Fault Detection and Isolation

for Railway Vehicle Suspensions

Xuejun Ding

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

The University of Leeds
School of Electronic and Electrical Engineering

December 2009

The candidate confirms that the work submitted is his own and that appropriate
credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and
that no quotation from the thesis may be published without proper
acknowledgement.



-1 -

Acknowledgements

I would like to thank my supervisors, Dr. Li Zhang, for taking over the supervision

of my writing up and for her whole hearted support.

Special thanks are due to my former supervisor, Prof. T X Mei, who has
continuously encouraged me get deep into the research with his innovative advice,
persistent help, his kindness and patience; as well as continued support after his

move to Salford University.

Thanks go to Mrs. Margaret Wood and Dr. Paul A Cooke, who contributed a lot for

refining my writing.

My thanks also go to my colleagues Yongji Zhou, Xuandi Zhao, Jianhua Yu and

other friends for their valuable support and advice.

I would like to thank the School of Electronic and Electrical Engineering and the

University for the International Award for supporting this research over the last three

years.

Then I would like to express my gratitude to my parents and sister; they always love

me, and encourage me unconditionally.

Last but not least thanks to my wife Wei Liu for her unfailing support in many ways.
Without her love, her contribution and encouragement, this work would never have

been completed. During my PhD program my son Haoyang Ding always made gave

me much pleasure and pushed me to strive for future. I dedicate this thesis to them.



- iii -

Abstract

The ability to detect and isolate component faults in a railway suspension system is
important for improved train safety and maintenance. An undetected failure in the
suspension systems can cause severe wheel-rail wear, reduce ride comfort, worsen
passenger safety and increase unexpected maintenance costs. Existing fault detection
methods are limited in several respects, such as effectiveness/sensitivity for fault
detection, or robustness to external condition changes. This thesis investigates a
model-less fault detection and isolation approach using cross correlation and/or

relative variance techniques, developed to overcome these limitations.

This thesis treats a conventional bogie vehicle with a symmetrical structure. Excited
by the track irregularities, the dynamics of the vehicle are studied under the normal
conditions, with an emphasis on the vertical and related motions of the bogies and

the carbody.

Two fault detection schemes employing data processing using data directly from
measurement are discussed. One uses cross correlation evaluation of the basic bogie
motions to detect component fault; the other takes advantage of the relationship

between the relative variances of the suspension accelerations.

Finally, the fault isolation schemes are assessed based on the comparison of fault
detection performances in different conditions. The proposed approach does not
require detailed knowledge of the vehicle/bogie and external track irregularities. The
effectiveness of the approach 1is verified by computer simulations in

Matlab/Simulink.
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Chapter 1
Introduction and Literature Review

1.1 Introduction

1.1.1 Background to the Study

Currently, there is a great interest in condition monitoring in vehicle systems. The
main reasons for such an interest are two folds [1]. The first is to achieve the safety
requirement. A failure of the suspension component cannot only increase the wear of
wheels and rail, but also may affect system stability, reduce ride comfort and even
endanger passenger safety in extreme cases. Detection of component failures at the
earliest opportunity prevents further deterioration in vehicle performance and
enhances vehicle safety and reliability. The second is to reduce the maintenance cost.
Early detection of incipient component faults is helpful in reducing costs and
preventing them turning into a more serious and/or dangerous situation. As a result,
maintenance in the future may be carried out on demand to replace scheduled
maintenance, which results in a substantial saving and significant reduction in the
total life cycle costs. As the speed of railway travel becomes faster, the demand for
stable and reliable suspension systems for high-speed trains is likely to increase in
order to deliver a safe and comfortable passenger experience. To meet these
requirements, Fault Detection and Isolation (FDI) systems, which help improve the

railway vehicle operational performance, are expected on future rail vehicles.

