and Ser269 depends on the phosphorylation

of Ser256 for AQP2 translocation to the apical plasma membrane, and retention once

in situ, (58). In contrast, Ser256 phosphorylation is not dependent on any other phos-

phorylation event, indicating that Ser256 is the most important phosphorylation site of

AQP2,(41).

1.2.2.3 Aquaporin 4

AQP4 has been identified to be heavily expressed in astrocytes and throughout the

central nervous system (CNS), with an increased expression at brain-fluid interfaces

such as the blood brain barrier and ependymal-CSF barriers. Unlike AQP1 and AQP2,

AQP4 further assembles into supramolecular arrays of particles, which are maintained

by inter-tetrameric N-terminal interactions involving specific residues (59). AQP4’s

monomeric structure is illustrated in figure 1.2 and the complete primary amino acid

sequence illustrated in figure 4.1.

Manley et al found that mice with water intoxication, ischaemic stroke, cytotoxic

brain oedema and bacterial meningitis had brain swelling, however, AQP4 null mice

improved outcome and reduced brain water accumulation compared with that of wild-

type (60) (61). In contrast Vasogenic oedema, involves the movement of water into

the brain via a leaky blood brain barrier, which then exits through the AQP4-rich glia

limitans, which line the ventricles and the surface of the brain. AGP4 knock-out mice

demonstrated a worse clinical outcome and greater brain water retention in models

of vasogenic oedema including, intraperenchymal fluid infusion, cotical-freeze injury,
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brain tumour and brain abscess, (62) (63).

Figure 1.5: Primary Amino Acid Structure of AQP4 - Schematic representation of

the primary amino acid structure of AQP4. Purple amino acids mark the NPA motifs and

the red boxes indicate the assumed helical structures, (64).

AQP4 has also been identified to play a role in the inner ear, olfactory receptor

neurons, and the retina, as AQP4 null mice showed impaired vision (65), hearing (66),

and olfacation (67). AQP4 deficient brains also have a reduced seizure threshold and

a prolonged seizure duration (68). Although AQP4 has been identified as playing

an important part in many of these disorders, exactly how it does so has not been

understood. This gives excellent opportunity for further research in this area.

1.2.2.4 Aquaglyceroporins

AQP3, AQP7 and AQP9 have all be identified as aquaglyceroporins. This means that

they have been found to transport both water and glycerol. Studies have even suggested

that AQP9 can transport other small polar solutes, such as sugars, amino acids, and

ammonia (69), (70), (71). AQP3 has been identified as playing a key role in skin
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hydration and fat metabolism. Ma et al in 2002 (72), established that AQP3-facilitated

glycerol transport in the skin is an important determinant of epidermal and stratum

corneum (the outermost layer of the skin) hydration. They did this by using knockout

mice which demonstrated reduced hydration of the statum corneum, and skin elasticity.

This, they found to be as a result of their being a reduced amount of glycerol, which

acts as a ’humectant’ or a water-retaining osmolyte (Hara et al., 2002, (73)). Hara

and Verkaman in 2003 (74) , then found that if you systematically normalised glycerol

content in the stratum corneum and epidermis then the skin hydration defect was

corrected. AQP7 on the other hand has been identified as having a role in obesity, as

it is expressed in the plasma membrane of adipocytes. AQP7-null mice demonstrated

an increase in fat mass and adipocyte hypertrophy (the accumulation of glycerol and

triglycerides) as they age (75), (76). Hara - Chikuma et al and Hibuse et al also suggest

that altering AQP7 expression and/or function in adipocyte, could change fat mass.

Maeda et al (77) suggested that AQP9 was a key regulator of hepatic glycerol uptake

and a key metabolic regulator in diabetes and obesity. Although many of these studies

have demonstrated the role of AQPs, it hasn’t fully explained the regulation of these

processes and how the AQPs are involved.

1.2.3 Cell Volume Regulation

Cell volume regulation (CVR) is a necessary mechanistic component of AQP mediated

transcellular water flow 1.6. It comprises of regulatory volume decrease (RVD), usually

in response to hypotonicity-induced cell swelling, and regulatory volume increase (RVI),

usually in response to hypertonicity-induced cell shrinkage. The molecular mechanisms

underlying these responses are not yet fully understood, but it is unlikely that there is

a single common mechamism. The signalling pathways associated with CVR appear to

be cell-type dependent. Nonetheless, the end results of these varied pathways are the

same: RVD relies on lowering intracellular osmolality by removal of potassium chloride

and taurine (a sulfonic acid with roles in cardiovascular and muscular function) from

the cell whereas RVI is achieved by increasing intracellular osmolality via import of

sodium to the cell.
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1.2.3.1 Regulatory volume decrease

In RVD, the activation of K+ channels allows e✏ux of K+ from the cell and subsequent

water loss by osmosis either through AQPs or directly through the lipid bilayer. This

can be both [Ca2+]i dependent (e.g in human cervical cancer cells) or [Ca2+]i indepen-

dent (e.g. Ehrlich ascites tumour cells). In most cell types an intact actin cytoskeleton

is necessary for hypotonicity-induced K+ e✏ux. However, in trigeminal ganglion neu-

rons, cytochalasin D (an actin polymerisation inhibitor) treatment stimulated swelling

activation of a K+ current demonstrating that in these cells, an intact actin network is

not only unneccessary for RVD, but appears to be inhibitory. In some cells, protein ki-

nase C (PKC) activation has also been shown to induce an outward K+ current via the

same channels that are activated in RVD. Movement of K+ out of the cell is favoured

by the concentration gradient but to maintain the electrostatic membrane potential,

volume-regulated anion channel(s) (VRAC) simultaneously move anions (mainly Cl�

during RVD) out of the cell, probably activated by tyrosine kinases. It is also thought

that four K+-Cl� cotransporters (KCCs), known to be activated by cell swelling, may

be involved.

1.2.3.2 Regulatory volume increase (RVI)

In RVI, the main e↵ect involves the activation of Na+-H+ exchangers and Na+-K+-

2Cl� cotransporters (NKCCs) causing influx of Na+ to the cell and subsequent volume

increase by osmotic movement of water. The Na+-H+ exchange pump NHE1 is known

to be activated by cell shrinkage, which may be mediated by binding of calmodulin to

the C-terminus. The cotransporter NKCC1 is known to be activated by cell shrinkage,

potentially through lysine-deficient protein kinase 1 (WNK1) and proline/alanine-rich

protein kinase (SPAK) signalling. Amiloride-sensitive non-selective cation channels

(NSCCs) could also play a role.

1.2.4 The Regulatory Role of Aquaporin

Any rapid change in cell volume is thought to be mediated by water movement through

AQPs, although it is possible that cell membrane water permeability is not the rate-

limiting factor in CVR. However, the role of AQPs in volume regulation may go further

than simply acting as a passive mechanism by which membrane water permeability is
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Figure 1.6: Solute transport pathways mediating (A) regulatory volume de-

crease and (B) regulatory volume increase - Water movement by osmosis may be

through aquaporins or directly through the cell membrane depending on the cellular AQP

isoforms and expression levels. KCC: potassium chlorine co-transporter. NKCC: sodium

potassium chlorine co-transporter. VRAC: volume regulated anion channel. NSCC: non-

selective cation channel, (36).
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increased. For example, the stretch-activated transient receptor potential vanilloid type

4 (TRPV4) channel is a Ca2+-biased NSCC that is activated by cell swelling and has

been implicated in osmosensing. In some cell types TRPV4 has been shown to provide

a Ca2+ signal that is correlated with activation of the K+ and Cl� channels responsi-

ble for the decrease in cellular osmolality associated with RVD. In human and murine

salivary gland cells, TRPV4 has a functional interaction with AQP5: in AQP5 knock-

out cells, the hypotonicity-induced calcium influx through TRPV4 was attenuated and

subsequent RVD was abolished. Hypotonicity also increased cell surface expression of

both TRPV4 and AQP5 and increased their co-localisation.

Upon entry into the female reproductive tract, sperm encounter a decrease in ex-

tracellular osmolality. This hypotonic stress is thought to be the signal that activates

sperm motility. However, the hypotonic stress also causes cell swelling which, if left

uncorrected by RVD, leads to impaired fertilisation caused by excessive bending of the

sperm tail inside the uterus. The sperm of AQP3 -/- mice do not undergo their nor-

mal RVD process and the mice display reduced fertility. If AQP3 were simply acting

passively as a water pore, RVD would not be abolished but rather the timescale on

which the cell reaches osmotic equilibrium would be increased. In order to explain

these observations AQP3, either alone or as part of a macromolecular complex, might

be involved in the signalling pathway that activates RVD in sperm.

Renal cortical collecting duct cells (RCCDs) which do not endogenously express

AQP2, when exposed to a hypotonic extracellular solution swell in proportion to the

change in extracellular osmolality but do not have an RVD. However, when they are

transfected with AQP2, these cells show an RVD of approximately 40%. This shrink-

age is mediated by Ca2+ influx through TRPV4, which activates Ca2+-dependent Ca2+

release from intracellular stores and Ca2+-dependent K+ and Cl� channels. In cells

expressing AQP2, hypotonic stress causes translocation of TRPV4 to the plasma mem-

brane. This translocation is absent in AQP2-negative cells. There does not appear to

be any co-localisation between endogenous TRPV4 and overexpressed AQP2 in this sys-

tem, either before or after hypotonic shock, indicating a functional rather than physical

interaction. These observations imply that AQP2 (and therefore possibly other mem-

bers of the AQP family) forms part of a sensory and signalling pathway that results in
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TRPV4 translocation, possibly via sensing of extracellular osmolality.

Taken together, these examples support the idea of a signalling or sensory role for

AQPs in RVD mechanisms. We have been unable to find any evidence of AQPs playing

similar roles in RVI. However, given that a variety of AQPs could be involved in the

RVD mechanism and that RVI and RVD are closely related osmoadaption mechanisms,

it would not be surprising to discover a link between RVI and AQPs that goes beyond

a passive water conduction mechanism.

1.3 Cerebral Oedema

A cerebral oedema is a relative increase in the water content of the brain and this

may be either in the intracellular, extracellular, or both compartments. This causes

swelling in the brain, and pressure to build within the skull, damaging brain tissue.

This disorder is thought to be governed by the specific control of water by aquaporins,

however, as this review may suggest, this hypothesis is as yet unconfirmed, allowing for

areas of further investigation. There are two other causes of brain swelling, vascular

congestion and hydrocephalus, however, neither of these are due to oedema, although,

are often diagnostically confused.

A cerebral brain oedema can be classified into four di↵erent classes of brain oedema,

vasogenic, cytotoxic, osmotic and interstitial; classified based on causality.

1.3.1 Vasogenic Oedema

A vasogenic oedema occurs owing to a breakdown of the tight endothelial junctions

which make up the blood-brain barrier (BBB). The disintegration of the BBB allows

intravascular proteins and fluid to penetrate into the parenchymal extracellular space.

Once plasma constituents cross the BBB, the oedema spreads, which can be a rapid

and extensive process. As water enters the white matter, it moves extracellulary along

fibre tracts and can also a↵ect gray matter. This type of oedema may results from

trauma, tumours, focal inflammation, late stages of cerebral ischemia, and hyperten-

sive encephalopathy. Subtypes of vasogenic oedema are: hydrostatic cerebral oedema,

cerebral oedema from a brain cancer, and high altitude cerebral oedema.
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1.3.1.1 Hydrostatic

The term hydrostatic cerebral oedema was first introduced by Ishii et al (78) in 1985.

He found that hydrostatic cerebral oedema, resulted from unfavourable hydrostatic

pressure gradients between blood vessels and brain tissue. This gradient increased

hydrostatic pressure causing tissue damage resulting in the biphasic opening of the

BBB. This type of oedema is a typical problem during certain brain surgery procedures,

such as craniectomies and is heavily researched.

1.3.1.2 Brain Cancer/Tumour

Cancerous glial cells (glioma) of the brain, can increase secretion of vascular endothelial

growth factor (VEGF), which weakens the junctions of the BBB, which inturn causes

the formation of a cerebral oedema

1.3.1.3 High Altitude Cerebral Oedema

High altitude cerebral oedema (HACE) is a severe form of altitude sickness, and almost

always begins with acute mountain sickness (AMS). HACE is the result of swelling in

the brain which is frequently fatal, however there are many hypothesese of its true

physiological cause.

In 1975 Houston and Dickinson proposed that the hypoxia caused by the high alti-

tude might impair cell membrane ion-channel active transport of sodium by decreasing

the supply of ATP, thereby leading to cell swelling (79). However, in 1995 Severinghous

et al, stated that HACE occurs at level of tissue oxygenation compatible with relatively

normal cerebral functioning, whereas, in experimental hypoxia, ATP depletion occurs

long after all neuronal activity has been lost (80). Previously in 1975 Lassen and

Harper, hypothesised that the elevated capillary pressure due to hypoxic vasodilation

and high cerebral blood flow (CBF) caused hydrostatic capillary leak. This theory is

however, problematic as to the normally unique impermeability of brain capillaries.

These theories are consistent with present thinking in that the main contributor is hy-

poxia, and that the end result is a combination of peripheral responses, which reach

the brain and influence BBB permeability, cerebral oedem and cerebral blood volume

causing increased intracranial pressure.
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1.3.2 Osmotic Oedema

An osmotic brain oedema is caused by osmotic imbalances between blood and tissue.

The speed at which these osmotic imbalances develop is of particular importance as

concentration or dilution of osmolarity within the brain can only be compensated if

osmolar gradients develop slowly. In a clinical setting the syndrome of inappropriate

secretion of anti-diuretic hormone generates an osmotic imbalance known as serum hy-

posmolarity, which in turn causes an osmotic brain oedema. This is, however, not the

only way in which an osmotic oedema can manifest. If cerebral tissue is in a hyperos-

molar state, often formed post cerebral ischemia, an osmotic oedema can also manifest.

Under such conditions, reperfusion with isotonic fluids may cause an additional water

flux into the reperfused tissue (81), and (82).

1.3.3 Interstitial Oedema

An interstitial oedema occurs when the ventricle cavities containing cerebrospinal fluid

(CSF) become obstructed preventing absorption into the bloodstream. This causes

fluid to build up inside the ventricle and puts pressure on adjacent brain tissue, which

is known as obstructive hydrocephalus. This results in trans-ependymal flow of CSF,

causing CSF to penetrate the brain and spread to the extracellular spaces and the white

matter. Interstitial cerebral oedema di↵ers from vasogenic oedema as CSF contains

almost no protein.

1.3.4 Cytotoxic Oedema

A cytotoxic brain oedema is di↵erent from the oedemas previously discussed, as the

BBB remains intact. The oedema forms owing to disruption in cellular metabolism,

impairing the function of sodium and potassium active transport pumps in the glial

cell (astrocyte) membrane. This results in cellular retention of sodium and water. This

mechanism has been investigated thoroughly however, without any true conclusions.

The cytotoxicity can evolve from a number of di↵erent causes, Reye’s Syndrome, severe

hypothermia, early ischemia, encephalopathy, early stoke, hypoxia, cardiac arrest and

pseudotumor cerebri. Nearly all of theses disorders involve reducing the amount of

oxygen available to cells, essentially causing a localised hypoxic episode.
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Nagelhus et el in 1999 (83), identified AQP4 as being present in the end feet of

astrocytes. Physiologically AQP4 is thought to work with inward rectifying potassium

channel Kir4.1, co localising with AQP4 in astrocytes. This clears both channel pro-

teins of water, during high neuronal activity, from the extracellular compartment to

neighbouring astrocytes and furthermore to the astrocytic syncytium. This hypothesis

has however been challenged, owing to the fact that dissociation of AQP4 from Kir4.1

expression can occur, and that AQP4 is a bidirectional water channel protein (84).

The most significant finding relating to oedema development is that AQP4 localisation

in astrocytic end feet is dystrophin regulated as dystrophin-null mice showed delayed

brain oedema development indicating a reduction in AQP4 expression in astroglial end

feet but unaltered total AQP4 protein (85).

Although these discoveries seem to contradict each other, there is a common concen-

sus that decreased AQP4 expression counteracts progression of brain oedema as AQP4

null mice showed significantly reduced brain oedema and decreased mortality after wa-

ter intoxication, as well as following the middle cerebral artery ligation, while the BBB

remained intact (60). Furthermore astrocytic AQP4 have been specifically identified

to be involved in traumatic cytotoxic brain oedema. Marmoarou et al, Doppenberg et

al, and Amorini et al, demonstrated that IV radioactive labeled sodium ions increased

after traumatic brain injury, which was cleared intracellularly as tissue microdialysis

fluid did not show an increase in sodium (86) (87) (88).

While AQP4 is able to drive cytotoxic brain oedema we still lack a full understand-

ing of the role of AQP4 under pathological conditions. Moreover, the functions of AQP

1, 5, and 9 also located in astrocytes (Arima et al., 2003 (89); Badaut et al., 2001 (90),

2002 (91), 2003 (92), ; Yamamoto et al., 2002(93), are unknown, and the interaction

of AQP’s located in close neighbourhood to astrocytes (e.g. ependyma, neurons, blood

vessels) structures, as well as the significance of tetrameric assembling of both AQP4

splice variants to orthogonal array of particles (Rash et al., 1998 (94)), and their further

agglomeration, require further research (82).

This thesis, will endeavour to fully understand the role of AQPs (with particular

focus on AQP 4) and their involvement in forming cytotoxic brain oedemas.
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1.3 Cerebral Oedema

1.3.4.1 Stroke

A stroke is the second leading cause of death worldwide, responsible for 4.4 million

(9%) of the total 50.5 million deaths each year, and in 2010 the 4th largest cause of

death in the UK causing almost 50,000 deaths (95). According to the national stroke

association there are 152,000 strokes in the UK every year; which is more than one

every 5 minutes (95). There are approximately 1.1 million stroke survivors living in

the UK, and as a result this is the leading cause of adult disability, as more than half

of UK stroke victims are dependent on others following a stroke (96). A stroke is said

to account for 7% of fatalities in men and 10% of fatalities in women (95).

Stroke is one of the most common causes of cytotoxic brain oedema, which is one

of the two main causes of death for stroke victims. A stroke is classified as rapid loss of

brain function due to a disruption to the blood supplying the brain. This can be as a

result of ischaemia, caused by a blockage, or a haemorrhage. An ischaemia means there

is a lack of blood flow in the brain, which is commonly caused by either a thrombosis

or an arterial embolism. Ischaemia can be treated in hospital with thrombolysis, which

is the break down of a clot by pharmacological methods. A haemorrhage is a loss of

blood from the vascular system into the body cavity or space. It is a serious medical

condition in the brain and requires neurosurgery (97).

Considering that 85% of stroke victims present with ischaemic strokes, having a

greater understanding of the physiology of a cytotoxic cerebral oedema and the in-

volvement of AQPs (with particular focus on AQP 4), will help to guide research in the

field, allowing for specific drug design (98). This is a very important point to make,

as only £22 a year is spent on medical research for every stroke patient, compared to

£295 a year per cancer patient, so focused research is essential (99). It is also possible

that this treatment will become useful for all the other forms of oedema, if not as a cure

but as a method for reducing onset of the disorder decreasing the chance of mortality.