Although other improvements such as modern control strategies in railway vehicles
have been studied in depth, the development of fault detection and condition
monitoring methods are still a relatively new subject [2] [3]. During the last three
decades, a lot of FDI work has been carried out at a theoretical level, but only a

limited number of applications were applied in the aircraft and automobile industries
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[4][51[6][7]. Advanced condition monitoring in railway vehicles is however lagging
behind, where some possibilities are being recommended and a number of ideas
proposed in recent publications. There is still a lack of practical applications,
although a few theoretical model-based methods have been studied in the railway

field [1] [8] [9] [10].

Typically, fault detection methods can be categorised into the qualitative
discrimination or quantitative analytical approach, including time or frequency
analysis, knowledge-based and model-based approaches [7] [11]. However, system
disturbance and noises could distort the fault decision making process. The
simplification or the linearization of non-linear systems used by some of the
techniques could cause estimation errors. More essential work is yet to be done on
the development of implementable systems and in particular on the improvement of

the sensitivity and robustness of practical fault detection methods.

1.1.2 Aims and Objectives

The aim of this study is to develop a simple and effective approach to be used for
FDI of railway vehicle suspension systems. The research intends to investigate and
understand the generalised dynamic performance and interactions existing in the
railway vehicle suspension system, by a combination of analytical formulation and
numerical modelling. The study of the basic conventional railway bogie vehicle
model is involved, the results from which can be applied to a range of applications in
other railway vehicles. To achieve this aim, the specific objectives are as presented

as follows:

. To fully understand the relevant mechanisms of the railway vehicle suspension
systems, especially dynamic interactions between different motions in relation to

component fault(s)
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. To avoid the use of complex mathematical modelling, linearisation processes and

data processing algorithms so that the proposed approach can be easily implemented

. To improve the sensitivity, accuracy and robustness of fault detection against
system disturbances and external condition changes so that it can be conveniently

tuned in practical applications

1.2 Literature Review

1.2.1 Condition Monitoring - the Concept

Condition monitoring technology is basically applicable to a system whose
performance deteriorates with component failure, and aims to detect and isolate the
failure at an incipient stage to prevent it causing serious malfunction [2] [12]. In
many cases, only output signals can be collected or measured, therefore a signal
based method may be applied. A common illustration of a railway vehicle condition
monitoring scheme is shown in Figure 1.1. The inputs can be any system control
inputs or track excitations; the plant/vehicle system generates the outputs which are
measured by the mounted sensors; the disturbances are the environment or
measurement noises which may affect the system, and the output measurements are
then fed to the monitoring system. The condition monitoring system augments the
physical system, monitoring system variations by historical data or on-line, and
focusing on detecting and isolating the faulty component and processing the failure
before it causes serious problems. This is the key role of a condition monitoring

system [2] [6].
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Figure 1.1 General condition monitoring or fault detection scheme for railway
vehicle

1.2.2 Background and Applications in Vehicle Systems

Generally, the condition monitoring technology serves two fundamental functions: a)
to detect faults and b) if possible, to isolate them. Before the 1980s, fault detection
and isolation was highly dependent on the limits of computational power and the
cost of hardware [13]. After the 1990s, there has been a gradual increase in academic
research and applications in fault detection and isolation techniques including in the

automobile industry [11] [14].

Based on the system output measurements, a lot of work has been undertaken in
detecting faults, by exploring information contained in the measurements to indicate
the failure of system components. Through a study of the profile of the
measurements, several methods in detecting the failure have been presented

according to their different data implementation techniques [14].

1.2.2.1 Direct Computation and Signal Processing Methods

Component faults tend to change the behaviour of a system and often affect the
output of measured signals. The characteristics of the related changes can therefore
be extracted and processed as a means for fault detection [7]. The use of filters is a

convenient way to extract the fault-relevant signal characteristics from the
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vibrational measurements, where the band-pass filter is popularly employed. Its
principle is based on the phenomenon that the resonances of interest mostly occur in
a specific frequency range, and in many cases the extracted information can be
achieved by restricting the signals within a certain frequency bandwidth @, < @ <
Wmax. It allows the interested main frequencies and their amplitudes to be measured,
which may be especially sensitive to some faults. The filter based methods are
relatively straight forward to design and can be used for detecting a variety of faults.
However, they can suffer from reliability problems with possibly a relatively large
number of false alarms or missed detections. Innovative filter designs such as
exponential weighted and the limited memory filters are sometimes used to obtain a

faster response and more sensitive fault detection [13] [15] [16].

Besides the development of the filter approaches, some other time domain fault
detection methods using direct computation are adopted in the dynamic systems,
mainly based on vibrational analysis [14] [17]. The fundamental principle upon
these vibrating structure based methods is that faults in a subsystem may cause
behavioural discrepancies in their vibration responses. The goal of the FDI problem
is to achieve the reliable detection of such discrepancies by the vibrant signal
processing and reveal their association which is related to a specific fault. These
time domain analysis are an important part of the FDI families, which deal with time
series data or measured random signals using statistical tools (mean, peak etc) and
analyse their observed behaviours. They are data-based rather than model-based
although these data are obviously related to the physical system or models, which

indicate an inverse-model analytical type [17].

The time domain statistical methods are widely used to investigate the random
characteristics of a dynamic system. It is important to summarise the data obtained
and be able to draw meaningful and useful features. The typical vibrational signals
of dynamic systems include displacement, velocity and acceleration; they all deliver

relevant information about the structural dynamics. For railway vehicle system,
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acceleration is the most commonly used for fault detection analysis, as it can be
easily measured by inertial sensors with acceptable accuracy [18] [19]. The simplest
approach in the time domain is to measure the overall root mean square (RMS)
level, i.e., the RMS value of the measured accelerations. This method has been
applied with limited success for the fault detection of component fault [20], where
the fault is detected by observing the changed RMS magnitude of the measured
features of the dynamic systems, because the component damage or failure can cause
relative changes in the level of acceleration outputs. However, the performance of
this method can be affected by the external operational conditions such as rail track
geometry and speed changes. A comparison of fault detection using the RMS

method with the proposed approaches in this study is presented later in Chapter 4.

Other time domain analytical condition monitoring methods have been successfully
used for industrial applications. A typical example is the Shock Pulse Method
(SPM). This method simply detects the mechanical shock wave caused by the impact
between two contacted systems. This can be as simple as ‘listening’ or ‘feeling’
symptoms but using sophisticated spectral analysis and instruments. The shock pulse
method is widely applied in industrial environments such as rolling and Qibrational
systems. At the impact point, the acceleration of the impacted substance establishes
a compressive wave radiating in all directions, and the magnitude of the wave is an
indirect variable to the impact velocity. Following the impact, the deflection of the
mass near the impact point deforms and the vibration occurs, the SPM evaluates and
detects the magnitude of the resultant compression wavefront (the shock pulse) by a
set of piezo-electric accelerometers. The contacted surfaces always have a certain
degree of roughness, so when rolling occurs, the roughness will cause mechanical
impact and thereby shock pulses are generated and measured. If the studied
component is damaged or has a failure somewhere, the shock pulse may periodically
increase to a large magnitude compared with that under the normal conditions. The

periodic time interval of the increased shock pulse relies on the contacted rolling
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velocity [21]. The shock pulse method is simple to implement, and may be suitable

for rolling element fault detection such as railway wheels and axles.

The time domain methods in the FDI application offer a number of potential
advantages in implementation and some are useful for the railway vehicle system.
The merits mainly include: no requirement of physical models, inherent avoidance of
uncertainty by statistical tools and explicit fault decision making. On the other hand,
as the physical models are not employed, time domain methods may detect a fault
only available to the specific physical systems themselves, their quantitative
outcomes are unique and cannot be applied for other derivative systems although

they could have the similar structures.