1.3.4.2 Hypoxia

Hypoxia is obviously another way by which cytotoxic cerebral oedemas can present

themselves. The physiology involving oedemas has already been discussed in section
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1.3.1.3 HACE, however, there are many di↵erent ways by which hypoxia can manifest.

For an oedema to form the pathological condition will be referred to as tissue hypox-

ia/regional hypoxia, however the whole body can become hypoxic which is known as

generalised hypoxia. Hypoxia can also present and be a serious consequence of preterm

birth in the neonate. This is because lungs are one of the last organs to form, meaning

in preterm babies they aren’t fully developed, meaning less oxygen is inhaled and ab-

sorbed by the blood, causing an hypoxic state.

There are three other forms of hypoxia, anaemic hypoxia, historic hypoxia and

ischaemic hypoxia. Anaemic hypoxia is whereby the arterial pressure of oxygen is

normal but total oxygen content of blood is reduced owing to the diminished ability

for haemoglobin to carry oxygen. Historic hypoxia is whereby the blood containing

and supplying the cells with oxygen is normal however, the cells ability to use the

oxygen e↵ectively is diminished, owing to disabled oxidative phosphorylation enzyme.

Ischaemic hypoxia, is when there is decreased blood flow supplying tissues or cells.

1.3.4.3 Ischaemia Reperfusion Injury

Ischaemia reperfusion injury, although is not related to oedemas, indicates furthermore

the importance of understanding oedema formations. Ischaemic periods for tissue, cells,

or stroke, can be rectified using thrombolysis, this however, can be problematic, as the

tissue/cells can then undergo reperfusion injury. Reperfusion injury is the damage

caused to tissue, when blood supply returns to tissue following periods of ischaemia.

This is as a result of inflammation and oxidative damage through the induction of

oxidative stress. The brain is made up of tissue known as aerobic tissue, which has

been classified as being part of tissues undergoing the ischaemic cascade after seconds

to minutes of ischaemia.

1. Ischaemic episode in the brain (100).

2. Brain tissue deprived of glucose and oxygen, and acidic by-products accumulate.

A loss of nutrients and decrease in pH causes the Electron Transport Chain (ETC)

to stop, in the mitochondria resulting in a rapid decline in ATP concentration

(101), (102), (103), (104).
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3. ATP loss causes disruption of active transport ion pumps like Na+-K+-ATPase,

Ca2+-H+ATPase, reversal of Na+-Ca2+ transporter resulting in an increase in

intracellular Na+, Ca2+, Cl� concentration and e✏ux of K+, (105), (106).

4. The redistribution of ions across the plasma membrane causes neuronal depolar-

isation, leading to excess release of neurotransmitters in general, and glutamate

in particular cause neuronal excitotoxicity, (107).

5. Glutamate causes an excessive increase in Ca2+ concentration into nerve cells

through over-activation of their receptors which then triggers a variety of pro-

cesses that can lead to necrosis and apoptosis, (108), (109). These processes

include Ca2+ overload of mitochondria, oxygen free radical formation and activa-

tion of caspases-9,3,8,BAD, BAX and Calpains resulting in oxidative stress and

apotosis respectively, (110), (111).

6. Ca2+ dependent activation of Neuronal Nitric Oxide Synthase (nNOS), causes an

increase in NO production and the formation of toxic peroxynitrite (ONOO�)

which contributes to oxidative stress and excitotoxicty, (112), (113), (114).

7. Upregulation of a variety of enzyme systems such as lipases, proteases, phos-

photases, kinases and endonucleases activate various inflammatory molecules like

cytokines and interleukins (ILs) such as TNF-↵, NF-B that results in neuroin-

flammation, (115), (116), (117).

8. Excessive influx of Na+, Ca2+ and e✏ux of K+ and recruitment of inflammatory

mediators like leukocytes and adhesion molecules, it causes fluid accumulation at

the injury site resulting in oedema formation, (118), (119), (120), (121).

endenumerate

All these damaging factors lead to irreversible final events in cerebral ischaemic

stroke.

As this introduction demonstrates, there is not a full understanding around the

physiological mechanisms, which evolve a cytotoxic oedema, however the research
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already done around aquaporins involvement seems to warrant further investiga-

tion.

/sectionAims This PhD thesis will investigate all AQPs for their potential role,

function and mechanism for tranporting water across plasma membranes. Inves-

tigation into the involvement of AQPs in the formation of cytotoxic brain oedema,

and their role in transporting molecules involved in hypoxia formation will also

be performed.

To start this thesis will characterise all aquaporins for their expression localisation

in cells before and after exposing them to di↵erent extracellular tonicities. This

will enable us to determine which aquaporins may possibly be involved in the

transportation of water across the atrocytic membrane. This is because research

indicates that these aquaporins don’t always reside in the cell membrane but

are activated via transduction cascades, coordinating their expression to di↵erent

locations. Following this I will investigate these AQPs further to understand their

translocation mechanisms. In understanding the mechanisms which enable the

oedema to form I may be able to understand how to stop the mechanisms. The

goal of this PhD thesis is to try prevent the transportation of water and formation

of a cytotoxic oedema, whilst also invstigating AQPs role in transportation of

other small molecules potentially involved in the formation of hypoxic oedemas

or HACE. This will be done by performing sensitive nitrate/nitrite studies using

and modifying techniques and perfected by Martin Feelisch’s lab.
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2

Materials & methods

2.1 Materials

Below is a list of all inhibitors, antibodies, and kits puchased, and who they were

purchased from, during the course of this thesis:

• W7Calmodulin Antagonist (N-(6-aminohexyl)-5-chloronaphthalene-1-sulphonamide,

Kd⇠ 1 µM from Sigma.

• Myr-PKC 19-27 and hypericin (Kd ⇠ 100nM) from Fisher Scientific (Lough-

borough, UK).

• Myr-PKA 14-22 from Merck Chemicals (Nottingham, UK)

• CPA (cyclopiazonic acid, inhibits sacro/endoplasmic reticulum Ca2+-ATPase

with nanomolar a�nity) from Tocris Bioscience (Bristol, UK).

• FluorodishTMdishes were from WPI, Ltd (Stevenage, UK)

• Primary polyclonal mouse anti-AQP4 (ab125049) from Abcam

• Primary polyclonal rabbit anti-AQP4 (ab85904) from Abcam

• Secondary donkey anti-rabbit IgG-HRP (sc-2313) from Santa Cruz Biotech

(Dallas, Texas, USA)

• GatewayTM vectors were from Invitrogen (Paisley, UK)

• TransFastTM transfection reagents from Promega (Southampton, UK)
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2. MATERIALS & METHODS

• PowerPrepTM HP plasmid purification systems (Maxiprep and Miniprep)

from OriGene (Rockville, USA)

• Protease inhibitor from Calbiochem, subsidiary of Merck Millipore (Billerica,

USA)

• Co-Immunoprecipitation beads, from Merck Millipore (Billerica, USA)

• Unless specified all other chemicals were ordered from Sigma, Fisher, Promega

or Invitrogen.

2.2 Expression Constructs

AQPs were fused with carboxyl-terminal GFP (Green Fluorescent Protein) using

the Invitrogen GatewayTMcloning system according to the manufacturers instruc-

tions. Sequence-verified AQP cDNAs were a kind gift of Dr. Kristina Hedfalk

(Goteborg University). For directional cloning of blunt-ended PCR products

into an entry vector using the GatewayTM system, four bases (GGGG) were

added to the 5’-end of the forward primer followed by the 25-bp attB1 attach-

ment sequence (underlined). This was followed by five bases (bold- face type)

to introduce a Kozak sequence upstream and to keep the sequence in frame

with the AQP coding sequence. Finally, 18–25 base pairs (bp) of the AQP

sequence were added to create the aminoterminal forward primers, 5’-GGGG

ACA AGT TTG TAC AAA AAA GCA GGC TCC ACC ATG-AQP(1825 bp)-

3’. For the reverse primer, four bases (GGGG) were added to the 5’-end followed

by the 25-bp attB2 attachment sequence (underlined), and then one base (bold-

face type) was added to keep the sequence in frame with the AQP coding sequence.

Finally, 18–25 bp of the AQP sequence without the stop codon were added to cre-

ate the carboxyl-terminal forward primers 5’-GGG GAC CAC TTT GTA CAA

GAA AGC TGG GTC AQP(18–25 bp)-3’. DNA polymerase from Thermococ-

cus kodakaraensis (KOD) polymerase was used in PCR amplification of the AQP

cDNA. Samples were heated to 94�C for 2min, followed by 30 cycles of 94�C for

30s, 55�C for 30s, and 68�C for 3min, and then 68�C for 7min. Purified PCR

products were subcloned into the pDONR221TM entry vector (Invitrogen) using

the attB1 and attB2 sites in a reaction with GatewayTM BP ClonaseTMenzyme
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Reagents DNA Sample Water Control

Template 1µL 1µL

Forward Primer 2.5µL xxxxx

Reverse Primer 2.5µL xxxxx

10x bu↵er 5µL 5µL

dNTPs (2mM) 5µL 5µL

Deionised, Sterile Water 33µL 38µL

PFU Polymerase 1µL 1µL

Table 2.1: PCR Reagents

mix (Invitrogen). pDONR221TM vectors containing the required sequences were

recombined with the pcDNA-DEST47 GatewayTM vector using the attL and attR

reaction with GatewayTM LR ClonaseTM enzyme mix (Invitrogen). This created

expression vectors with the cycle 3 mutant of the GFP gene at the carboxyl ter-

minus of the AQP gene of interest, which was expressed subsequently as fusion

proteins. All mutant constructs were amplified using the well established, mod-

ified QuikChange procedure (Stratagene), as described previously. All plasmids

were handled and purified using standard molecular biological procedures.

2.3 Mutagenesis

2.3.1 PCR Mutagenesis Protocol

Vector pcDNA - Dest 47 is 7780bp long

Extension Time = 18 minutes

The reagents detailed in table 2.1 were mixed together in two separate eppendorf

tubes, labelled DNA sample and water control, and stored in ice.

The eppendorf vials were then added to a PCR machine and run though a typical

PCR protocol with an extension time of 18 minutes, owing to the 7780bp of the

pcDNA-Dest 47 vectors length.
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Following the PCR, a sample was removed (5µL) and stored in a separate labelled

eppendorf tube. The remaining PCR mix was digested with Dpn1 (1µ) for 1 hour

at 37�C. Following that incubation, another sample (5µL) was removed and added

to another separately labelled eppendorf tube. These two samples were then run

through a DNA agarose gel.

2.3.1.1 DNA Gel Electrophoresis

5x TBE bu↵er (50mL) was added to deionised water (dH2O, 450mL) to make a

TBE dilution. Agarose powder (1.5g) was added to the TBE dilution (150mL) in

a 250mL conical flask. The solution was stirred and heated in a microwave until

all the solid had dissolved. Ethidium bromide (1.5µL) was then added, cautiously

and in a fume hood, to the hot agarose solution. The solution was stirred gently

and poured into the gel cast and left to cool and solidify. Once the gel had set,

the remaining TBE dilution was poured into the cast until the gel was completely

covered. The comb was removed from the gel, and a ladder, pre, and post Dpn1

samples were added to their own wells. A voltage of 150V was then applied to the

solution for 1 hour, and the gel visualised under UV light. For the digest to have

worked a band present in the pre Dpn1 sample had to have vanished in the post

Dpn1 sample column, confirming the digestion of the methylated template DNA,

leaving just the amplified construct. If however this hadn’t have happened then

the PCR would need to have been repeated, and the primers checked/sequenced.

2.3.1.2 Transformations

XL10 gold cells (20µL) were added to cold eppendorf tubes, along with DNA

(3µg, 2µL). The cells were then forced to endure shock treatment, 30 seconds in

a water bath at 42�C followed by immediate removal and placement in ice for 5

minutes. LB broth (1mL) was then added to each eppendorf and put, securely,

in a shaking incubator for 1 hour. Using aseptic techniques, the cell solution, was

plated onto ampicillin resistant agar plates and left for 15 hours to culture at 37�C

in an incubator. A control of water was run alongside this protocol as well as a

template control, allowing for comparison against the DNA plate. If all plates had
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had colonies something would have gone wrong meaning the entire process would

have needed to be repeated depending on which control had colonies present. An

ampicillin plate was used as the DNA construct made has an ampicillin resistant

gene present.

Next, three isolated colonies were picked using a sterile pipette tip and scraped

into a vial of LB broth (5mL) containing ampicillin (5µL). This vial was then

incubated in a shaker at 37�C for 1 hour. The LB solution was then poured into

sterile conical flasks, 500mL, along with LB broth (150ml) and ampicillin (50µL).

The conical flasks were then secured in the shaking incubator and left for 15hours

at 37�C. Post incubation the, now cloudy, LB broth was aliquoted into labelled

falcon tubes and spun in a centrifuge at 1000rpm, until a pellet formed. Once

the pellet had formed the solution was removed and the pellet purified using a

miniprep and then maxiprep kit.

2.3.1.3 Miniprep and Maxiprep Protocol

Miniprep

(a) Equilibration Bu↵er (2mL) was added to the column, and the solution al-

lowed to drain by gravity flow/low spin.

(b) 10 to 15 mL of an overnight culture was pelleted and all medium thoroughly

removed.

(c) Cell Suspension Bu↵er (0.4mL), containing RNase A, was added to the pellet

until the cells were suspend in a homogeneous solution.

(d) Cell Lysis Solution (0.4mL) was then added and the ependorf tube inverted

5 times, and left at RT for exactly 5 mins.

(e) Neutralisation Bu↵er (0.4mL) was added to the eppendorf tube and inverted

until the solution was homogeneous. The solution was then centrifuged at

12,000 x g at RT for 10 mins.

(f) The supernatant was pipetted onto the equilibrated column allowing the

solution to drain by gravity flow. The flow-through was discarded.
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(g) The column was then washed twice with Wash Bu↵er (2 x 2mL) and the

solution allowed to drain from the column by gravity flow/low spin. The

wash was discarded after each flow-through.

(h) The DNA was eluted by adding Elution Bu↵er (0.9mL) to the column, which

was allowed to drain by gravity flow/low spin.

(i) Isopropanol (0.63mL) was then added to the eluate. and the mixture cen-

trifuged at 12,000 x g at 4�C for 30 min. The supernatant was then carefully

discarded and the pellet washed with ethanol (1mL at 70%) and centrifuged

at 12,000 x g at 4�C for 5min. The ethanol wash was carefully and fully

removed and the pellet dried in air for 10 min.

(j) The pelleted DNA was dissolved in TE Bu↵er (50µL).

Maxiprep

(a) Equilibration Bu↵er (30mL) was added to the column, and the solution

allowed to drain by gravity flow.

(b) 100mL of an overnight culture was pelleted and all medium thoroughly re-

moved.

(c) Cell Suspension Bu↵er (10mL), containing RNase A, was added to the pellet

until the cells were suspend in a homogeneous solution.

(d) Cell Lysis Solution (10mL) was then added and the ependorf tube inverted

5 times, and left at RT for exactly 5 mins.

(e) Neutralisation Bu↵er (10mL) was added to the eppendorf tube and inverted

until the solution was homogeneous. The solution was then centrifuged at

15,000 x g at RT for 10 mins.

(f) The supernatant was pipetted onto the equilibrated column allowing the

solution to drain by gravity flow. The flow-through was discarded.

(g) The column was then washed twice with Wash Bu↵er (60mL) and the so-

lution allowed to drain from the column by gravity flow. The wash was

discarded after each flow-through.
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(h) The DNA was eluted by adding Elution Bu↵er (15mL) to the column, which

was allowed to drain by gravity flow.

(i) Isopropanol (10.5mL) was then added to the eluate. and the mixture cen-

trifuged at 15,000 x g at 4�C for 30 min. The supernatant was then carefully

discarded and the pellet washed with ethanol (5mL at 70%) and centrifuged

at 15,000 x g at 4�C for 5min. The ethanol wash was carefully and fully

removed and the pellet dried in air for 10 min.

(j) The pelleted DNA was dissolved in TE Bu↵er (500µL).

2.4 Cell Culture and Transfection

Human Embryonic Kidney (HEK)293 cells were cultured routinely in DMEM

supplemented with 10% (v/v) foetal bovine serum (FCS) in humidified 5% (v/v)

CO2 in air at 37�C. Cells were seeded into 30mm FluorodishTM dishes and trans-

fected after 24h at 50% confluency using the TransFastTM transfection protocol

with 3µg of DNA per dish. Cortices were dissected from neonatal 25-day-old

Wistar rats and placed in cold HEPES-bu↵ered saline. Following mechanical di-

gestion in modified glial medium (DMEM/F12 culture medium with 10% fetal

bovine serum, 1% glutamine, and 10 µg/ml gentamicin), the tissue was digested

chemically in 1x trypsin and DNase for 25min at 37�C. The tissue was then

washed twice with glial medium and dissociated into a cell suspension by tritu-

ration three times sequentially through a 5ml pipette followed by a fire-polished

Pasteur pipette. Suspended cells were diluted in 10ml of glial medium, and passed

through a 40µM strainer. Following centrifugation (500 X g for 5min), the su-

pernatant was removed, and the pellet was suspended in glial medium (10mL).

Cells were seeded at 2 X 106 cells/T75 cm2 flask in glial medium (15mL) and in-

cubated at 37�C in 5% CO2, changing the medium every 2 days until confluency

was achieved (⇠6–7 days). Astrocytes were purified by shaking at 350rpm for

6h at 37�C to separate oligodendrocytes from astrocytes; the glial medium and

oligodendrocytes were replaced with fresh medium and shaken for 18h and then

again for a further 24h changing the medium every 6h. Cells were reseeded at 3
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X 105 cells/T75 cm2 flask. Identification of primary astrocytes was confirmed by

immunocytochemistry.

2.4.1 HEK293 Transfection protocol

Nuclease free water (400µL) was added to a vial of TransFastTM lyphilised pow-

der. This was then vortex mixed for a couple of seconds. DNA (3µg, 2µL) was

added to the TransFastTM solution (18µL) in a universal tube (50ml). The so-

lution was gently mixed with a pipette and left at room temperature (RT) for

15 mins. The DNA/TransFastTM mix (20µL) was added to the HEK293 cells

in DMEM full media (2mL). The confocal dish was then, gently placed in an

incubator (37�C) for 1 hour. After an hour the media was aspirated away very

carefully so as not to dislodge the HEK293 cells, and replaced with fresh DMEM

full media (2mL). The cells are then returned to the incubator for 48 hours. This

protocol for transfection is slightly di↵erent from most protocols as most require

a media to be used without FCS, however, TransFastTM has been specifically

designed to be used in the presence of FCS.

2.4.2 Immortalysed Astrocytes Transfection Protocol

Although this was tried and tested using TransFastTM the expression was very

poor, making it di�cult to get clear confocal imaging of the translocation response

to changing extracellular tonicity. Following further research and discussion with

biological supplies companies, Mirus Bio LLC made a variety of transfection re-

gents for particularly di�cult to transfect cell lines. The reagent found to be

successful, 70-80% transfection expression, was TransItTM 2020. The following

protocol was applied. A FluorodishTM of 50% confluent astrocytes containing

DMEM full media (2mL) had the DMEM aspirated away. Then DMEM Full

Media (2.5mL) was added to the FluorodishTM along with a transfection mix

of TransITTM 2020 (7.5µL), DNA (3-4µg, 2.5µL) and DMEM (250µL) FCS-free

and dye-free, which had previously been left at RT for 30mins. The TransITTM

2020 reagents unlike TransFastTM was not toxic to the cells, so the transfection
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and media mix did not have to be replaced, meaning it could be placed in the

incubator at 37�C for 48 hours.