Another important direct measurement based FDI analysis is to use frequency
domain methods. These methods could be a related frequency transformation from
the time domain measurements, or a spectral analysis by estimation [6] [14] [22].
The most popular approach is spectral analysis using a Fast Fourier Transform (FFT)
algorithm; it attempts to estimate the magnitude of change of frequency content for a
selective set of system measurements. For example, a damper fault is common in the
railway suspension system [9]. It has little effect on the change of the suspension
natural frequency; however, it contributes to a reduced system damping ratio which
increase the frequency content near the system natural frequencies and decrease the
response at the high frequency ranges. As it is possible to estimate the natural
frequency from the railway vehicle dynamics, the evaluation of the FFT spectral
change near to the system natural frequency can be used as a potential method to

detect the suspension damper fault.

Although it is simple to directly use a FFT algorithm to evaluate the spectral changes
as an indicator of component fault, the feasibility of this method is still limited; the
spillover and spectral leakage phenomena may affect the choice of extracted

frequency, and distort the spectral magnitude which does not exactly appear as an
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ideal peak if its frequency does not coincide with any f,=n/T (n integer). Some
interpolation algorithm and window functions can be used to improve the accuracy
of the spectral level, but it will increase the structure complexity and require more

computation power.

Rather than comparing the frequency content via FFT algorithm, another useful
condition monitoring technique in the frequency domain is to estimate the
parameters of a signal by calculating their corresponding frequencies. This
frequency-based spectral analysis approach is studied through a test rig for the
purpose of detecting vehicle tire pressure loss [6] [23]. The test is processed with a
quarter car mass-spring-damper model, and the vibration from the vehicle body is
ignored because its frequency range is much lower than that from the wheel and axis
vibrations. The wheel accelerations are used for this signal spectral analysis, and
only the vertical wheel acceleration is measured for a simplified application. Based
on an Auto-Regressive (AR) parameter estimation, the resonant frequency of the
wheel is estimated from the vertical acceleration measurements. Theoretically, loss
of air pressure will cause a lower estimated wheel resonant frequency. The tested tire
pressure is initially set to 2.0 bar and then reduced to 1.5 bar, the estimated
frequency is thereby reduced by about 0.7Hz compared with the higher tire pressure.
When the air pressure is further reduced, the change in the level of the estimated
frequency is enlarged. As a result, the difference of the wheel frequency indicates the
fault condition of the tire, i.e., the loss of air pressure. This signal spectral analysis
method is suitable for air leakage detection for the vehicle tire, but is not suitable for

the detection of component failures in the suspensions.

The frequency domain method used in condition monitoring is explicit. In certain
specific situations, it is still considered as a powerful condition monitoring analytical
method. However it has two main drawbacks. One is the Fourier Transform is
relatively time-consuming, which increases the complexity of the detection

procedure. Another disadvantage comes from the impact changes in external
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condition, which may affect the detection quality and result in inappropriate decision
making. Furthermore, the frequency spectrum normally can often be overwhelmed
by noises from measurement or corrupted from other system components. Therefore,
it is difficult to get precise failure information by using conventional frequency
analysis methods. In order to overcome the problems, recent advanced signal
processing methods such as Wavelet analysis has been suggested to extract weak

transient signals from which the normal FFT methods could be ineffective. [24][25].

According to [25], the Wavelet Transform (WT) is an analytical method in time-
frequency domain which provides a signal analysis approach capable of detecting
local faults in a dynamic vehicle system. A full automobile vehicle is studied, the
suspension faults are assumed to occur as a result of the damage to shock absorbers
(damper) and bushings. The performance of fault detection of spectral analysis using
FFT is compared with that using WT. The FFT spectral analysis can detect the
frequency content change but suffers from transient noises and exhibits an error in
estimating contents near the natural frequency in fault conditions. However, the WT
method can analyse the energy density distribution in different frequencies properly.
By carefully selecting a mother wavelet with an appropriate scale factor in the
frequency domain and the translation factor in the time domain, the distinction of the
energy distribution can be largely optimised. The relatively maximum energy near
the natural frequency is evaluated under the normal and fault conditions. The faults
of the damper and bushing can be detected by comparing their corresponding energy
amplitude changes, and transient phenomenon which often occurs in FFT analysis is
greatly removed. The WT analysis has some advantages over the FFT algorithm. The
WT processing time is shorter due to less computation as compared to that of the
FFT algorithm, and the WT can improve accuracy by optimising the signal energy
distribution and slightly resist the influence of noise by reducing transient
phenomenon. However, the wavelet coefficient tuning can be complicated and needs

to be frequently changed with different operational conditions [26].
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1.2.2.2 Knowledge-based Methods

These methods are more suitable for nonlinear and high noise contaminated systems,
and they are based on the observed analytical and heuristic signs and also the
heuristic knowledge of the fault detection and isolation procedure [7]. For a
knowledge-based fault diagnosis system, it is unnecessary to rely on statistical
algorithms or to employ an analytical system model, as the approach is centred on
the core information extracted from the dynamic system outputs. In this way, only
qualitative or empirical systematic knowledge is used, and the measured outputs are
normally formed as the signs of the fault-relevant knowledge in the process, mainly
in a heuristic manner. Many current knowledge-based methods adopt fuzzy logic
systems to map the inputs and measurements from a dynamic system. The signs
formed from measurements may be indicated as binary values [0, 1] or treated as
fuzzy sets to be considered in the fault detection and diagnosis analysis, and these
data are used to set up a fault library upon which the FDI engine is based. By
clustering the utilisation of fuzzy separation, the faulty area can be possibly
identified [27]. Due to the development of Artificial Intelligence (AI) technology,
some other Al design techniques for knowledge-based FDI scheme have also been
studied. A recent trend comes with the application of neural networks as another
important knowledge-based FDI technique, because of its flexibility due to the
inherent training and learning abilities both for nonlinear and linear systems; and the
discrimination between normal and abnormal cases being more straightforward to

implement [28].

Without the need for a complex and accurate analytical model, these methods use
data-driven and knowledge-based techniques to estimate the system dynamics and
make performance assessments. The heuristic knowledge obtained from the training
and learning process is of crucial importance. For a vehicle FDI system, the different
fault conditions may give rise to different output patterns, where the typically

defined normal and abnormal ones are included. Then one or more of the
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knowledge-based methods are applied to analyse the heuristic symptom of system
outputs, and the current pattern of system operation can then be directly classified
after the mapping of these signals to the prior knowledge sets. In most cases, to
begin with a knowledge-based expert system, a rule-based decision-making system
is required for the training process. When there is no further knowledge ready for the
relation of the chosen features and fault diagnosis process, a reference vector S, is
firstly pre-determined as the normal case. Then the measured output vectors S
including all signs are determined experimentally for a certain fault F;. By repeating
this procedure in different circumstances, the relationships between the fault set F'
and system output vectors S are therefore learned. These relationships can form the
basis of an explicit knowledge base. By comparing S with the normal reference S,,

any possible faults F are indicated.

Compared with the direct measurement and signal processing methods in time
and/or frequency domains, one major advantage of the knowledge-based methods is
their advanced capability in identifying system faults. On the other hand, the system
process disturbance, measurement noise and other uncertainties from different
operational conditions are often mixed with desired data in the training procedure,
which may make the feature or pattern distort from expectation and hereby cause

false or missed detection.