2.5 Confocal Microscopy

AQP-GFP fusion proteins were visualized in live cells enclosed in a full environ-

mental chamber by confocal laser scanning microscopy. Confocal images were

acquired with a Leica SP5 laser scanning microscope and a Zeiss Axiovert 200m

inverted microscope with a 63x (1.4 numerical aperture) oil immersion objective

for immunocytochemical analysis or a Zeiss Axiovert 200m upright microscope

with a 20x (1.0 numerical aperture) water dipping objective for live cell analysis.

The nucleus and the plasma membrane were sometimes stained with DAPI and

always 5µg/ml FM4-64 (Molecular Probes), respectively. Images were acquired

using an argon laser (excitation, 488nm; emission, band pass, 505–530nm) for

GFP, UV excitation and a band pass 385–470nm emission filter for DAPI, and

a He-Ne laser (excitation, 543nm; emission filter, long pass, 650nm) for FM4-64.

48h post-transfection, cells in FluorodishesTM were incubated with or without

50µM Myr-PKC, 50µM Myr-PKA, 50µM hypericin, 10µM 1-oleoyl-2-acetyl-sn-

glycerol, 5µM PMA, 10mM ca↵eine, 10µM CPA (30 min), 10mM TRPC1 antag-

onist SKF96365 or 100µM W7 for 1h at 37�C and 5% CO2. For inhibitor and

activator experiments, the concentrations used were derived from the literature

and were a minimum of 10x Kd (where known) to ensure 90%, theoretical frac-

tional occupancy of the target protein. Where no e↵ect was seen, the dose was

increased: for example, 1,000x Kd achieves 99.9% fractional occupancy. The vol-

ume of inhibitor (in water) added to the cells was 1% (v/v) to ensure a minimum

e↵ect on osmolality. Cells were visualized in control medium (DMEM) that has

an inorganic salt concentration of 120mM, a glucose concentration of 25mM, and

an osmolality in the range 322–374 mosM/kg H2O. Hypotonic medium has an

osmolality in the range 107–125mosM/kg H2O through dilution of DMEM by a

factor of thrre with water. Protein localization was measured using a line profile

(pixel density) traced on each transfected cell.
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2.6 Determination of Subcellular Localisation, Image

J Analysis and Matlab

A minimum of 3 line profiles were measured and distributed at regular inter-

vals covering the plasma membrane and the cytosol but avoiding the nucleus of

a minimum of three di↵erent, isolated cells from at least three independent ex-

periments. The fluorescence intensity over this distance was measured, and the

di↵erence between the peak and the plateau of fluorescence was divided by the

maximum fluorescence along the line scan to calculate the percentage of fluo-

rescence at the membrane. This was termed the relative membrane expression

(RME). Identification of the plasma membrane was achieved by staining with

FM4-64 and overlaying the GFP images. Nuclei were identified through DAPI

staining. The overlay of the GFP image either with the brightfield image or the

red fluorescence emitted by FM4-64 clearly indicated integration of GFP-tagged

AQP at the plasma membrane as well as in the cytoplasm of HEK293 cells. Once

the overlaying had been identified visually, this laser was turned o↵ and just the

GFP imaged as this prolonged the half-life of the fluorescence, enabling longer

experimentation time, with clearer images. The profiling was performed using

a software programe called Image J. This is a public domain, java-based image

processing programme developed by the National Institute of Health.

2.6.1 Image J Macros Script

Specific user friendly macros were created to aid a users to perform profile analy-

sis. The following code is additional comuptational coding and is not a standard

functionality of the native software:

macro "Membrane Expression" {

// 24/03/2012

// Last edited: 16/04/2012

// Confocal data analysis macro, to be used with

// "Membrane1.m" Matlab program.
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// Gets profile data from a set of selected ROIs and saves to file,

// followed by particle anaylsis to calculate cell x-sectional areas.

open(""); //prompt user to select image

ID = getImageID; // get image details for switching between images

name = getTitle; // and file i/o.

CellNo = getNumber("How many cells in the image would you like to

analyse?",1);

k = 1; //counter for plot profile file naming

for (l=0; l<CellNo; l++)

{

for (i=0; i<3; i++) //If more (or less!) than 3 ROIs per image are

desired, change the 3 in this line to the desired number

{

setTool("line");

if (i == 0)

{ waitForUser("Begin on a new cell and select the line ROI to be

analysed"); //prompt user to set ROI}

else

{ waitForUser("Select the line ROI to be analysed"); //prompt user

to set ROI}

selectImage(ID);

// generates and saves the plot profile data

A = getProfile; //get the profile data along the current ROI

B = newArray(A.length);

for (j=0; j<A.length; j++)
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{ B[j] = j+1; //This variable counts the number of datapoints in

the line profile. Count from 1 not 0 to make Matlab

compatibility simple! }

f = File.open("/Users/meaningless_s/Desktop/Final Thesis/PhD

Images/"+name+"_"+(k)+".txt"); // open text file to write to.

k++; //increment k ready to open the next file

for (j=0; j<A.length; j++)

{ print(f, B[j]+" \t"+d2s(A[j],10)+"\n"); //print datapoint number

plus line profile data to the open file }

File.close(f);

}

}

// particle analysis

selectImage(ID);

run("Duplicate...", "title=duplicate"); // keep a copy of the raw image

open

run("Make Binary"); // binary conversion required for particle analysis

ID2 = getImageID; //Get the ID of the binary image

setForegroundColor(1, 1, 1); //change the brush colour to black ready

for the user to draw on the binary image if necessary

waitForUser("Does the binary look OK? If yes, click OK now.\nIf not, use

the paintbrush tool to fix it, then click OK"); //prompt user to

check the binary

selectImage(ID2); //make sure the correct image is selected

setTool("rectangle");

setBackgroundColor(255,255,255);

waitForUser("Are there cells in the image that are not being analysed?\n

If so, highlight them and press backspace, then click OK.\n If not,

just click OK."); //prompt user to check the binary

run("Make Binary");

38



2.6 Determination of Subcellular Localisation, Image J Analysis and
Matlab

run("Analyze Particles...", "size=50-infinity circularity=0.00-1.00

show=Outlines display clear include"); //particle analysis (gets

cell outlines and areas)

selectImage(ID2); //make sure the correct image is selected

close; //get rid of binary image

saveAs("Results", "/Users/meaningless_s/Desktop/Final Thesis/PhD

Images/"+name+"_"+"areas.txt");}

}

This code saves a file from which analysis can be performed to calculate the

RME and determine the statistical significance in the variance. Analysis was

also performed on the surface area data, determining the percentage change in

size, and its statistical significance. This analysis was performed by a software

programme called Matlab using the following code.

2.6.2 Matlab Script for Membrane Profile Analysis

function [] = Membrane(N_Number, N1, N2, ImageTitle1, ImageTitle2,

ImageTitle3, ImageTitle4, ImageTitle5, ImageTitle6)

%MEMBRANE 1 PROFILE ANALYSIS

% 16/04/2012

% This program is a second attempt at performing the analysis of line

% profiles from confocal imaging of cells expressing GFP-tagged AQP4. The

% original program(s) (ProfileStats.m, ProfileSingle.m) looks for the

% highest fluorescence values and take those to be the mombrane region.

% This program will implements a more rigorous approach to

% finding the membrane regions which will not break when analysing images

% which show low (i.e. comparable to cytosol) membrane expression levels.

%
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fprintf(’\n n = 1\n\n’);

RME1 = zeros(1,N1); %pre-allocate memory for these vectors

RME2 = zeros(1,N1);

A1 = 0;

while (A1*A1) < N1 %calculate the number of tiles required in the

first subplot window

A1 = A1 + 1;

end

A2 = 0;

while (A2*A2) < N2 %calculate the number of tiles required in the

second subplot window

A2 = A2 + 1;

end

fprintf(’Starting First Image....\n\n’);

for i = 1:N1

buffer = strcat(ImageTitle1,’_’,num2str(i),’.txt’); %Need to do this bit

to include the iteration number as part of the imput file name

Input = importdata(buffer);

InputData = Input(:,2);

Threshold = mean(InputData);

ThresholdExceeded = find(InputData > Threshold);

MemLeftStart = ThresholdExceeded(1);

MemLeftEnd = MemLeftStart + 9; %Take membrane region to be 10 pixels

across

MemRightEnd = ThresholdExceeded(end);

MemRightStart = MemRightEnd - 9;

MembraneAverage = mean([max(InputData(MemLeftStart:MemLeftEnd))

max(InputData(MemRightStart:MemRightEnd))]);

CytosolAverage = mean(InputData(MemLeftEnd+1:MemRightStart-1));

RME1(i) = ((MembraneAverage - CytosolAverage) / MembraneAverage)*100;

fprintf(’ \n Cytosol Average: %f \n Membrane Average: %f \n RME: %f

\n\n’,CytosolAverage, MembraneAverage, RME1(i));

subplot(A1,A1,i);
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plot(1:length(InputData),InputData);

set(gcf,’Color’,[1,1,1]);

set(gca, ’Fontsize’, 16);

hold on;

plot([0 length(InputData)], [CytosolAverage CytosolAverage],

’red’);

plot([0 length(InputData)], [MembraneAverage MembraneAverage],

’green’);

plot([0 length(InputData)], [Threshold Threshold], ’black’);

xlabel({’Distance Across the Yellow Line’;’(No. Pixels)’},

’Fontsize’, 16);

ylabel({’Fluorescence Intensity’; ’(Arbitrary Units)’},

’Fontsize’, 16);

hold off;

set(gca,’ylim’,[0 max(InputData)+50],’xlim’,[0 length(InputData)]);

end

set(gcf,’NextPlot’,’add’);

axes;

h = title(ImageTitle1,’FontSize’, 16); %This block puts the title at the

top centre of the subplot figure window

set(gca,’Visible’,’off’);

%set(h,’Visible’,’on’);

if N1 > 1 %no point doing this bit if N = 1!

TotalRME1 = sum (RME1) /N1; %average over all N measurements

StdErr1 = std(RME1)/sqrt(N1); %calculate the standard error. This is

the sample standard deviation with Bessel’s correction, over the

root of the sample size

fprintf(’Average RME: %f %f \n \n’, TotalRME1, StdErr1);

end

%%%%%%%%%%%%%%%%%%%%%%

fprintf(’Starting Second Image....\n\n’);

figure;

for i = 1:N2
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buffer = strcat(ImageTitle2,’_’,num2str(i),’.txt’); %Need to do this bit

to include the iteration number as part of the imput file name

Input = importdata(buffer);

InputData = Input(:,2);

Threshold = mean(InputData);

ThresholdExceeded = find(InputData > Threshold);

MemLeftStart = ThresholdExceeded(1);

MemLeftEnd = MemLeftStart + 9; %Take membrane region to be 10 pixels

across

MemRightEnd = ThresholdExceeded(end);

MemRightStart = MemRightEnd - 9;

MembraneAverage = mean([max(InputData(MemLeftStart:MemLeftEnd))

max(InputData(MemRightStart:MemRightEnd))]);

CytosolAverage = mean(InputData(MemLeftEnd+1:MemRightStart-1));

RME2(i) = ((MembraneAverage - CytosolAverage) / MembraneAverage)*100;

fprintf(’ \n Cytosol Average: %f \n Membrane Average: %f \n RME: %f

\n\n’,CytosolAverage, MembraneAverage, RME2(i));

subplot(A2,A2,i);

plot(1:length(InputData),InputData);

set(gcf,’Color’,[1,1,1]);

set(gca, ’Fontsize’, 16);

hold on;

plot([0 length(InputData)], [CytosolAverage CytosolAverage],

’red’);

plot([0 length(InputData)], [MembraneAverage MembraneAverage],

’green’);

plot([0 length(InputData)], [Threshold Threshold], ’black’);

xlabel({’Distance Across the Yellow Line’;’(No. Pixels)’},

’Fontsize’, 12);

ylabel({’Fluorescence Intensity’; ’(Arbitrary Units)’},

’Fontsize’, 12);

hold off;

set(gca,’ylim’,[0 max(InputData)+50],’xlim’,[0 length(InputData)]);
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end

set(gcf,’NextPlot’,’add’);

axes;

h = title(ImageTitle2,’FontSize’, 16); %This block puts the title at the

top centre of the subplot figure window

set(gca,’Visible’,’off’);

%set(h,’Visible’,’on’);

if N2 > 1 %no point doing this bit if N = 1!

TotalRME2 = sum (RME2) /N2; %average over all N measurements

StdErr2 = std(RME2)/sqrt(N2); %calculate the standard error. This is

the sample standard deviation with Bessel’s correction, over the

root of the sample size

fprintf(’Average RME: %f %f \n \n’, TotalRME2, StdErr2);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Statistics for the two samples

[h1,p1] = ttest2(RME1,RME2,0.01,’both’,’unequal’);

if h1 == 0 %if the null hypothesis is not rejected at the 99% level, try

95%

[h2,p2] = ttest2(RME1,RME2,0.05,’both’,’unequal’);

if h2 == 1

fprintf(’The null hypothesis was rejected at the 95%% level. p =

%f \n \n’,p2);

elseif h2 == 0

fprintf(’The null hypothesis could not be rejected at the 95%%

level. p = %f \n \n’,p2);

end

elseif h1 == 1

fprintf(’The null hypothesis was rejected at the 99%% level. p = %f

\n \n’,p1);

end

%%%%%%%%%%%%%%%

if N_Number > 1
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fprintf(’\n\n n = 2 \n\n’);

figure;

RME3 = zeros(1,N1); %pre-allocate memory for these vectors

RME4 = zeros(1,N1);

fprintf(’Starting First Image....\n\n’);

for i = 1:N1

buffer = strcat(ImageTitle3,’_’,num2str(i),’.txt’); %Need to do

this bit to include the iteration number as part of the imput

file name

Input = importdata(buffer);

InputData = Input(:,2);

Threshold = mean(InputData);

ThresholdExceeded = find(InputData > Threshold);

MemLeftStart = ThresholdExceeded(1);

MemLeftEnd = MemLeftStart + 9; %Take membrane region to be 10

pixels across

MemRightEnd = ThresholdExceeded(end);

MemRightStart = MemRightEnd - 9;

MembraneAverage = mean([max(InputData(MemLeftStart:MemLeftEnd))

max(InputData(MemRightStart:MemRightEnd))]);

CytosolAverage = mean(InputData(MemLeftEnd+1:MemRightStart-1));

RME3(i) = ((MembraneAverage - CytosolAverage) /

MembraneAverage)*100;

fprintf(’ \n Cytosol Average: %f \n Membrane Average: %f \n RME:

%f \n\n’,CytosolAverage, MembraneAverage, RME3(i));

subplot(A1,A1,i);

plot(1:length(InputData),InputData);

set(gcf,’Color’,[1,1,1]);

set(gca, ’Fontsize’, 16);

hold on;

plot([0 length(InputData)], [CytosolAverage CytosolAverage],

’red’);
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plot([0 length(InputData)], [MembraneAverage MembraneAverage],

’green’);

plot([0 length(InputData)], [Threshold Threshold], ’black’);

xlabel({’Distance Across the Yellow Line’;’(No. Pixels)’},

’Fontsize’, 12);

ylabel({’Fluorescence Intensity’; ’(Arbitrary Units)’},

’Fontsize’, 12);

hold off;

set(gca,’ylim’,[0 max(InputData)+50],’xlim’,[0 length(InputData)]);

end

set(gcf,’NextPlot’,’add’);

axes;

h = title(ImageTitle1,’FontSize’, 16); %This block puts the title at

the top centre of the subplot figure window

set(gca,’Visible’,’off’);

%set(h,’Visible’,’on’);

if N1 > 1 %no point doing this bit if N = 1!

TotalRME3 = sum (RME3) /N1; %average over all N measurements

StdErr3 = std(RME3)/sqrt(N1); %calculate the standard error. This

is the sample standard deviation with Bessel’s correction, over

the root of the sample size

fprintf(’Average RME: %f %f \n \n’, TotalRME3, StdErr3);

end

%%%%%%%%%%%%%%%%%%%%%%

fprintf(’Starting Second Image....\n\n’);

figure;

for i = 1:N2

buffer = strcat(ImageTitle4,’_’,num2str(i),’.txt’); %Need to do

this bit to include the iteration number as part of the imput

file name

Input = importdata(buffer);

InputData = Input(:,2);

Threshold = mean(InputData);
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ThresholdExceeded = find(InputData > Threshold);

MemLeftStart = ThresholdExceeded(1);

MemLeftEnd = MemLeftStart + 9; %Take membrane region to be 10

pixels across

MemRightEnd = ThresholdExceeded(end);

MemRightStart = MemRightEnd - 9;

MembraneAverage = mean([max(InputData(MemLeftStart:MemLeftEnd))

max(InputData(MemRightStart:MemRightEnd))]);

CytosolAverage = mean(InputData(MemLeftEnd+1:MemRightStart-1));

RME4(i) = ((MembraneAverage - CytosolAverage) /

MembraneAverage)*100;

fprintf(’ \n Cytosol Average: %f \n Membrane Average: %f \n RME:

%f \n\n’,CytosolAverage, MembraneAverage, RME4(i));

subplot(A2,A2,i);

plot(1:length(InputData),InputData);

set(gcf,’Color’,[1,1,1]);

set(gca, ’Fontsize’, 16);

hold on;

plot([0 length(InputData)], [CytosolAverage CytosolAverage],

’red’);

plot([0 length(InputData)], [MembraneAverage MembraneAverage],

’green’);

plot([0 length(InputData)], [Threshold Threshold], ’black’);

xlabel({’Distance Across the Yellow Line’;’(No. Pixels)’},

’Fontsize’, 12);

ylabel({’Fluorescence Intensity’; ’(Arbitrary Units)’},

’Fontsize’, 12);

hold off;

set(gca,’ylim’,[0 max(InputData)+50],’xlim’,[0 length(InputData)]);

end

set(gcf,’NextPlot’,’add’);

axes;
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h = title(ImageTitle4,’FontSize’, 16); %This block puts the title at

the top centre of the subplot figure window

set(gca,’Visible’,’off’);

%set(h,’Visible’,’on’);

if N2 > 1 %no point doing this bit if N = 1!

TotalRME4 = sum (RME4) /N2; %average over all N measurements

StdErr4 = std(RME4)/sqrt(N2); %calculate the standard error. This

is the sample standard deviation with Bessel’s correction, over

the root of the sample size

fprintf(’Average RME: %f %f \n \n’, TotalRME4, StdErr4);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Statistics for the two samples

[h1,p1] = ttest2(RME3,RME4,0.01,’both’,’unequal’);

if h1 == 0 %if the null hypothesis is not rejected at the 99% level,

try 95%

[h2,p2] = ttest2(RME3,RME4,0.05,’both’,’unequal’);

if h2 == 1

fprintf(’The null hypothesis was rejected at the 95%% level. p =

%f \n \n’,p2);

elseif h2 == 0

fprintf(’The null hypothesis could not be rejected at the 95%%

level. p = %f \n \n’,p2);

end

elseif h1 == 1

fprintf(’The null hypothesis was rejected at the 99%% level. p =

%f \n \n’,p1);

end

%%% n = 2 stats

if N_Number == 2

fprintf(’\n\nCombined RME for n = 2\n\n’)

MeanRME1 = mean([RME1 RME3]);

StdErrorRME1 = std([RME1 RME3])/sqrt(length([RME1 RME3]));
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MeanRME2 = mean([RME2 RME4]);

StdErrorRME2 = std([RME2 RME4])/sqrt(length([RME2 RME4]));

fprintf(’Mean RME before treatment = %f

%f\n\n’,MeanRME1,StdErrorRME1);

fprintf(’Mean RME after treatment = %f

%f\n\n’,MeanRME2,StdErrorRME2);

[h1,p1] = ttest2([RME1 RME3],[RME2 RME4],0.01,’both’,’unequal’);

if h1 == 0 %if the null hypothesis is not rejected at the 99%

level, try 95%

[h2,p2] = ttest2([RME1 RME3],[RME2 RME4],0.05,’both’,’unequal’);

if h2 == 1

fprintf(’The null hypothesis was rejected at the 95%% level.

p = %f \n \n’,p2);

elseif h2 == 0

fprintf(’The null hypothesis could not be rejected at the

95%% level. p = %f \n \n’,p2);

end

elseif h1 == 1

fprintf(’The null hypothesis was rejected at the 99%% level. p =

%f \n \n’,p1);

end

end

end

if N_Number == 3

figure;

fprintf(’\n\n n = 3 \n\n’);

RME5 = zeros(1,N1); %pre-allocate memory for these vectors

RME6 = zeros(1,N1);

fprintf(’Starting First Image....\n\n’);

for i = 1:N1

buffer = strcat(ImageTitle5,’_’,num2str(i),’.txt’); %Need to do

this bit to include the iteration number as part of the imput

file name
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Input = importdata(buffer);

InputData = Input(:,2);

Threshold = mean(InputData);

ThresholdExceeded = find(InputData > Threshold);

MemLeftStart = ThresholdExceeded(1);

MemLeftEnd = MemLeftStart + 9; %Take membrane region to be 10

pixels across

MemRightEnd = ThresholdExceeded(end);

MemRightStart = MemRightEnd - 9;

MembraneAverage = mean([max(InputData(MemLeftStart:MemLeftEnd))

max(InputData(MemRightStart:MemRightEnd))]);

CytosolAverage = mean(InputData(MemLeftEnd+1:MemRightStart-1));

RME5(i) = ((MembraneAverage - CytosolAverage) /

MembraneAverage)*100;

fprintf(’ \n Cytosol Average: %f \n Membrane Average: %f \n RME:

%f \n\n’,CytosolAverage, MembraneAverage, RME5(i));

subplot(A1,A1,i);

plot(1:length(InputData),InputData);

set(gcf,’Color’,[1,1,1]);

set(gca, ’Fontsize’, 16);

hold on;

plot([0 length(InputData)], [CytosolAverage CytosolAverage],

’red’);

plot([0 length(InputData)], [MembraneAverage MembraneAverage],

’green’);

plot([0 length(InputData)], [Threshold Threshold], ’black’);

xlabel({’Distance Across the Yellow Line’;’(No. Pixels)’},

’Fontsize’, 12);

ylabel({’Fluorescence Intensity’; ’(Arbitrary Units)’},

’Fontsize’, 12);

hold off;

set(gca,’ylim’,[0 max(InputData)+50],’xlim’,[0 length(InputData)]);

end
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set(gcf,’NextPlot’,’add’);

axes;

h = title(ImageTitle1,’FontSize’, 16); %This block puts the title at

the top centre of the subplot figure window

set(gca,’Visible’,’off’);

%set(h,’Visible’,’on’);

if N1 > 1 %no point doing this bit if N = 1!

TotalRME5 = sum (RME5) /N1; %average over all N measurements

StdErr5 = std(RME5)/sqrt(N1); %calculate the standard error. This

is the sample standard deviation with Bessel’s correction, over

the root of the sample size

fprintf(’Average RME: %f %f \n \n’, TotalRME5, StdErr5);

end

%%%%%%%%%%%%%%%%%%%%%%

fprintf(’Starting Second Image....\n\n’);

figure;

for i = 1:N2

buffer = strcat(ImageTitle6,’_’,num2str(i),’.txt’); %Need to do

this bit to include the iteration number as part of the imput

file name

Input = importdata(buffer);

InputData = Input(:,2);

Threshold = mean(InputData);

ThresholdExceeded = find(InputData > Threshold);

MemLeftStart = ThresholdExceeded(1);

MemLeftEnd = MemLeftStart + 9; %Take membrane region to be 10

pixels across

MemRightEnd = ThresholdExceeded(end);

MemRightStart = MemRightEnd - 9;

MembraneAverage = mean([max(InputData(MemLeftStart:MemLeftEnd))

max(InputData(MemRightStart:MemRightEnd))]);

CytosolAverage = mean(InputData(MemLeftEnd+1:MemRightStart-1));
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RME6(i) = ((MembraneAverage - CytosolAverage) /

MembraneAverage)*100;

fprintf(’ \n Cytosol Average: %f \n Membrane Average: %f \n RME:

%f \n\n’,CytosolAverage, MembraneAverage, RME6(i));

subplot(A2,A2,i);

plot(1:length(InputData),InputData);

set(gcf,’Color’,[1,1,1]);

set(gca, ’Fontsize’, 16);

hold on;

plot([0 length(InputData)], [CytosolAverage CytosolAverage],

’red’);

plot([0 length(InputData)], [MembraneAverage MembraneAverage],

’green’);

plot([0 length(InputData)], [Threshold Threshold], ’black’);

xlabel({’Distance Across the Yellow Line’;’(No. Pixels)’},

’Fontsize’, 12);

ylabel({’Fluorescence Intensity’; ’(Arbitrary Units)’},

’Fontsize’, 12);

hold off;

set(gca,’ylim’,[0 max(InputData)+50],’xlim’,[0 length(InputData)]);

end

set(gcf,’NextPlot’,’add’);

axes;

h = title(ImageTitle4,’FontSize’, 16); %This block puts the title at

the top centre of the subplot figure window

set(gca,’Visible’,’off’);

%set(h,’Visible’,’on’);

if N2 > 1 %no point doing this bit if N = 1!

TotalRME6 = sum (RME6) /N2; %average over all N measurements

StdErr6 = std(RME6)/sqrt(N2); %calculate the standard error. This

is the sample standard deviation with Bessel’s correction, over

the root of the sample size
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fprintf(’Average RME: %f %f \n \n’, TotalRME6, StdErr6);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Statistics for the two samples

[h1,p1] = ttest2(RME5,RME6,0.01,’both’,’unequal’);

if h1 == 0 %if the null hypothesis is not rejected at the 99% level,

try 95%

[h2,p2] = ttest2(RME5,RME6,0.05,’both’,’unequal’);

if h2 == 1

fprintf(’The null hypothesis was rejected at the 95%% level. p =

%f \n \n’,p2);

elseif h2 == 0

fprintf(’The null hypothesis could not be rejected at the 95%%

level. p = %f \n \n’,p2);

end

elseif h1 == 1

fprintf(’The null hypothesis was rejected at the 99%% level. p =

%f \n \n’,p1);

end

end

end

2.6.3 Matlab Script for Cell Surface Area Analysis

function [] = Areas( N_Number, N1, N2, ImageTitle1, ImageTitle2,

ImageTitle3, ImageTitle4, ImageTitle5, ImageTitle6)

% SURFACE AREA ANALYSIS

% This function calculates the mean percentage change in size of cells,

from isotonic to hypotonic solution. A Students T-test is then

performed to determine the significance of the change from iosotonic

to hypotonic extracellular environment.

52



2.6 Determination of Subcellular Localisation, Image J Analysis and
Matlab

Areas1 = importdata(strcat(ImageTitle1, ’_areas.txt’));

Areas2 = importdata(strcat(ImageTitle2, ’_areas.txt’));

fprintf(’\n\nCell Cross-Sectional Areas\n\n’);

for i = 1: min(length(Areas1.data(:,2)),length(Areas2.data(:,2)))

fprintf(strcat(’Cell\f’,num2str(i),’\f- area before: %f, area after: %f.

Percentage change: %f \n\n’),Areas1.data(i,2),Areas2.data(i,2),

((100*Areas2.data(i,2)/Areas1.data(i,2))-100) );

end

if N_Number > 2

Areas3 = importdata(strcat(ImageTitle3, ’_areas.txt’));

Areas4 = importdata(strcat(ImageTitle4, ’_areas.txt’));

fprintf(’\n\nCell Cross-Sectional Areas\n\n’);

for i = 1: min(length(Areas3.data(:,2)),length(Areas4.data(:,2)))

fprintf(strcat(’Cell\f’,num2str(i),’\f- area before: %f, area

after: %f. Percentage change: %f

\n\n’),Areas3.data(i,2),Areas4.data(i,2),

((100*Areas4.data(i,2)/Areas3.data(i,2))-100) );

end

if N_Number == 2

mean1 = mean([((100*Areas4.data(i,2)/Areas3.data(i,2))-100)

((100*Areas2.data(i,2)/Areas1.data(i,2))-100)]);

fprintf(’Mean percentage change: %f \n\n’,mean1);

end

end

if N_Number > 2

Areas5 = importdata(strcat(ImageTitle5, ’_areas.txt’));

Areas6 = importdata(strcat(ImageTitle6, ’_areas.txt’));

fprintf(’\n\nCell Cross-Sectional Areas\n\n’);

for i = 1: min(length(Areas5.data(:,2)),length(Areas6.data(:,2)))

fprintf(strcat(’Cell\f’,num2str(i),’\f- area before: %f, area

after: %f. Percentage change: %f

\n\n’),Areas5.data(i,2),Areas6.data(i,2),

((100*Areas6.data(i,2)/Areas5.data(i,2))-100));
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end

mean2 = mean([((100*Areas4.data(i,2)/Areas3.data(i,2))-100)

((100*Areas2.data(i,2)/Areas1.data(i,2))-100)

((100*Areas6.data(i,2)/Areas5.data(i,2))-100)]);

std_err = std([((100*Areas4.data(i,2)/Areas3.data(i,2))-100)

((100*Areas2.data(i,2)/Areas1.data(i,2))-100)

((100*Areas6.data(i,2)/Areas5.data(i,2))-100)]);

std_err = std_err/sqrt(3);

fprintf(’Mean percentage change: %f %f \n\n’,mean2,std_err);

fprintf(’T-test against swelling of wild-type HEK cells...\n\n’);

[h,p] = ttest2([((100*Areas4.data(i,2)/Areas3.data(i,2))-100)

((100*Areas2.data(i,2)/Areas1.data(i,2))-100)

((100*Areas6.data(i,2)/Areas5.data(i,2))-100)], [1.4 6.5 13]);

if p < 0.01

fprintf(’null hypothesis rejected at 99%% level’);

elseif p >= 0.01 && p < 0.05

fprintf(’null hypothesis rejected at 95%% level, but not at 99%%’);

end

fprintf(’p = %f \n\n’, p);

end

end

2.7 Primary Astrocyte Immunocytochemistry

Endogenous AQP4 protein was visualized in isolated rat primary astrocytes.

Cells were grown on coverslips and exposed to glial medium or diluted glial

medium, and then fixed by perfusing (optimized to ensure tonicity changes did not

a↵ect expression profile) with 4% (v/v) paraformaldehyde in phosphate-bu↵ered

saline for 15min at room temperature. These were washed twice with phosphate-

bu↵ered saline, and permeabilised using a blocking solution containing 0.25%

(v/v) Triton X-100, 1% (v/v) goat serum and 1% (w/v) bovine serum albumin
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2.8 Co-Immunoprecipitation Protocol

in phosphate-bu↵ered saline. Successive incubations with primary and secondary

antibodies were carried out for 16h at 4�C and 1h at RT, respectively. Primary

antibodies (1:500) were detected by species-specific FITC-conjugated secondary

antibodies (1:1,000). Cells were washed in phosphate-bu↵ered saline, and cov-

erslips were mounted with Vectorshield (Vector Laboratories). The cells were

visualized, and confocal images were acquired using confocal laser scanning mi-

croscopy as described below. Because perfused, fixed primary cells were used, the

same live cell could not be compared under di↵ering conditions; rather, cells from

the same subcultured population were compared on di↵erent cover slips.

2.8 Co-Immunoprecipitation Protocol

2.8.1 Cell Lysis

6 well plates with living HEK293 cells, were placed on trays of ice. They were

then washed gently with ice-cold PBS, and the wash repeated, removing PBS

solution each time with an aspirator. Great care was taken with these steps, so

as not to disturb the cells and dislodging them from the plate. Following the

second wash all PBS was removed. The cells were then lysed using Triton lysis

bu↵er:

(a) Add 250µL per p60 dish/500µL per p100 dish

(b) Scrape cells o↵ the plate with a plastic scraper

(c) Place cells on ice in a pre-chilled eppendorf

The cell lysates were then incubated on ice for 30 minutes. Following incubation

the lysates were centrifuged at 13,000 x g, at 4�C for 10 minutes. The supernatant

from each tube was removed and placed in a newly labelled eppendorf.

Triton Lysis Bu↵er Protocol

(a) Tris (20mM, pH 7.4)

(b) NaCl (137mM)
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2. MATERIALS & METHODS

(c) Glycerol (10%)

(d) Triton X-100 (0.5)

Sample Bu↵er

(a) SDS (10%)

(b) DTT (10mM)

(c) Glycerol (20%)

(d) Tris (0.1M, pH 6.8)

(e) Blue bromophenol (10%)

2.8.2 Preparation of Immunoprecipitation columns

Protein G Agarose (15µL) bead slurry was added to labelled spin columns and

added to eppendorf tubes. Triton lysis bu↵er (1mL) was added to each column

and inverted twice to wash the beads. The eppendorf tubes were then centrifuged

at 100 x g, at 4�C for 1 minute. The liquid was removed carefully by an aspirator

ensuring that just the beads were left. The wash process was then repeated an-

other 2 times, and the required antibody added to each column (varied depending

on product recommendations but in most cases it was 1µg).

2.8.3 Running of Immunoprecipitation Columns

Remove a sample of cell lysate (40µL) to run later on the gel alongside the IP

sample. The remaining cell lysate was added to the IP column. The columns

were then incubated for 3 hours at 4�C, whilst being continually shaken gently.

The IP columns were then washed 3 times, as stated before in preparation of

immunoprecipitation columns. 5 x sample bu↵er (20µL) and triton lysis bu↵er

(10µL) was then added to each column, giving a gentle flick to mix. The samples

were then incubated at 95�C for 5 mins. Following incubation the columns were

centrifuged at 100 x g at 4�C for 1 minute. All the liquid was removed without
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2.8 Co-Immunoprecipitation Protocol

disturbing the beads. The solution was then loaded and run on a Tris-glycine gel,

as indicated in the gel electrophoresis chapter.

2.8.4 Western Blot

2.8.4.1 Stock Solutions

Final Sample Bu↵er (FSB)

(a) 4% SDS

(b) 10% 2-mercaptoethanol

(c) 20% Glycerol

(d) 0.004% Bromophenol Blue

(e) 0.125M Tris HCl

RIPA Bu↵er

(a) 150mM Sodium Chloride (NaCl = 0.87g)

(b) 1% Np-40 or Triton x100

(c) 0.5% Sodium Deoxycholate

(d) 0.1% SDS (1mL of 10%)

(e) 50mM Tris pH8.0 (5mL of 1M)

(f) add to x2 Sample Bu↵er

Resolving Bu↵er 10%

(a) 3.3mL Protogel

(b) 2.5mL Tris-HCl (1.5M)

(c) 100µL SDS

(d) 3.96mL Deionised Water

Ammonium Persulphate Solution

(a) 0.1g in 1mL of water (10% W/V)

57



2. MATERIALS & METHODS

Stacking Gel 4%

(a) 1.3mL Protogel

(b) 2.5mL protogel stacking bu↵er

(c) 6.1mL Deionised Water

Transfer Bu↵er

(a) 20% Methanol

(b) 70% Deionised Water

(c) 10% 10x Tris Glycerol

Primary Antibody Concentrations

(a) Mouse 1:1000

(b) Mouse 1:250

(c) Rabbit 1:1000

(d) Rabbit 1:100

Secondary Antibody Concentrations

(a) Donkey Anti-Rabbit 1:5000 (in PBS-TWEEN made up to 5mL)

(b) Donkey Anti-Mouse 1:5000 (in PBS-TWEEN made up to 5mL

PBS (10mL) was added to a falcon tube along with 50µL PMSF.

Cells were washed with PBS/PMSF mix (1mL). The cells were spun and the su-

pernatant removed. RIPA (1mL) and PMSF (10µL) was added to an eppendorf

and the cells were resuspended in RIPA/PMSF mix (50µL). The cells were then

agitated in a cold room for 30 mins. Whilst the cells are cooling the resolving

bu↵er solution was prepared. After 30 mins the cells were removed from the cold

room, centrifuged (10min, 13,000 revolutions), and the supernatant collected.

Ammonium persulphate (100µL) was then added to stacking gel solution along

with TEMD (10µL). The gel was left to set (approximately 10mins). Butanol

was added to cassette after the stacking gel, to remove bubbles, and the butanol

solution removed with the corner of a piece of filter paper. Whilst the gel was
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drying samples were prepared by adding FSB (12µL) to the cell lysate (12µL).

The solution was then heated at 95degC for 10 mins to denature. Load the solu-

tions into the wells after removing the comb, add the running bu↵er (100mL in

900mL of water) and run the gel at 200V for approximately 45mins (Keep an eye

on the cassette to make sure it doesn’t get too hot, and check for bubbles which

means the current has been sucessfully applied). After 45 mins the stacking gel

was removed and running gel was added to transfer bu↵er for 15 mins. After

15 mins the membrane were rinsed with methanol foloowed by deionised water.

The membranes and filters were then soaked in transfer bu↵er for 15mins. The

membranes, filter and gel were then placed in a transfer stack, soaked in transfer

bu↵er, and run at 100V for 1 hour. After an hour the membranes were blocked

with milk (20%) in PBS-TWEEN for 1 hour at room temperature. The mem-

branes were then washed (x3) with PBS-TWEEN by hand followed by 3 washed

of 10mins each on a shacker. The membranes were then incubated overnight with

the primary antibody (made up to 2mL in PBS-TWEEN), on a shaker at 4degC.

The next day the mebranes were washed (3x) in PBS and then another 3 washes

for 10 mins each with PBS-TWEEN. The membranes were than incubated to 1

hour at room temperature with the secondary antibody. After an hour the mem-

branes were washed again in PBS (3x). The membranes were then washed with

equal volumes (3mL) of Enhanced Chemiluminescence (ECL) for 60 seconds, and

gently blotted dry. The membranes were then developed onto photo paper in a

dark room.