1.2.2.3 Model-based Methods

More recently, there have been a number of investigations into the use of model-
based methods in fault detection for vehicle systems, as the modelling techniques
and specific models for railway vehicle dynamic systems are well-developed [2] [11]
[14]. Most model-based FDI techniques have been used for automobiles, including
applications for actuators, suspension component fault detection and drive-by-wire
systems which are summarised in [6] [7] [29]. There are also studies of the model-

based FDI approaches for railway vehicles dynamics. For example, Li et al
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presented the parameter estimation methods for railway vehicle suspension damper
fault detection [9] [30], Goda et al. proposed a Kalman-Bucy filter based approach
for damper fault and conicity change of a railway vehicle bogie [1], and Hayash et
al. explored the interacting multiple model (IMM) method for railway vehicle
suspension and sensor failure detections [10] [31]. These methods all require a
mathematical model generated from the real physical system. Assuming the
mathematical model agrees well with the physical system, faults which change the
process behaviour will mostly result in changes in the selected features. Based on the
evaluation of the residuals, using a suitably chosen threshold, the failure can be
indicated. The residuals can be generated by the difference between the output
measurements and their corresponding estimations from the mathematical model.
For a FDI system, the residual is a function of inputs and outputs of the monitored
system, which is also independent of the normal operation state of the system [12].
They should be zero or their mean tends to zero if there are no faults in the physical
system. The residuals will deviate from zero significantly when a fault occurs and
this evaluation of the deviation away from zero can be used as an indicator of the

fault [32].
Three basic methods are classified for the model-based methods:

(1) Parameter estimation;
(2) Parity equation;

(3) Observer and state estimation.

The parameter estimation techniques can be used in detecting faults resulting from
component degradation. The estimation is directly associated with the system model
and the measurable outputs, focusing on the investigation of system parameters. For
this method, the residuals are the differences between the nominal system model
- parameters and their estimations. The comparison of relevant parameters between

the mathematical model and the real one can indicate whether the studied
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components are faulty, and the severity of the faults can be shown providing the
model is sufficiently precise. An example of this method is given by [23] to study
the performance of the hydraulic damper of a car. The designated fault is obtained on
a test rig, which has been mounted with a continuously adjustable damper. The fault
detection result is given by a recursive calculation based on an improved least square
(LS) algorithm. The system dynamic equation is established by modelling the
relationship between the force and velocity of the damper. The damping coefficient
can be estimated by measuring the car body acceleration and the suspension
deflection between the body and the wheels, and the relative velocity of the damper
can be derived by differential equations. In this example, the actual damping
coefficient of the damper is known in advance. By comparing the difference between
the damping estimation and the real value, the fault (i.e., from the adjustment of the
damper) is indicated, together with the approximate distorted damping value. This
parameter estimation is advantageous in that most damper faults can be detected, but

the high cost of a deflection sensor could affect practical applications.

Parameter estimation methods have also been studied for the railway vehicle
suspension component FDI problem, as presented by Li et al. in [9] [30]. This
project is focused on the fault detection and isolation in the railway vehicle/track
interface. In their study a plan view model of a half railway vehicle is used in the
simulation. This model is generated from a Coradia Class 175 railway vehicle,
including the lateral and yaw motions of the wheelsets and the bogie, and the lateral
DoFs for the carbody. By investigating the faults of the lateral damper and the anti-
yaw damper in the secondary suspension system, two model-based parameter
estimation methods were presented. The first method is performed with the Kalman
filter estimation and the weighted sum square residual (WSSR) detection. The
~ innovation from a Kalman filter is used as a residual signal for FDI analysis, where
the residual is generated by the difference between the output measurement and its