2.9 Fluormetric modified Griess Assay for Nitrate and

Nitrite Analysis

This methodology was adapted from the Nussler and Glanemann et al nature

protocol (122), which was adapted from the Greiss reaction (123).

Using the previously described Cell Culture and Transfection Protocol above,

culture 6 well plates, and treat the plates with PBS, Nitrite (NO2, 20µM and

200µM), the cells were washed after the treatment, 3 times with PBS. Cells were
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lysed with sterile H2O (1mL) and dislodged from the plates and analysed using

the following assay.

Lysate cell samples (150µL) were added to a black opaque well plate, along with

DAN (75µL, 158µM) and HCl (75µL, 1.5M). The well plate was then incubated

at 37� for 5 minutes, in the absence of light. NaOH (70µL, 2M) was then added

and the solution analysed immediately in the Microtiter Fluorescence Photometer

(Fluorstar Galaxy, BMG Labtech Instruments).
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3

Characterisation of Aquaporins

To understand the mechanism of AQP tra�cking a method of visualising the pro-

teins was required. This was done by creating Green Fluorescent Protein (GFP)

fusion AQP vectors. Fusion of the GFP to the C-terminus has already been

shown not to interfere with AQP1 function and expression (124), we therefore

made assumptions that this may be true and extend to all other AQP classifi-

cations. These fusion proteins were then transfected into HEK293 immortalised

cell lines, and visualised using confocal microscopy.

The following table 1.1 indicates where within the body the di↵erent AQPs are

located.

3.1 Expressin Profiles of GFP-tagged AQPs in HEK293

cells, using Confocal Microscopy

Most AQPs are generally thought to be constitutively expressed in the cell sur-

face membranes, and data have been published which would support this theory

(125), (126), (127), (128). However, there have been well studied exceptions

to the rule, in the regulation of AQP2, by protein-kinase A (PKA) phosphory-

lation. This AQP is constitutively expressed in vesicles in the cytosol and is

tra�cked to the cell surface by the activation of vasopressin receptors on binding
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3. CHARACTERISATION OF AQUAPORINS

of vasopressin(129), (130) to the active side of the receptor. This creates a co-

nundrum as the constitutive cell surface expression model is not consistent with

the phosphorylation-dependent cell-surface tra�cking phenomena, established for

AQP2. Conner et al (131), investigated this further with regards to the level of

AQP1 membrane expression when cells were subjected to isotonic (1mL DMEM

1x) and hypotonic (3mL H2O and 1mL DMEM 1x) extracellular environments.

They found that membrane expression altered depending on the extracellular os-

motic environment.

Replication of the Conner et al (131) experiments, were performed and then ex-

tended to all AQP (0-12) constructs, and their cellular localisation in isotonic

and hypotonic environments recorded, to identify the expression profiles and how

they alter, if at all, as a response to changing osmotic environments.

3.1.1 AQP1

AQP1 is a widely expressed protein, and has been extensively characterised in

the basolateral and apical plasma membrane of the renal collecting duct in the

kidneys. However, they have also been found in red blood cells, the descending

limb of Henles loop, the descending portion of the vesa recta, vascular endothe-

lium, gastrointestinal tract, sweat glands and lungs (Table 1.1).

Figure 3.1 demonstrates the results of the replication of Conner et al (131) ex-

periement. The cellular expressions of AQP1, are shown in an isotonic extracel-

lular environment (ai) and a hypotonic environment (bi), (aii) and (bii) demon-

strates the Fluorescence Intensity Profile (FIP) across the cytosol and plasma

membrane for images (ai) and (bi). When the cells were exhibited to a hypo-

tonic extracellular environment the expression profile (bii) identified AQP1 to be

mainly restricted to the cell membrane, nuclear membrane and small regions of

vesicles within the cytosol. When this was compared with an isotonic extracellu-

lar solution, it was clear to see that the FIP (aii) identified no discrete expression
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3.1 Expressin Profiles of GFP-tagged AQPs in HEK293 cells, using
Confocal Microscopy

Figure 3.1: AQP1-GFP fusion proteins in HEK293 cells in isotonic (ai) and

hypotonic (bi) extracellular environments, with FIP calculated across the yel-

low lines using ImageJ software. - The Fluorescence profiles (aii - isotonic) and (bii

- hypotonic) indicate the fluorescence intensity across the yellow line (example shown in

(ai) and (bi)). A minimum of three lines were drawn in three di↵erent positions, as shown

in the representative image (ai) and (bi). The red line shows the average expression in the

cytosol, the green line shows the average expression in the membrane, and the black line

shows the threshold at which the fluorescnce profile is detected against the background

noise.
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3. CHARACTERISATION OF AQUAPORINS

profiles like (bii), instead it demonstrated a relatively even distribution of expres-

sion. This was also reflected in the realtive membrane expression (RME) values

as they changed from 18.41 ± 5.21 in an isotonic environment to 73.95 ± 3.98

for a hypotonic extracellular environment. The RME is what the Conner lab

group have termed and defined as the method for determining the subcellular

localization. This is whereby a minimum of 3 line profiles were measured and

distributed at regular intervals covering the plasma membrane and the cytosol

but avoiding the nucleus of a minimum of three cells from at least three indepen-

dent experiments. The fluorescence intensity over this distance was measured,

and the di↵erence between the peak and the plateau of fluorescence was divided

by the maximum fluorescence along the line scan to calculate the percentage of

fluorescence at the membrane. This was termed the relative membrane expres-

sion (RME) This rejected the null hypothesis that there was no change in cellular

expression between a hypotonic and isotonic extracellular environment at a 99%

level yielding a p-value of p=0.000001. Having successfully repeated the Conner

and Conner et al experiment, the methodology was repeated for all 12 remaining

AQP constructs, to establish their isotonic and hypertonic Fluorescence Intensity

Profiles.

3.1.2 AQP0

AQP0 was far less characterised in published literature than AQP2, however,

had been found to be expressed in Lens fibre gap junctions and renal collecting

ducts (1.1). AQP0 contruct were transiently transfected into HEK cell lines, as

was done with AQP1, and the living cells analysed by confocal microscopy. Fig-

ure 3.2 (ai) showed an even distribution expression profile across the cytosol and

membrane and then when the extracellular tonicity was altered to be isotonic, the

mean RME) changed from 24.83 ± 10.94 to 61.73 ± 14.66. This however, was not

significant enough a change to reject the null hypothesis at a 95% level. This did

identify a limitation to the technique, cells which did not transfect as well were

di�cult to analyse using the image analysis software, as it was di�cult for the

programme to significantly ditinguish the fluorescence profile of the AQPs with
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3.1 Expressin Profiles of GFP-tagged AQPs in HEK293 cells, using
Confocal Microscopy

Figure 3.2: AQP0-GFP fusion proteins in HEK293 cells in isotonic (ai) and

hypotonic (bi) extracellular environments, with FIP calculated across the yel-

low lines using ImageJ software. - The Fluorescence profiles (aii - isotonic) and (bii -

hypotonic) indicate the fluorescence intensity across the yellow line (example shown in (ai)

and (bi)). A minimum of three lines were drawn in three di↵erent positions, as shown in

the representative image (ai) and (bi). A minimum of three lines were drawn in three dif-

ferent positions, as shown in the representative image (ai) and (bi). The red line shows the

average expression in the cytosol, the green line shows the average expression in the mem-

brane, and the black line shows the threshold at which the fluorescnce profile is detected

against the background noise.
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3. CHARACTERISATION OF AQUAPORINS

background fluorescence even when the contrast and brightness were altered, with

standard scientific image adjustment protocols. This demonstrated quite clearly

that the images or FIPs in their own right were insu�cient to make decisions

regarding cellular expression profile relocalisation as a response to a change in

extracellular tonicity, and that both together were necessary to understand the

regulation of AQPs, and that with further development of transfection reagents,

these expression profiles could be improved.

3.1.3 AQP2

AQP2 is a heavily researched aquaporin owing to its expression in response to

vasopressin regulation in the apical plasma membrane of the collecting ducts in

the kidneys,(132), (130). This study found that Arginine-vasopressin (AVP) is

released from the pituitary during dehydration, causing the need for more wa-

ter to be absorbed from the filtrate. AVP then binds itself to the receptors in

principal cells causing an increase in cAMP, which consequently activates protein

kinase A (PKA), (133), (48). PKA is then required to activate three of the AQP2

polypeptide tetramers which consequently translocates the protein to the apical

plasma membrane of the principal cell. Therefore, if we were to repeat Conner

and Conner et al experiment we would have expected to have seen little to no

change in the expression profile when the extracellular tonicity was altered. As

we can see from figure 3.3, there was little to no change in the expression profile

of AQP2 when the osmotic extracellular environment changed from an isotonic

solution (mean isotonic RME = 10.98 ± 7.80) to, a hypotonic solution (mean hy-

potonic RME = 20.41 ± 3.07). This was a logical finding as there would have been

no AVP available in the cellular medium broth to activate cAMP, to phosphory-

late AQP2 and translocate it from an intracellular expression profile to a cellular

membrane expression profile. This meant that the null hypothesis could not be

rejected as there was no significant increase in REM between the two treatements.
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3.1 Expressin Profiles of GFP-tagged AQPs in HEK293 cells, using
Confocal Microscopy

Figure 3.3: AQP2-GFP fusion proteins in HEK293 cells in isotonic (ai) and

hypotonic (bi) extracellular environments, with FIP calculated across the yel-

low lines using ImageJ software. - The Fluorescence profiles (aii - isotonic) and (bii -

hypotonic) indicate the fluorescence intensity across the yellow line (example shown in (ai)

and (bi)). A minimum of three lines were drawn in three di↵erent positions, as shown in

the representative image (ai) and (bi). A minimum of three lines were drawn in three dif-

ferent positions, as shown in the representative image (ai) and (bi). The red line shows the

average expression in the cytosol, the green line shows the average expression in the mem-

brane, and the black line shows the threshold at which the fluorescnce profile is detected

against the background noise.
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3.1.4 AQP3

AQP3 followed the same expression relocalisation profile (figure 3.4) as AQP1.

This expression profile was to be expected as literature stated the AQPs were

found in the basolateral membrane of the proximal collecting duct of the kidneys

along with AQP1. However, a large di↵erence between AQP1 and AQP3 is that

AQP3 had been identified to be an aquaglyceroporin. This meant that AQP3 was

not only selective for water but also for glycerol. There was also some discussion

suggesting AQP3 may have been e↵ective at transporting glycerol however this

information was non-specific and unsubstantiated.

Figure 3.4 (ai) clearly demonstrated that AQP3 was constitutively expressed in

the cytosol and membrane (mean isotonic RME = 41.91 ± 3.11) however when

exhibited to a change in extracellular tonicity, the expression profile changed from

(aii) to (bii) indentifying translocation of AQP3 from the cytosol to the plasma

membrane (mean hypotonic RME = 73.43 ± 2.66). This change in RME yielded

a p-value = 0.000001 rejecting the null hypothesis at the 99% level.

3.1.5 AQP4

AQP4 has been found in a variety of tissues including the heart, kidney, lung, tra-

chea and brain, and is the most abundant water channel protein in the brain, with

high levels of expression in the astrocytes forming part of the blood brain barrier

??. Manley et al (60) (66) found that AQP4 knockout mice demonstrated pro-

tection against cytotoxic brain oedema. This suggested that it was the presence

of AQP4 which was responsible for the formation of a brain oedema. However, it

was also found that in stroke induced mice, the concentration of AQP4 did not sig-

nificantly increase. This makes the investigation of a translocation phenomenon

in AQP4 of particular interest as it could explain AQP4’s role in the formation

of an oedema, without change in protein concentration, simply expression profil-

ing across the plasma membrane. Figure 3.5, showed AQP4 translocated to the

cell membrane from a cytosoloic expression profile, in response to a change in
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Confocal Microscopy

Figure 3.4: AQP3-GFP fusion proteins in HEK293 cells in isotonic (ai) and

hypotonic (bi) extracellular environments, with FIP calculated across the yel-

low lines using ImageJ software. - The Fluorescence profiles (aii - isotonic) and (bii -

hypotonic) indicate the fluorescence intensity across the yellow line (example shown in (ai)

and (bi)). A minimum of three lines were drawn in three di↵erent positions, as shown in

the representative image (ai) and (bi). A minimum of three lines were drawn in three dif-

ferent positions, as shown in the representative image (ai) and (bi). The red line shows the

average expression in the cytosol, the green line shows the average expression in the mem-

brane, and the black line shows the threshold at which the fluorescnce profile is detected

against the background noise.
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the extracellular tonicity from an isotonic to a hypotonic environment. It was

clear to see from the Fluorescence Intensity Profiles (FIPs) (a(ii)) and (b(ii))

that the RME changed from RME = 28.77 ± 6.78 (isotonic) increasing to 78.84

± 1.84 (hypotonic). This rejected the null hypothesis at a 99% level yielding a

p=0.000050. This finding is of significance as it could explain, or give insight into

the conflicting research findings when evaluating cytotoxic brain oedema forma-

tion.

3.1.6 AQP5

AQP5 as stated in the introduction, has been found to be located in the mouth,

tear-ducts, and pulmonary secretion tissue, Table ??. Regardless of this, it might

still be expected that AQP5 would exibit the same physiological translocation

process as AQP1 and AQP4, when the extracellular tonicity was altered.

It can be seen from figure 3.6 that AQP5 did not exhibit the same translocation

process. In fact AQP5 seemed to have a very di↵erent isotonic FIP to AQPs

0-4 in an isotonic extracellular environment. It appeared that image (ai) had a

heavy expression profile in the membrane on the cell, and as the extracellular en-

vironment was altered to be hypotonic, the membrane expression become slightly

more intense suggesting that any cytosolically expressed protein also translocated

to the cellular membrane. This was evident from the RME Values, the isotonic

RME = 50.08± 8.38 and the hypotonic RME = 83.06 ± 2.05, which did not

demonstrate a statistically significant change and the null hypothesis could not

be rejected at a 95% level, P=0.51874. This however, did not mean it followed

the same expression profile as AQP0may give some interesting insight into the

role and function of cells in tissues in close proximity to AQP5.
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Confocal Microscopy

Figure 3.5: AQP4-GFP fusion proteins in HEK293 cells in isotonic (ai) and

hypotonic (bi) extracellular environments, with FIP calculated across the yel-

low lines using ImageJ software. - The Fluorescence profiles (aii - isotonic) and (bii -

hypotonic) indicate the fluorescence intensity across the yellow line (example shown in (ai)

and (bi)). A minimum of three lines were drawn in three di↵erent positions, as shown in

the representative image (ai) and (bi). A minimum of three lines were drawn in three dif-

ferent positions, as shown in the representative image (ai) and (bi). The red line shows the

average expression in the cytosol, the green line shows the average expression in the mem-

brane, and the black line shows the threshold at which the fluorescnce profile is detected

against the background noise.
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3. CHARACTERISATION OF AQUAPORINS

Figure 3.6: AQP5-GFP fusion proteins in HEK293 cells in isotonic (ai) and

hypotonic (bi) extracellular environments, with FIP calculated across the yel-

low lines using ImageJ software. - The Fluorescence profiles (aii - isotonic) and (bii -

hypotonic) indicate the fluorescence intensity across the yellow line (example shown in (ai)

and (bi)). A minimum of three lines were drawn in three di↵erent positions, as shown in

the representative image (ai) and (bi). A minimum of three lines were drawn in three dif-

ferent positions, as shown in the representative image (ai) and (bi). The red line shows the

average expression in the cytosol, the green line shows the average expression in the mem-

brane, and the black line shows the threshold at which the fluorescnce profile is detected

against the background noise.
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3.1 Expressin Profiles of GFP-tagged AQPs in HEK293 cells, using
Confocal Microscopy

3.1.7 AQP6

AQP6 as stated in the introductions has been found to be located in the Loop of

Henle, and also as a transporter of nitrates and nitrites, Table 1.1. This made it

a very interesting aquaporin to investigate as understanding the transportation

of nitrates and nitrites into specific tissues would enable us to better understand

the e↵ects of hypoxia or localised hypoxia, and potentially vasodilation better.

It may also give insight as to why some tissues maintain a high level of nitrates

and nitrites, even when the extracellular environments change (This is a com-

ment based on as yet unpublished work by Prof Martin Feelisch, with whom I

was previously working).

Unfortunately the transfection of AQP6-GFP into HEK293 proved exceptionally

di�cult even with a variety of modifications to the protocol, this resulted in little

to no fluorescence so no image was captured.

3.1.8 AQP7

AQP7 has been found to be expressed in adipose cells and identified to be a class

of aquaglyceroporin, Table 1.1. (134) identified that AQP7 facilitates e✏ux of

glycerol from adipose tissue and that AQP7 deficiency leads to triglyceride ac-

cumulation in adipose tissue and adult onset diabetes. Understanding more the

mechanism of activation for transportation, could help us better understand the

onset of adult diabetes. Unfortunately AQP7-GFP expression proved exception-

ally di�cult to transfect even with a variety of modifications to the protocol.

There was little to no fluorescence so no image was captured.

3.1.9 AQP8

Unfortunately AQP8-GFP expression proved exceptionally di�cult to transfect

even with a variety of modifications to the protocol. There was little to no fluo-
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3. CHARACTERISATION OF AQUAPORINS

rescence so no image was captured.

3.1.10 AQP9

AQP9 was another aquaporin identified to be an aquaglyceroporin and involved

in facilitating e✏ux of glycerol from adipose tissue, (134). Unfortunately AQP9-

GFP expression proved exceptionally di�cult to transfect even with a variety of

modifications to the protocol. There was little to no fluorescence so no image was

captured.

3.1.11 AQP10

Unfortunately AQP10-GFP expression proved exceptionally di�cult to transfect

even with a variety of modifications to the protocol. There was little to no fluo-

rescence so no image was captured.

3.1.12 AQP11

Unfortunately AQP11-GFP expression proved exceptionally di�cult to transfect

even with a variety of modifications to the protocol. There was little to no fluo-

rescence so no image was captured.

3.1.13 AQP12

AQP12-GFP expression proved exceptionally di�cult to transfect, and the im-

ages where very poor. This meant that the image analysis software could not

distinguish the fluorescence from the background su�ciently to form image anal-

ysis, to identify the specific localisation fo the AQP12-GFP expression. This can

be seen in figure 3.7
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3.1 Expressin Profiles of GFP-tagged AQPs in HEK293 cells, using
Confocal Microscopy

Figure 3.7: AQP12-GFP fusion proteins in HEK293 cells in isotonic (ai) and

hypotonic (bi) extracellular environments. No FIP could be calculated as the

software couldn’t distringuish green pixels su�ciently from the background

noise. -
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3. CHARACTERISATION OF AQUAPORINS

As can be seen from the FIP analysis not all aquaporins are expressed in the

same way. This can start to elucidate some information about the roles aqua-

porins have in those cells and tissues. AQP4 is of particular interest as this

translocation phenomenon could provide important information about its acti-

vation and its involvement in the formation of a cytotoxic oedema, which could

help to identify pathways for drugs to target to prevent this as a cause of death.

However, the expression profile translocating to the membrane upon changes in

extracellular tonicity, does not indicate a functional response to the transporta-

tion of water across the cell membrane, as we would expect in a model of cytotoxic

oedema.

As the images were analysed an odd phenomenon was identified. The cells that

exhibited a translocation from cytosol expression to membrane expression profiles,

following a change in extracellular tonicity from isotonic to hypotonic solutions,

exhibited a form of cellular swelling 3.1, 3.2, 3.4, 3.5. However, those that did not

observe this phenomenon did not appear to demonstrate any functional swelling

3.3. Therefore, a methodology was devised that would enable the surface area of

the cell to be calculated based on the image, which would in turn quantify the

functional swelling response to the translocation of AQPs from the cytosol to the

cellular membrane, following a change in extracellular tonicity.

3.2 Functional Swelling Response as a Direct Result

of Translocation to the Plasma Membrane

The methodology used to analyse the functional swelling was adapted from func-

tions available in the the ImageJ software. Below is an example of how the macro

detailed in the materials and methods, calculated the surface area of a cell. It

starts by identifying images over a certain selected size, to eliminate fluorescence

clusters in the image, see figure 3.8 (a). The macro then converts them into a
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3.2 Functional Swelling Response as a Direct Result of Translocation to
the Plasma Membrane

binary image. This means, whenever their is a pixel of fluorescence, the pixel is

converted to black, if their is either no fluorescence or fluorescence below a certain

threshold then a white pixel is recorded in the image, see figure 3.8 (b). The macro

then runs analysis to find the edge of the black binary image and creates an out-

line, see figure 3.8 (c). The surface area of the outlined portion is then calculated.

Figure 3.8: Outputs of the macro created to calculate the surface area of a leaf

undergoing expression profiling and functional swelling analysis, using ImageJ

- (a) is the Original image of a leaf, (b) the binary image, and (c) the outline of the original

image

This methodology was applied to AQP4 to establish whether or not the functional

swelling in an extracellular hypotonic solution was statistically significant in be-

ing di↵erent from the size of the cell in an isotonic extracellular environment. As

we can see from figure 3.9 there is a statistically significant (p=0.0001) increase in
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3. CHARACTERISATION OF AQUAPORINS

the cell surface area in a hypotonic environment (374.65mm2) compared with that

of an isotonic environment (523.92mm2, total increase of 145.19%). This shows

that the translocation of AQP4 from the cytosol, has a functional relationship

with the cell volume. This phenomenon is also a fully reversible process when the

solution is then changed back to an isotoni extracellular solution.

Figure 3.9: AQP4-GFP fusion proteins in HEK293 cells in isotonic (1) and

hypotonic (2) extracellular environments, with FIP across the yellow lines and

surface areas calculated using ImageJ and Matlab software. - The Fluorescence

profiles (1a-isotonic) and (2b-hypotonic) indicate the fluorescence intensity across the yel-

low line (value shown in (Mean RME value column). A minimum of three lines were drawn

in three di↵erent positions, as shown in the representative image (1) and (2).Oulines of

the cells were generated (1b-Isotonic and 2b-Hypotonic) and the surface areas calculated

(SA column) using matlab software. The mean percentage change for n=3 was calculated

(mean % change column)
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3.3 Aquaporin 4: Translocation and Inhibition

3.3 Aquaporin 4: Translocation and Inhibition

The next step forward was to use this new relationship to help define a mechanism

for translocation from the cytosol to the cell membrane by exposing the cells to

di↵erent metabolic cellular inhibitors. These included:

• Non-Specific Kinase Inhibitor - Hypericin (50µM), (135)

• PKC inhibitor - MryPKCi (50µM), (135)

• PKA inhibitor - MryPKAi (50µM), (135)

• Actin Inhibitor - Cytochalasin D

• Microtubule Formation - Demecolcine

• Calcium Free media

Using these matabolic inhibitors, it was possible to start to identify pathways

by establishing which inhibitors retarded the normal translocation process. The

above inhibitors were therefore used onWTAQP4 transiently transfected HEK293

cells.

3.3.1 Non-Specific Kinase Inhibitor - Hypericin

The first inhibitor used was a non-specific kinase inhibitor. Kinases are enzyme

that transfer phosphate groups from high-energy donor molecules e.g. ATP,

to substrates. They have been identified to be critical in cellular transport,

metabolism, cell signalling, secretory processes, protein regulation, and many

other cellular pathways, which is why they are of interest in the translocation

phenomenon seen in AQP4, (136). In addition to this AQP2’s translocation is

regulated by PKA, and an initial assumption can be made that PKA may be

involved in the translocation process of AQP4.

Hypericin, is the inhibitor utilised in this experiment, as it is a widley used non-

specific kinase inhibitor. It would therefore be expected that the translocation

of the AQP4-GFP tagged construct to the plasma membrane, from the cytosol,
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3. CHARACTERISATION OF AQUAPORINS

when the the extracellular envionment changes from an isotonic to a hypotonic

solution would be retarded, and that no statistically significant increase in the

surface area of the cell is observed.

Figure 3.10 shows there is no significant increase in the surface area of the cell,

and that there is a non-significant change in the RME value from 21.85 ±6.80

(isotonic) to 38.22 ±5.58 (hypotonic). This indicates that a kinase is essential in

activating the translocation process for AQP4 to move from a cytosol expression

profile to a plasma membrane expression profile. This is further confirmed by the

very small increase in functional swell (103.5% ± 2.05%), which could not reject

the null hypothesis at a 95% that there is no significant change in surface area

of the cell when the extracellular tonicity changes from an isotonic solution to a

hypotonic solution.

Further investigations into specific kinase inhibitors would enable the identifica-

tion of which kinases are critical in the translocation mechanism.

3.3.2 PKC Inhibitor - MyrPKC

PKC is a well documented enzyme involved in controlling the function of other

proteins via a phosphorylation process on amino acids serine and threonine. PKC

in itself is regulated by signals such as increases in the concentration of diacyl-

glycerol (DAG) or calcium ions, and as a result plays an important role in signal

transduction cascades. This type of signalling cascade may be involved in the

translocation of AQP4 from a cytosol expression profile to a plasma membrane

expression profile, as it has already been established as an important regulator of

AQP1 (131).

To investigate if PKC is involved in this phenomenon, the experiment with hy-

pericin was adapted and the PKC inhibitor, MyrPKC, used in its place. If PKC

was of significant importance in the translocation phenomenon, then after the
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3.3 Aquaporin 4: Translocation and Inhibition

Figure 3.10: AQP4-GFP fusion proteins in HEK293 cells exhibited to non-

specific kinase inhibitor, Hypericin, in isotonic (1) and hypotonic (2) extracel-

lular environments, with FIP across the yellow lines and surface areas calcu-

lated using ImageJ and Matlab software. - The Fluorescence profiles (1a-isotonic)

and (2b-hypotonic) indicate the fluorescence intensity across the yellow line (value shown

in Mean RME value column). A minimum of three lines were drawn in three di↵erent

positions, as shown in the representative image (1) and (2).Oulines of the cells were gener-

ated (1b-Isotonic and 2b-Hypotonic) and the surface areas calculated (SA column) using

matlab software. The mean percentage change for n=3 was calculated (mean % change

column)
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3. CHARACTERISATION OF AQUAPORINS

addition of MyrPKC, the AQP4 would be unable to translocate from the cytosol

to the plasma membrane, meaning the RME values would not significantly di↵er

and the cell’s surface area, would not significantly increase, as a result of a change

in extracellular tonicity.

As can be seen from Figure 3.11 there is a translocation of the AQP4-GFP tagged

construct from a predominantely cytosol expression profile in an isotonic extra-

cellular envionvment to a plasma membrane FIP in a hypotonic extracellular

environment. This is also mirrored in the mean RME values, which were found

to have had a statistically significant change from 27.27 ± 4.73, to 55.28 ± 3.97

for isotonic and hypotonic environments, respectively, rejecting the null hypoth-

esis at the 99% level (p0.0001). You can also see from (1b) and (2b) that the

cells increased in surface area by an average of 141.86% ± 7.09%, also rejecting

the null hypothesis at a 99% level.

This demonstrates that PKC, does not regulate the translocation phenomenon

exhibited by AQP4-GFP tagged WT constucts, as is seen with AQP1. However,

further research into other protein kinase inhibitors, may prove useful. For exam-

ple Fushimi et al (47) and Katsura et al (48), identified PKA to be an important

regulator of the translocation phenomenon found with AQP2, when it was acti-

vated by vasopressin.

3.3.3 PKA inhibitor - Myr PKA

Protein Kinase A is a very well documented cAMP activated kinase (137), and

has already been identified as a regulator of AQP2’s translocation from a cytoso-

lic expression profile to a plama membrane expression. If AQP4’s translocation

were being regulated by PKA, then a PKA inhibitor would prevent PKA from

activating AQP4 to translocate to the plasma membrane. It would therefore,

in this experiment, be expected that there be no statistically significant change

in the RME values or a functional swelling response, when comparing isotonic
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3.3 Aquaporin 4: Translocation and Inhibition

Figure 3.11: AQP4-GFP fusion proteins in HEK293 cells exhibited to PKCin-

hibitor MryPKCi in an isotonic (1) and hypotonic (2) extracellular environ-

ment, with FIP across the yellow lines and surface areas calculated using Im-

ageJ and Matlab software. - The Fluorescence profiles (1a-isotonic) and (2b-hypotonic)

indicate the fluorescence intensity across the yellow line (value shown in (Mean RME value

column). A minimum of three lines were drawn in three di↵erent positions, as shown in

the representative image (1) and (2).Oulines of the cells were generated (1b-Isotonic and

2b-Hypotonic) and the surface areas calculated (SA column) using matlab software. The

mean percentage change for n=3 was calculated (mean % change column).
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with hypotonic extracellular environments. The PKA inhibitor used for this ex-

periement was, Myr-PKA.

Figure 3.12: AQP4-GFP fusion proteins in HEK293 cells exhibited to Myr-

PKA in an isotonic (1) and hypotonic (2) extracellular environment, with FIP

across the yellow lines and surface areas calculated using ImageJ and Matlab

software. - The Fluorescence profiles (1a-isotonic) and (2b-hypotonic) indicate the flu-

orescence intensity across the yellow line (value shown in (Mean RME value column). A

minimum of three lines were drawn in three di↵erent positions, as shown in the representa-

tive image (1) and (2).Oulines of the cells were generated (1b-Isotonic and 2b-Hypotonic)

and the surface areas calculated (SA column) using matlab software. The mean percentage

change for n=3 was calculated (mean % change column)

As can be seen from figure 3.12 there was not a significant change in the RME of

AQP4-GFP tagged HEK cell value for an isotonic solution (RME = 25.62 ± 5.16)

compared with the RME value for a hypotonic solution (RME = 33.66 ± 6.62).

This is not a significant change in RME, and therefore the null hypothesis could

not be rejected at a 95% level (p=0.55). There was also no significant change in
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3.3 Aquaporin 4: Translocation and Inhibition

the surface area of the cell 102.97% ± 5.21 % (p=0.54) as the extracellular solu-

tion changed from an isotonic to a hypotonic solution. This demonstrates that

AQP4 is translocated by PKA in a similar way to AQP2, however, it is unlikely

to be regulated by vasopressin, as this molecule was not available to the cell in

this experiment.

3.3.4 Actin Inhibitor - Cytochalsin D

Actin is a multifunctional protein that forms microfilaments, one of 3 major com-

ponents of the cytoskeleton. Owing to this, actin is known to be involved in more

protein interactions than any other known protein. Aggregation of actin forms

microfilaments, then microfilaments alongside micotubules combine to form the

cytoskeleton. The cytoskeleton is the cellular sca↵olding contained within the

cells cytoplasm. The cytoskeleton plays an important role in both intracellular

transport and cellular division. The intracellular transport is the movement of

vesicles and organelles, such as those containing aquaporins, (136).

Cytochalsin D is a mycotoxin, which is an alkaloid. Cytochalasin D is cell perme-

able and a potent inhibitor of actin polymerisation, which disrupts the formation

of microfilaments. Therefore, its use in this experiment would also inhibit actin

and prevent the formation of microfilaments. This will ultimately disrupt the cy-

toskeleton, which is important in the role of vesicle transportation. This should

therefore result in no significant di↵erence in RME and cell surface area, when the

extra cellular tonicity is changed from an isotonic solution to a hypotonic solution.

As can be seen from figure 3.13 there is no significant change in the translocation

of the AQP4-GFP tagged construct from a cytosol expression profile to a plasma

membrane expression profile, when the extracellular tonicity is changed from iso-

tonic (RME = 26.07 ± 6.10) to a hypotonic (RME = 32.16 ± 4.48) environment,

this does not reject the null hypothesis at a 95
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Figure 3.13: AQP4-GFP fusion proteins in HEK293 cells exhibited to Cy-

tochalsin D in isotonic (1) and hypotonic (2) extracellular environments, with

FIP across the yellow lines and surface areas calculated using ImageJ and Mat-

lab software. - The Fluorescence profiles (1a-isotonic) and (2b-hypotonic) indicate the

fluorescence intensity across the yellow line (value shown in (Mean RME value column). A

minimum of three lines were drawn in three di↵erent positions, as shown in the representa-

tive image (1) and (2). Oulines of the cells were generated (1b-Isotonic and 2b-Hypotonic)

and the surface areas calculated (SA column) using matlab software. The mean percentage

change for n=3 was calculated (mean % change column)
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3.3.5 Microtubule Inhibitor - Demecolcine

Demecolcin (also known as colcemid) is often used in chemotherapy. Demecol-

cine is a toxic molecule that depolymerises microtubules and limits microtubule

formation and inactivates spindle formation, which in turn prevents cells from un-

dergoing mitosis stopping metaphase. Preventing the formation of microtubules,

results in a disruption in the formation of the cytoskeleton which prevents the

translocation of vesicles from the cytoplasm to the plamsa membrane. We would

therefore expect in this experiment that the translocation phenomenon would be

prevented as we have seen in Cytochalsin D. There would not be a significant

change in RME or cell surface area, as the vesicles containing the AQP4-GFP

tagged construct, would not be able to translocate along the cytoskeleton from

the cytoplasm to the membrane.

As can be seen from figure 3.14 there is a significant change in the transloca-

tion of the AQP4-GFP tagged construct from a cytosol expression profile to a

plasma membrane expression profile, when the extracellular tonicity is changed

from isotonic (RME = 42.25 ± 5.4) to a hypotonic (RME = 78.52 ± 2.62) envi-

ronment. This does reject the null hypothesis at a 99% level (p=0.000075). The

surface does also seem to alter as the mean percentage change in size is 126.57%

± 12.01%, which also rejected the null hypotheses at a 99% level.

This identifies that microfilaments are more involved in the translocation of AQP4

to the plasma membrane than microtubules are, as microtubules inhibitor did not

appear to prevent the translocation. This is a little surprising as the cytoskele-

ton, would seemingly be su�ciently damaged to allow for any translocation. This

could explain the slightly poor expression profiles observed in all demecolcine ex-

periments.
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Figure 3.14: AQP4-GFP fusion proteins in HEK293 cells exhibited to De-

mecolcine in isotonic (1) and hypotonic (2) extracellular environments, with

FIP across the yellow lines and surface areas calculated using ImageJ and Mat-

lab software. - The Fluorescence profiles (1a-isotonic) and (2b-hypotonic) indicate the

fluorescence intensity across the yellow line (value shown in (Mean RME value column). A

minimum of three lines were drawn in three di↵erent positions, as shown in the representa-

tive image (1) and (2).Oulines of the cells were generated (1b-Isotonic and 2b-Hypotonic)

and the surface areas calculated (SA column) using matlab software. The mean percentage

change for n=3 was calculated (mean % change column)
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3.3.6 Calcium-Free Extracellular Media

Conner et al, (131) found that a cytosolic elevation of calcium ions following hypo-

tonic stimulus evokes, and is necessary for translocation of AQP1. We therefore

wanted to see if this were true for AQP4, was calcium an integral part of the

translocation pathway. We therefore decided to expose the cells to calcium free

media for a period, before confocal microscopy, and use micropore filtered and

deionised water to ensure a low calcium ion content (this is particularly di�cult

in the UK where there is a high amount of Calcium Carbonate in the ground

and therefore water system). If calcium was an integral part of the translocation

process we would expect there to be no significant change in RME or cell surface

area, when the extracellular tonicity is changed from an isotonic to a hypotonic

environment, in cells cultured in calcium-free media.

As can be seen from figure 3.15 there was no significant change in the translo-

cation of the AQP4-GFP tagged construct from a cytosol expression profile to a

plasma membrane expression profile, when the extracellular tonicity was changed

from an isotonic (RME = 26.69 ± 6.03) to a hypotonic (RME = 34.91 ± 5.48)

environment. This could not reject the null hypothesis at a 95% level (p=0.38).

The surface also does not appear to alter as the mean percentage change in size

is 121.87% ± 4.81%, which also did not reject the null hypotheses at a 99% level.

This indicates that a calcium ion influx into the cytosol is required for translo-

cation as a response to a change in the tonicity of the extracellular environment,

from an isotonic solution to a hypotonic solution. This is the same phenomenon

observed by Conner et al (131) with AQP1.

3.4 Chapter conclusions and Next Step

It can be seen more clearly from Table 3.1 the di↵erent components that are and

are not involved in the translocation process of AQP4-GFP tagged construct,
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Figure 3.15: AQP4-GFP fusion proteins in HEK293 cells cultured in a Calcium-

Free Media exhibited to an isotonic (1) and hypotonic (2) extracellular environ-

ment, with FIP across the yellow lines and surface areas calculated using Im-

ageJ and Matlab software. - The Fluorescence profiles (1a-isotonic) and (2b-hypotonic)

indicate the fluorescence intensity across the yellow line (value shown in (Mean RME value

column). A minimum of three lines were drawn in three di↵erent positions, as shown in

the representative image (1) and (2).Oulines of the cells were generated (1b-Isotonic and

2b-Hypotonic) and the surface areas calculated (SA column) using matlab software. The

mean percentage changes for n=3 were also calculated and are displayed in the mean %

change column
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from the cytosol to the plasma membrane, when the extracellular tonicity is al-

tered, and the functional swelling response caused by the influx of water across

the plasma membrane into the cytosol. Using this a hypothesis for a mechanistic

pathway can be formulated. Translocation and cell volume increase are inhibited

by PKAi, Actin inhibitor, and extra and intracellular calcium depletion. Figure

3.16 identifies the proposed mechanism and the grey portions identify the most

likely missing links in the mechanism. AQP4 is constitutively expressed in both

the membrane and the cytosol, therefore, when the extracellular environment

changes from an isotonic solution to a hypotonic solution, water passes into the

cell via the AQP4 constitutively expressed at the plasma membrane. This in

turn causes the cell to swell, and this swelling, activates stretch activated TRP

channels. This is the same process as identified by Conner and Conner (131).

Stretch activated TRP channels are a family of ion channel proteins, which are

involved in the transportation of cations. Cations are positively charged ions such

as calcium (Ca2+). This mean that as the water molecules are transported across

the constitutively expressed AQP4 proteins in the plasma membrane, pressure

builds inside the cell, putting tension on the plasma membrane. This tension,

causes the activation of the TRP channels, and they allow for the transportation

of Ca2+ across the plasma membrane, into the cytosol.

At this stage in the mechanism the process becomes hypothesised. PKA acitvates

the translocation of AQP4 in vesicles in the cytosol for insertion by transport

along the microfillaments of the cytoskeleton. PKA, is well documented for its

activation by cAMP, however, how does an influx of calcium activate the release

of cAMP, needed to activate PKA? Inside the cell there are a class of signalling

proteins called adenylyl cyclases, and it is these proteins that form the biochem-

ical link between calcium influx and the actvation of the cAMP/PKA pathway,

(138). It wasn’t until recently that one of the 6 adenylyl cyclases (AC) was found

to be expressed in both HEK293 cells and astrocytes (139), and that was AC3.

Adenylyl cyclase 3 is activated by Calcium. When adenylyl cyclase is activated by

calcium it then activates cAMP most likely via the platform of phosphodiesterases

(PDE’s). As the availability of cAMP increases, PKA is phosphorylated, and in-

turn phosphorylates, AQP4, which initiates the translocation process along the
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Inhibitor/ Isotonic Hypotonic Mean % SA Translocation and
Control Medium Functional Swelling

Hypericin 21.85 ± 6.80 38.22 ± 5.58 103.5% ± 2.05% No

PKCi 27.27 ± 4.73 55.28 ± 3.97 141% ± 2.05% Yes

PKAi 25.62 ± 5.16 33.66 ± 6.62 102.97% ± 5.21% No

Actin Inhibitor 26.07 ± 6.10 34.91 ± 5.48 121.87% ± 4.81% No

Microtubule
Formation 42.25 ± 5.4 78.52 ± 2.62 133.23% ± 8.89% Yes

Inhibitor

Calcium Free Media 26.69 ± 6.03 32.16 ± 4.48 111.6% ± 1.92% No

Table 3.1: AQP4-GFP tagged Constructs, and their Translocation Response when Sub-

jected to Di↵erent Inhibitors

microfilaments of the cytoskeleton, allowing for insertion of the cytosolically ex-

pressed AQP4 construct into the plasma membrane. This is better explained in

the schematic representation in Firgure 3.16

Now that a mechanim has been established for the translocation and functional

swelling phenomenon, it would be keen to probe this mechanism further, to enable

better understanding around how PKA specifically activates AQP4, to hopefully

identify and establish targets for the therapeutic intervention of a cytotoxic brain

oedema.
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Figure 3.16: Schematic Representation of the AQP4 Translocation Activation

Response to an Increase in Extracellular Hypotonicity - A model showing influx

of water causes cell swelling that induces extracellular calcium entry leading to AQP4

translocation to the plasma membrane. This involved extracellular and intracellular cal-

cium release, cytoskeletal filiamentation and activation of PKA.
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4

Aquaporin 4: Mutagenesis to

Elucidate Structure Function

4.1 Potential PKA Sites, their Position within the

Monomer, and Site Directed Mutagenesis

PKA phosphorylates proteins that have the motif Arginine - Arginine - X - Serine

exposed in their amino acid sequence. So to understand how PKA is interacting

with AQP4, the nucleotide sequence and its amino acid sequence needed to be

analysed to isolate sections with an Arg - Arg - X - Ser, sequence. Using the web-

site swiss uniprot the full sequence for AQP4 (Acc No. P55087) was obtained.

This nucleotide sequence was then run through a computer programme called

NetPhosK. This computer programme, identifies phosphorylation sites within the

P55087 sequence. The programme identified 5 PKA phosphorylation sites, S52,

S111, S180, S188 and S276, and their position withinin the AQP4 sequence can

be seen in figure 4.1. Forward and reverse primers were ordered to mutate these

specific serines to an alanine (A) and an aspartic acid (D). The reason for this is

that alanine is an innert amino acid and cannot be phosphorylated by PKA, and

aspartic acid is said to approximate (mimic) phosphorylation. This technique is a

well utilised methodology called phosphomimetics, and was first utilised in 1999
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by Hiscott et al, (140).

Figure 4.1: Primary Amino Acid Structure of AQP4 - Schematic representation

of the primary amino acid structure of AQP4. The red coloured circles identify the PKA

phosphorylation sites(64).

Site Directed Mutagenesis (SDM) is the process by which the amino acid sequence

of AQP4 is altered, which is described in the materials and methods section of

this thesis. The rest of this chapter will detail the results from the SDM analy-

sis, exposing the mutated AQP4 constructs expressed in HEK293 to isotonic and

hypotonic extracellular environments and reviewing the outcomes using confocal

microscopy, as detailed in the previous chapter, and materials and methods.
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4.1.1 S52 A and D

S52 was altered by SDM from a serine to alanine to form S52D, the AQP4 con-

struct was then transfected into HEK293 cells. When cells were exposed to a

change in extracellular tonicity, there was an expectation to see a strong consti-

tutive expression of AQP4 in the plasma membrane, when compared with that

AQP4 WT, as S52D is mimicking a phosphorylated serine. This would mean

that all AQP4s should be activated and translocated to the plasma membrane.

It would therefore result in a high RME value, and little to no change in surface

area, however, the cell may look punctate. This is owing to the fact that water

would have been transported across the plasma membrane into the cell by the

increased constitutive expression of AQP4 at the plasma membrane.

Figure 4.2 shows that the RME value doesn’t significantly alter when the tonic-

ity of the extracelular envionment is increased (Isotonic RME = 17.62 ± 3.44,

Hypotonic RME = 18.27 ± 3.88). However, it does seem to have a similar value

to the isotonic RME value for AQP4 WT (Isotonic RME = 27.86). When the

image was studied further the distribution of AQP4 expression appeared quite

even. This was unexpected considering S52D was meant to mimic a phosphory-

lated serine and therefore have an activated AQP4 response. However, it seems

that this mutation has in fact inhibited the translocation and functional swelling

response to a change in the extracellular tonicity.

S52A mutants were created to see what functional response this would have on

the translocation of AQP4. Alanine is a relatively inert amino acid, therefore it

was likely they would block activation by PKA, which will in turn prevent the

translocation and functional swelling response, upon an increase in extracellu-

lar tonicity. However, figure 4.3 shows there is a statistically significant change

(p=0.000001, rejecting the null hypothesis at a 99% level) in the RME values

from an isotonic (REM = 18.344 ± 4.06) to a hypotonic (RME = 59.341 ± 5.53)

extracellular environment. There is also a function swelling response of 127.03%

± 5.99% which rejects the null hypothesis at a 95% level (p=0.046). This was
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Figure 4.2: Regulation of hypotonicity-induced increase in cell volume by S52D

mutated AQP4 translocation in HEK293 cell. - Representative images showing x-

y surface area (SA) estimation of cell volume. The binary image and surface area are

calculated from the z-stack plane at the maximum area. All measurements were taken

at 48 h post-transfection. HEK293 cells transfected with S52D translocation-deficient

mutant of AQP4-GFP. Control medium (1) and hypotonic medium (2) are DMEM with

osmolalities of 322374 mosM/kg H2O and 107125 mosM/kg H2O (diluted with water),

respectively. Distribution profiles along the line scans (in yellow on the image) are displayed

graphically (1a and 2a) by each image indicating AQP distribution in control and hypotonic

medium. The Binary Surface area (1b and 2b) demonstrates the swelling or lack thereof

when the cells are exhibited to di↵erent tonicities. All images and analysis shown are a

single representation contributing to the mean value quoted in the text and in Table 1.
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also unexpected and poses more questions. If S52A is not inhibiting the translo-

cation response, then it implies that it is not a PKA phosphorylation site. This

when scrutinised further, is not wholly illogical, as the position of S52 in figure

4.1 is buried in the AQP4 structure, which would make it di�cult for PKA to

access and be able to phosphorylate the serine. However, mutation of that site

to S52D mimicking a PKA activated serine, appears to inhibit the translocation

phenomenom, which could be of significant interest as a potential drug target.

For this to be of significant value, further investigations would be needed to fully

understand how the phosphomimetics are causing this. This will be discussed

further in section 4.2.

4.1.2 S111 A and D

As can be seen from Figure 4.1 S111, unlike S52, is clearly more accessible to

PKA as it sits just on one of the turns on the intracellular side of the plasma

membrane. It is therefore expected that S111A would prevent the translocation

process and that S111D would translocate, or appear constitutively expressed at

the plasma membrane.

Figure 4.4 shows that S111D had a translocation response with a functional

swelling (rejected null hypothesis at a 95% level, p = 0.039) response to the

change in tonicity, and S111A in figure 4.5 also showed a translocation and func-

tional swelling reponse (rejected null hypothesis at a 95% level, p = 0.039) to a

change in extracellular tonicity. Therefore the assumption canbe made that S111

is not invoved in this process, as none of the SDMs caused a functional change in

translocation or swelling response to a change in the extracellular tonicity.

4.1.3 S276 A and D

Figure 4.1, show that S276 is a very, easily accessible serine to PKA, as it is part

of the C-terminus in the cytosol. If this were therefore, a PKA phosphorylation
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Figure 4.3: Regulation of hypotonicity-induced increase in cell volume by S52A

mutated AQP4 translocation in HEK293 cell. - Representative images showing x-

y surface area (SA) estimation of cell volume. The binary image and surface area are

calculated from the z-stack plane at the maximum area. All measurements were taken

at 48 h post-transfection. HEK293 cells transfected with S52A translocation-deficient

mutant of AQP4-GFP. Control medium (1) and hypotonic medium (2) are DMEM with

osmolalities of 322374 mosM/kg H2O and 107125 mosM/kg H2O (diluted with water),

respectively. Distribution profiles along the line scans (in yellow on the image) are displayed

graphically (1a and 2a) by each image indicating AQP distribution in control and hypotonic

medium. The Binary Surface area (1b and 2b) demonstrates the swelling or lack thereof

when the cells are exhibited to di↵erent tonicities. All images and analysis shown are a

single representation contributing to the mean value quoted in the text and in Table 1.
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Figure 4.4: Regulation of hypotonicity-induced increase in cell volume by

S111D mutated AQP4 translocation in HEK293 cell. - Representative images show-

ing x-y surface area (SA) estimation of cell volume. The binary image and surface area

are calculated from the z-stack plane at the maximum area. All measurements were taken

at 48 h post-transfection. HEK293 cells transfected with S111D translocation-deficient

mutant of AQP4-GFP. Control medium (1) and hypotonic medium (2) are DMEM with

osmolalities of 322374 mosM/kg H2O and 107125 mosM/kg H2O (diluted with water),

respectively. Distribution profiles along the line scans (in yellow on the image) are dis-

played graphically (1a and 2a) by each image indicating AQP distribution in control and

hypotonic medium. The Binary Surface area (1b and 2b) demonstrates the swelling or lack

thereof when the cells are exhibited to di↵erent tonicities. All images and analysis shown

are a single representation contributing to the mean value quoted in the text and in Table

1.
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Figure 4.5: Regulation of hypotonicity-induced increase in cell volume by

S111A mutated AQP4 translocation in HEK293 cell. - Representative images show-

ing x-y surface area (SA) estimation of cell volume. The binary image and surface area

are calculated from the z-stack plane at the maximum area. All measurements were taken

at 48 h post-transfection. HEK293 cells transfected with S111A translocation-deficient

mutant of AQP4-GFP. Control medium (1) and hypotonic medium (2) are DMEM with

osmolalities of 322374 mosM/kg H2O and 107125 mosM/kg H2O (diluted with water),

respectively. Distribution profiles along the line scans (in yellow on the image) are dis-

played graphically (1a and 2a) by each image indicating AQP distribution in control and

hypotonic medium. The Binary Surface area (1b and 2b) demonstrates the swelling or lack

thereof when the cells are exhibited to di↵erent tonicities. All images and analysis shown

are a single representation contributing to the mean value quoted in the text and in Table

1.
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site, S276A would be seen not to translocate and have a functional swelling re-

sponse, and S276D to translocate or be constitutively expressed in the plasma

membrane and either show a functional swelling response or appear punctate.

It is evident from figure 4.6, that S276A had no significant change (not reject-

ing the hypothesis at a 95% level, p = 0.96) in the mean RME values between

an isotonic extracellular solution (RME = 36.608 ± 4.64) when compared with

a hypotonic extracellular solution (RME = 36.970 ± 5.53). There was also no

significant change in the cell surface area, (110.82% ± 3.85%, p=0.26).

Figure 4.7, shows that there is a significant change in the RME values for S276D,

and there is a function swelling response. As the extracellular environment

changes from an isotonic (RME = 25.723 ± 5.42) to a hypotonic (RME = 57.932

±), the aquaporins translocate from the cytosol to the plasma membrane, allow-

ing water to be transported into the cell, down the concentration gradient causing

the cell to swell and increase in size by 34.18% ± 15.10% (p=0.043, rejects the

null hypothesis at the 95% level).

This identifies S276 as a likely PKA phosphorylation site, for the activation of

the translocation process of AQP4 from a vesicle expression profile in the cytosol

to a predominantly plasma membrane expression profile. However, S276D was

expected to be constitutively expressed in the plasma membrane, but instead

observed to be in the same translocation response seen before. Therefore, it can

only be assumed that there are either two or more phosphoylation sites of which

S276 activation is essential but not exclusive, for the functional response owing

to a change in the extracellular tonicity or a second process is required to com-

plement PKA phosphorylation of S276D (possibly via calcium inhibition).
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Figure 4.6: Regulation of hypotonicity-induced increase in cell volume by

S276A mutated AQP4 translocation in HEK293 cell. - Representative images

showing x-y surface area (SA) estimation of cell volume. The binary image and sur-

face area are calculated from the z-stack plane at the maximum area. All measurements

were taken at 48h post-transfection. HEK293 cells transfected with S276A translocation-

deficient mutant of AQP4-GFP. Control medium (1) and hypotonic medium (2) are DMEM

with osmolalities of 322374 mosM/kg H2O and 107125 mosM/kg H2O (diluted with wa-

ter), respectively. Distribution profiles along the line scans (in yellow on the image) are

displayed graphically (1a and 2a) by each image indicating AQP distribution in control

and hypotonic medium. The Binary Surface area (1b and 2b) demonstrates the swelling

or lack thereof when the cells are exhibited to di↵erent tonicities. All images and analyses

shown are a single representation contributing to the mean value quoted in the text and

in Table 1.
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Figure 4.7: Regulation of hypotonicity-induced increase in cell volume by

S276D mutated AQP4 translocation in HEK293 cell. - Representative images show-

ing x-y surface area (SA) estimation of cell volume. The binary image and surface area

are calculated from the z-stack plane at the maximum area. All measurements were taken

at 48 h post-transfection. HEK293 cells transfected with S276D translocation-deficient

mutant of AQP4-GFP. Control medium (1) and hypotonic medium (2) are DMEM with

osmolalities of 322374 mosM/kg H2O and 107125 mosM/kg H2O (diluted with water),

respectively. Distribution profiles along the line scans (in yellow on the image) are dis-

played graphically (1a and 2a) by each image indicating AQP distribution in control and

hypotonic medium. The Binary Surface area (1b and 2b) demonstrates the swelling or lack

thereof when the cells are exhibited to di↵erent tonicities. All images and analyses shown

are a single representation contributing to the mean value quoted in the text and in Table

1.
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4.2 Molecular Modelling Comparison Between S52A,

S52D and S52L using VMD

Revisiting the data from S52, the molecular interactions of the WT with nearby

amino acids, when compared with the molecular modelling analysis of S52A and

S52D, would hopefully demonstrate what is changing on a molecular level which

may be causing the inhibition of the translocation and functional swelling re-

sponse, with the mutant S52D.

Using the programme SwissPdb Viewer (141) S52 and S52D were simulated. As

you can see from figure 4.8 S52 is in close proximity to C76 and S80, however

they do not appear to be interacting. When the S52 residue is mutated to S52D,

there is hydrogen bonding between C76 and S80, and in all rotations of the S52D

residue, hydrogen bonding and intramolecular forces are present between S80.

These intramolecular forces, exist because of the highly polar functional groups

on the aspartic acid residue and the serine of the S80 residue. However, this added

interaction of S52 with S80 may not be the cause of the translocation inhibition,

it could simply be that the size of S52D is causing some steric hindrance and

preventing PKA from phosphorylating another site within AQP4 amino acid se-

quence. To establish which was the case, the S52L mutant was created. Leucine

(L), is a similar size to aspartic acid, however, is a neutral molecule, and so

shouldn’t form the hydrogen bonds with S80, but will cause the same amount

of steric hindrance to PKA. Therefore, if S52D is inhibiting translocation by

steric hindrance to PKA, then S52L will inhibit the translocation and functional

swelling response to a change in the extracellular tonicity. Alternatively, if the

reason for S52D inhibiting the translocation response is as a result of the hy-

drogen bonds which are formed with S80, then the translocation and functional

swelling response will occur with S52L.
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Figure 4.8: Swisspdb Viewer respresentation of the AQP4 amino acid sequance,

with S52 residue mutated to S52D and S52L - Orientations of mutated residue

sidechains were found using SwissPdb Viewer, and then a short (50ps) molecular dynamics

simulation was run to relax the mutated residue into their lowest energetic states (Green

= S52, Blue = C76, Pink = S80)
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4.2.1 S52L

Figure 4.9, shows a significant change (p = 0.000060, rejecting the null hypothesis

at a 99% level) in the expression profile of S52L AQP4 when the extracellular so-

lution changed from an isotonic solution (RME = 43.998 ± 4.81) to a hypotonic

solution (RME = 69.503 ±3.17). There was also a statistically significant increase

in the cell surface area by 115.83% ± 4.25%, which rejects the null hypothesis by

95% (p = 0.0317). This implies that it is not the size of the aspartic acid residue

that is inhibiting the function of AQP4 but the hydrogen bonds formed between

S52 and S80.

Although this starts to answer some questions, it also asks others. Are the hydro-

gens bonds formed between S52D and S80, preventing PKA from activating S80

or are they altering the structure of the AQP4 protein, preventing its function?

To try and understand this further, a mutate of S80 was created forming S80A

and S80D, whilst leaving the S52 residue as wildtype.

4.2.2 S80A and D

Mutation of S80 to S80A and S80D whilst leaving the S52 residue as wildtype,

should, according to the modeling, stimulate the same phenomonom as with muta-

tion of S52 to S52A and S52D. This means with S80A we should observe structure

funtion response to a change in extracellular tonicity, and the retardation of that

response with S80D due to the hydrogen bonds formed with the S52 wildtype

residue.

Figure 4.10 shows there was not a significant change (p=0.85, not rejecting null

hyporthesis at a 95% level) in the translocation of the mutated S80D AQP4-GFP

tagged protein from a cytosolic expression profile (RME=30.215 ±) to a mem-

brane expression profile (RME=31.895 ±). There was also no significant increase

(p=0.48, not rejecting null hypothesis at a 95%) in the cell surface area (107.93%
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Figure 4.9: Regulation of hypotonicity-induced increase in cell volume by S52L

mutated AQP4 translocation in HEK293 cell. - Representative images showing x-

y surface area (SA) estimation of cell volume. The binary image and surface area are

calculated from the z-stack plane at the maximum area. All measurements were taken at 48

h post-transfection. HEK293 cells transfected with S52L translocation-deficient mutant of

AQP4-GFP. Control medium (1) and hypotonic medium (2) are DMEM with osmolalities

of 322374 mosM/kg H2O and 107125 mosM/kg H2O (diluted with water), respectively.

Distribution profiles along the line scans (in yellow on the image) are displayed graphically

(1a and 2a) by each image indicating AQP distribution in control and hypotonic medium.

The Binary Surface area (1b and 2b) demonstrates the swelling or lack thereof when the

cells are exhibited to di↵erent tonicities. All images and analyses shown are a single

representation contributing to the mean value quoted in the text and in Table 1.
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±2.03).

Unfortunately mutagenesis to create the S80A mutant, proved extremely di�cult,

and over the course of a number of months yielded no funtioning AQP4 mutant.

This meant it was not possible to quantify the e↵ects of changing the extracellular

environment. However, the retardation of the structure function response to an

extracellular change in tonicity, indicates that the aspartic acid residue is forming

hydrogen bonds with the wildtype S52 residue, and preventing its translocation.

However, to better understand this, both residues were mutated at the same time,

creating a double mutant. The S52D mutation would retard the translocation re-

sponse, however, if it was indeed the hydrogen bonds between the aspartic acid

residue and the S80 residue then a mutation of S80 to S80A, alanine an inert

residue, would hopefully reinstate the structure function.

4.2.3 S52D/S80A

Mutagenesis as with the single S80A mutant proved very di�cult to generate.

However, analysis with a modelling programme, yielded some interesting sugges-

tions. Figure 4.11 showed that with the S52D/S80A double mutant (image (B)),

the hydrogen bonds (green hashed line) did not occur between the S52 and S80.

However, the hashed green line was present with the single S52D mutant, seen in

image (A). Therefore it was expected the structure function would be reinstated

in comparison to the retardation a↵ects on a single mutation of S52D or S80D.

4.3 Conclusion and Next Steps

Unfortunately due to the technical di�culty with the mutagenesis work, it was

di�cult for to establish a comprehensive picture of what is causing the retar-

dation of the structure function response to the change in extracellular tonicity.

However, due to the embedded location of S52 and S80 in the helical structure,
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Figure 4.10: Regulation of hypotonicity-induced increase in cell volume by

S80D mutated AQP4 translocation in HEK293 cell. - Representative images show-

ing x-y surface area (SA) estimation of cell volume. The binary image and surface area are

calculated from the z-stack plane at the maximum area. All measurements were taken at 48

h post-transfection. HEK293 cells transfected with S80D translocation-deficient mutant of

AQP4-GFP. Control medium (1) and hypotonic medium (2) are DMEM with osmolalities

of 322374 mosM/kg H2O and 107125 mosM/kg H2O (diluted with water), respectively.

Distribution profiles along the line scans (in yellow on the image) are displayed graph-

ically (1a and 2a) by each image indicating AQP distribution in control and hypotonic

medium. The Binary Surface area (1b and 2b) demonstrates the swelling or lack thereof

when the cells are exhibited to di↵erent tonicities. All images and analyses shown are a

single representation contributing to the mean value quoted in the text and in Table 1.
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Figure 4.11: Swisspdb Viewer respresentation of the AQP4 amino acid se-

quance, with S52 residue mutated to S52D and the S80 Residue mutated to

S80A - Orientations of mutated residue sidechains were found using Swisspdb Viewer, and

then a short (50ps) molecular dynamics simulation was run to relax the mutated residue

into their lowest energetic states. Image (A) S52D (yellow) with S80 wildtype (pink) which

has hydrogen bonds forming (green hashed line). Image (B) shows that S80 has been mu-

tated to S80A (pink residue), and the hydrogen bonds are no longer visible (no hashed

green line)
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it is unlikely that mutation of these residues is retarding a protein kinase phos-

phrylation event. This implies that the hydrogen bonds are causing a structural

change in the folding of the AQP. These mutants were then investigated using

linear dichroism, by over expressing the mutated and wildtype AQP4 protein and

inserting it into a lipid bilayer. Linear dichroism is a technique which uses po-

larised light to produce an electromagnetic field which oscillates in only one plane.

Using light parallel and perpendicular to this field enables the experimentalist to

measure how much energy is absorbed in one dimension relative to the other.

This methodology helps to identify how membrane proteins insert into lipid bi-

layers. However, on analysis, there was very little change in the absorption signal

(data not shown). An explanation for this is that, even with an over expression

profile of the protein there was insu�cient expression of AQP4 in the samples

selected most likely owing to the nature of transient transfection, meaning not all

cells were expressing the GFP-tagged AQP4 protein. This work could be taken

forward to investigate this interaction further by doing in-depth molecular mod-

elling, to understand how AQP4 interacts with membranes, dimerises, and how

the mutations at S52 may be altering the structure of the AQP4.

However, S276 has still been identified as a potential kinase phosphorylation site.

Modelling of this would be very di�cult as the available crystallographic struc-

tures have been truncated removing the tail part of the C-terminus, and thusly

the S276 residue.

Up until now, this project had been investigating the role of GFP-tagged AQP4

and its mutants in a simulated experimental environment, using HEK 293 cells,

however, to establish if this translocation, and functional swelling response to an

extracellular change in tonicity, is a true reflection of how AQP4 reacts in astro-

cytes, the phenomenon needed to be observed in native cell lines. The next chap-

ter will discuss how this was achieved and the results these endeavours yielded,

and whether or not this model is physiologically relevant and a true reflection of

AQP4’s mechanistic response to changes in tonicity.
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Physiological Relevance

Although it was crucial to first investigate the cellular responses to a change in

tonicity in a model cell line such as HEK293, it can not be said to be of physiolog-

ical relevance, as an astrocyte cell line, could express AQP4 di↵erently, or have

a di↵erent response to the change in tonicity. Therefore it was decided to try

and transfect an astrocytic cell line with AQP4-GFP tagged constructs. Immor-

talised astrocyte cell line were transfected using the same protocol, and transfec-

tion reagents, TransFast. However, when analysed using laser induced confocal

microscopy there was no visible fluorescence. This meant that the transfection

was unsuccessful as there were no cells expressing AQP4-GFP tagged constructs.

Therefore owing to the di�culty of transfecting the cell line, what other possible

method could be utilised?

Endogenous AQPs in isolated rate primary astrocytes were visualised using a

methodology called immunocytochemistry. This was a particularly tricky pro-

tocol to engineer as the confocal imaging requires that the cells are fixed on

coverslips. For the cells to be fixed on a coverslip, they need to be perfused

with paraformaldehyde and other solutions, all of which can alter the expression

profile of AQP, due to a change in the extracellular tonicity. The protocol was

modified and optimised to limit the e↵ects of the change in extracellular tonicity,

so that the correct expression profile was viewed and the time taken to do so
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was recorded. The average time taken to translocate was often faster then the

time taken to perfuse the cells with formaldehyde (cell fixing agent). Although

it should be noted that a time analysis of the translocation protocol, was very

di�cult to formaly quantify while the water was added, this was owing to the Z-

stack shifting and it taking time to alter the Z-stack back to the correct position.

Following primary and FITC-conjugated secondary antibody washes, the cover

slips were observed using confocal microscopy. This technique was successful,

as you can see from the images published in our paper, (135). This experiment

was then repeated with AQP4 which did yield a very faint confocal image, un-

fortunately it was too faint to visualise in a recordable image, however it was

visible to the naked eye. The cells were fixed and therefore not living meaning

the translocation and functional swelling response couldn’t be observed, meaning

only cells from the same subcultured population on di↵erent coverslips could be

observed making the quantitative analysis very variable. With further optimisa-

tion the methodology could potentially be utilised to observe living immortalised

astrocytes with endogenous AQP4, enabling a clear image of the translocation

and functional swelling response to extracellular changes in tonicity.

Following these results, there was a connundrum, as to how to visualise AQP4 in

astrocytic cells lines. Following discussions with a transfection specialist Mirus

was suggested, as they had a new transfection reagent which was being reported

as capable of transiently transfecting cell lines identified to be notoriously di�-

cult to transfect. Researched suggested their new product TransIT 2020 would

be capable of improving the transfection rate. The new transfection protocol,

as detailed in the materials and methods, was performed with immortalised as-

trocytes observing the translocation and functional swelling response using laser

induced microspectrometry, when the extracellular tonicity was altered from an

isotonic to a hypotonic state.

As can be seen from figure 5.1, the transfection was successful, however, the

confocal machine was damaged preventing us from being able to analyise the

translocation response. High resolution full Z-stacked images, of the cell were
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Figure 5.1: Regulation of hypotonicity-induced increase in cell volume by

AQP4 translocation in Immortalised astrocytes. - Representative images shows an

astrocyte with constitutively expressed AQP4-GFP tagged constructs following treatment

with TransIt 2020
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taken, which was usually somethingimpossible to do as the translocation time

was much faster than the time needed to record an image such as this

Future work would be to repeat the transfection protocol and investigate the

e↵ects of translocation in immortalised astrocytes, as a response to a change in

extracellular tonicity. We would then suggest investigating how this phenomenon,

may be retarded by the mutagenesis of S52A, S52D, S80A, S80D, S52D/S80A,

S276A, and S276D as well as repeating the inhibitor experiments with the im-

mortalised astrocyte line. Understanding these better in an astrocyte cell line

will enable further understanding concerning the mechanism by which AQP4 is

translocated, which could potentially identify a drug target to retard the forma-

tion of cytotoxic oedemas.

5.1 Co-immunoprecipitation of HEK293 cells trans-

fected with AQP4 WT, AQP4 S42D and AQP4 S80D

Although a possible mechanism based on the information we have found from

analysis with inhibitors and mutants was derived, a better understanding as to

whether any other proteins were binding to AQP4 as part of the translocation

process was sensible to try and understand. This however proved very di�-

cult in a model which was revearsable and quick. Co-immunoprecipitation was

then used to identify any other proteins bound to AQP4. The protocol for co-

iummunoprecipitation is detailed in the materials and methods. Figure 5.2 shows

in the first column there are no bands, because there was no AQP4 present, so the

antibodies could not bind to the AQP4 protein. However the other three columns

showed slightly di↵erent results. S52D seems to have been divided into 4 bands,

S80D on has 1 band at around 48kDa and AQP4 WT seems to have the same

bands as S52 but they are a lot fainter aside from the band at approximately

48kDa which is significantly darker than the S52D mutant. An explanation of

this is not that more proteins have bound to the AQP4, it just seems to be that

we are observing the tetrameric, dimer, and monomer forms of the protein with
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AQP4 S42D and AQP4 S80D

another band which, is very heavy and unidentifiable. For this information to

be usful mass spectrometry analysis would be needed, which is a very specialised

technique for proteins, and useful as part of a further study.

Figure 5.2: Western Blot of untransfected HEK293 with Transfected AQP4

WT, and 2 mutant AQP4, S52D and S80D. - This image shows the instability

of AQP4 S52D in comparison to AQP4 wild type and AQP 280D, using untransfected

HEK293
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5. PHYSIOLOGICAL RELEVANCE

5.2 Nitrate and Nitrite Fluorometric Modified Greiss

Assay

In the introduction and chapter 3, some aquaporins had been identified as poten-

tial nitrate and nitrite transporters. This is of particular interest as nitrate and

nitrite are oxidative precursors for nitric oxide (a well known vasodilator), and

it is well documented that tissues that are able to control and regulate the con-

centrations of nitrite and nitrate demonstrate better protection against hypoxic

episodes, which can be directly linked to the formation of a cytotoxic oedema. To

investigate this, a modified greiss assay published in nature protocols was used

(122) which would enable analysis of nitrate and nitrite at very low concentra-

tions. Initially this was done by transfecting all AQPs into HEK293 cell lines and

measuring the levels, of nitrate and nitrite they uptake, following an incubation

period. The results however, identified only one AQP to have any significant

change from WT or control HEK293 cells, and that was AQP3 as shown in fig-

ure 5.3. This was initially a surprise as publications have identified AQP5, and

AQP6 to potentially have a link to nitrate and nitrite transportation, however,

AQP3 had been identified as an aquaglyceroporin, which could mean it was able

to transport other small charged molecules and that it may not be selective to just

transporting glycerol. Figure 5.3 shows the initial findings, and it was evident

AQP3 had a marked increase in the amount of nitrite detected. However, when

attempts were made to reproduce this experiment, it proved very di�cult, the

standard curves were rarely comparable, and concentrations were often too low

to detect any fluorescence, even after months of trying to modify and optimise

the nature protocol. An assumption was made that the water supply, although

filtered using a milipore system, was unlikely to be able to reduce the high ni-

trate and nitrite content of UK water, and therefore was unable to distinguish

the results from the background noise. Another reason could be that this exper-

iment relied on transient transfection of HEK293, intrinsically this means that

not all cells will have AQP4, and therefore the concentration of cells tested in the

flurimeter may not have had su�cient AQP to demonstrate a marked increase in

comparison. The protocol also required many washes, which caused cells to be
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5.2 Nitrate and Nitrite Fluorometric Modified Greiss Assay

lost, and also for an osmotic equilibrium to be met.

It was therefore thought possible to be able to observe the cells under confocal

microscopy to see if any cells exhibited a translocation response to a change in the

concentration of extracellular nitrate and nitrite. The concentrations of nitrate

and nitrite were varied from 20µM to 200µM, however there was no change in

the FIP for any of the aquaporins.

Figure 5.3: Uptake of nitrite into HEK293 cells transfected with AQP1 and

AQP3, compared with HEK WT -
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Discussion

This thesis has provided some very interesting developments and discoveries. We

have characterised all known AQPs and were able to visualise their expression

profiles and their response to extracellular changes in tonicity for AQP0, AQP1,

AQP2, AQP3, AQP4, AQP5, and AQP12. This is useful to the wider scientific

community as it gives insight into the subcellular localisation of these transporter

proteins which can be found in a wide variety of tissue samples throughout the hu-

man body. This with further research and replication of our protocols will enable

visualisation of these proteins and how they may be regulated to perform their

individual roles in each tissue. For example, analysis of AQP3 and its function as

an aquaglyceroporin can be better quantified using this visualisation technique,

enabling more detailed research to be performed into its role within adipose cell

lines, linking to diabetes (one of the largest causes of financial strains on Western

health services).

We have also suggested a mechanism (figure 6.1) for the structure function of

AQP4 as well as visualised and quantified its responses to changes in extracellu-

lar tonicities. This is a particularly interesting due to the discussion surrounding

AQP4’s involvement in the formation of a cytotoxic brain oedema. As we know

AQP4 knockout mice demonstrated significant reduction in the pathological re-

sponse in such disorders like acute cerebral ischemia (60), water intoxication (142)
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(60) and traumatic brain injury. Our protocol, is a quick and easy methodology,

which enables live observation of a cell’s reaction to a change in extracellular

tonicity, whilst also allowing visualisation of the expression profile of AQP4 as

the external environment alters. These data coupled with Verkmann’s findings

using immunoprecipitation to identify expression profiles of AQP4 in astrocytic

end feet, gives rise to evidence to support the relationship of AQP4 to the forma-

tion of a cytotoxic oedema

Figure 6.1: Schematic Representation of the AQP4 Translocation Activation

Response to an Increase in Extracellular Hypotonicity - A model showing influx

of water causes cell swelling that induces extracellular calcium entry leading to AQP4

translocation to the plasma membrane. This involved extracellular and intracellular cal-

cium release, cytoskeletal filiamentation and activation of PKA.

Further research involving profiling libraries for known drugs that can cross the

blood brain barrier (BBB) and disrupt a stage in the activation of AQP4, to

translocate from an intracellular expression profile to a plasma membrane expres-
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sion profile, could deliver real solutions to the formation of a cytotoxic oedema.

For example a drug that can target the stretch activated TRP-channels, or inhibit

the calcium influx mechanism, would prevent the translocation of AQP4 from the

cytosol to the plasma membrane, which in turn prevents water building up on

the brain in instotial pockets. This work can be made even more compelling by

optimising the new and improved transfection protocol with TransIT 2020, so

that more data can be collected in an immortalised astrocyte cell line, as this

would give greater physiological relevance to the findings. However, if research

were to be performed on tissue samples, a larger data sample would be required

so as to give statistical significance to di↵erences, negating the inherrent variance

in the di↵erent tissues samples required for each treatment, making for a di�cult

comparison matrix.

Further interesting discoveries from this PhD have arisen due to the structural

instability, and the retardation of the structure function response to a change

in extracellular tonicity, for the AQP4 mutant S52D. Although it is clear that

the S52 residue is not a phosphorylation site, the mutation of serine to aspartic

acid and the hydrogen bonds formed between the polar head and the near by S80

residue, pose very interesting questions as to how this could prevent the transloca-

tion and potentially insertion of AQP4 into the plasma membrane. Although the

Linear Dichroism experiment did not yield any results, further optimisation sur-

rounding the technique could give the insight needed to understand if the mutant

was preventing insertion into the plasma membrane. There is also an opportunity

to model the mutant and its interaction with plasma membranes in more detail,

using molecular modelling techniques. Although this is based on assumptions and

leads you to an answer, it is still a very good method for focusing your work, as

it may rule out more options initially than would have been possible just relying

on experimental data. This information could then start to elucidate how AQP4

monomers dimerise, and insert into the membrane which as yet still remains a

mystery. As we can see from the Western blot data that the S52D mutant seemed

to exist in all states instead of its normal tetrameric state. This information could

also prove useful and interesting as a drug target, however, the enclosed location
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6. DISCUSSION

of S52 in the alpha helical twist 6.2, may prove di�cult to access with a drug.

Figure 6.2: Primary Amino Acid Structure of AQP4 - Schematic representation

of the primary amino acid structure of AQP4. The red coloured circles identify the PKA

phosphorylation sites,(64).

As a result of the mutant analysis research we identified S276 to be a potential

phosphorylation site (figure 6.2), however further modelling analysis is not cur-

rently possible, due to the truncated crytallographic structure meaning that S276

is not present. Therefore further research could be done to isolate a sequence

based on the crystal structure without the N-terminal end being truncated, or

statistical probabilities could be used to establish the most likely structure. S276D

also did not seem constitutively expressed at the plasma membrane in an isotonic

extracellular solution, however, if S276D was mimicking a phosphorylated AQP4

protein, we would expect AQP4 to appear to be constitutively expressed in the

plasma membrane. The fact that it isn’t, implies that it is not the only phospho-

126



rylation site required to activate AQP4 to translocate to the plasma membrane,

however, it is essential. Further profiling of other potential phosphorylation site

could be utilised to help identify the other phosphorylation sites involved.

In conclusion, this work has challenged the accepted published work and devel-

oped a quick and robust methodology for analysing and visualising, in real time,

the e↵ect of altering the extracellular tonicty, on the expression profile of AQPs.

We have proposed a new mechanism for this translocation phenomenon in AQP4,

and have evidenced its physiological relevance in astrocytes, for which we have

now created a quick and robust methodology. We have published work, which has

been credited by the F1000, and are currently in the process of writing another.

We feel that this work has significantly impacted the development of this field,

and will encourage further development, which in the future may identify a drug

that can prevent the formation of a cytotoxic oedema.
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