estimation. Component faults or changes in the dynamic system can be detected by a
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statistical WSSR hypothesis test. Once a fault is detected, the innovations of the
bogie yaw gyro and the vehicle body accelerometer data can be used for Power
Spectrum Density (PSD) or RMS evaluation. The method has reasonable
computational efficiency and rapid response to abrupt faults, which is especially
suitable for the FDI of a hard component fault needing immediate attention. The
second method is presented by the authors using Rao-Black Particle Filter (RBPF)
based parameter estimation. This particle filter is a simulation-based method for the
general non-linear non-Gaussian state estimation, focusing on the evaluation of the
complete Probability Density Function (PDF) for these states. The RBPF is more
comprehensive compared with the state estimation by the extended Kalman filter
(EKF), as it only estimates the few central moments which are normally difficult to
analyse due tb nonlinearity, and the Kalman filter may be used for the augmented
states estimation. Thus, the RBPF estimation is flexible as it can give a simple
approximation to the required estimation without being restricted to any linearity
and/or Gaussianity constraints to the railway vehicle model. The RBPF is shown to
be particularly effective in detecting the soft faults with gradual nominal
parametrical value changes. By comparing the two parameter estimation methods for
the railway vehicle FDI problem, the authors state that the RBPF based parameter
-estimation method is more powerful, as it is easier to do analytical derivatives (such
as Jacobians). This is particularly useful in the case when the systematic matrix of
the estimated parameters is very complicated. However, a major disadvantage is that

it has to estimate a larger dimension of states generated from the augmented model.

The parity equation method is another model-based FDI technique. It requires a
fixed state model which is used as the reference for the system measurements. The
parity equation traces the consistency of the mathematical equation with the
measurements, where any inconsistency in the measurements is combined into an
independent parity equation which gives a parity vector [6] [33] [34]. The sensitivity

of a residual vector shows only its change related to a corresponding fault, which is
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quite useful for the fault isolation scheme. The parity equation method is especially
valuable for additive faults. An example is given for sensor fault detection in a car
system [6]. Two kinds of faults are assumed to occur on an acceleration sensor. One
is the offset fault which has a 3% increase of the maximum measurable range added
to the normal measurement; the other is the gain error which gives 20% extra gain
compared with the normal value. After the parity relation analysis, the faults are
detected respectively by comparing the residual changes with the selective
thresholds. The offset fault is indicated by a significant increase in the residual and
the gain fault is detected by both a moderate residual change and a variance increase
at the same time. The results also show that by establishing one parity space, the
different sensor faults can be detected simultaneously in the same computational
processing, together with their identification from their corresponding residual
change characteristics. The parity equations do not need extra parameter
measurements and require less computation than the parameter estimation. However
it has some drawbacks, such as it cannot give as deep insight into the fault as the
parameter estimation method, and it is more difficult to reduce the noise effects and
to apply to a multiplicative component fault, which makes the parity equation

difficult to use in railway applications [6].

The observer and state estimation method in FDI analysis is probably the most
common approach among the model-based condition monitoring methods. The basic
idea of the observer and state estimation method is to reconstruct measurable plant
states and to generate residuals by comparing the estimated outputs with the real
measurements. By introducing the state estimations and the output measurements,
different fault schemes can be established for a FDI system. The most widely used
state estimators are the Luenberger observer and the Kalman filter, which are used
for deterministic and stochastic cases respectively [2] [35]. By employing a
mathematical model, the observer and state estimation algorithm gives a prediction

of current states which are normally difficult to measure. The estimated outputs are
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then evaluated by manipulating the estimated states instead of those in the real
physical plant. The residual is generated by comparing the measured output and the
estimated output derived from a nominal model. The scheme of this method is

shown in Figure 1.2.
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Figure 1.2 Fundamental FDI scheme using observer and state estimation

The observer and state estimation method is appropriate for faults associated with
states which are difficult to measure, whereas the Kalman filter is the most often
used estimation algorithm in solving the linear stochastic problem, as it is a powerful
and effective estimation algorithm of past, present and future states [36] [37]. Many
researchers use it in estimating implicit and complicated states of dynémic vehicle
system [38], which also makes it a potential and useful approach in vehicle FDI
problems. The Kalman filter is originally defined as the state estimator for the linear
system, however most of the physical systems are more or less non-linear; therefore
nonlinear state estimation is needed when linear estimation cannot give satisfactory
performances. In this case, the Kalman filter can be extended for utilisation in a non-
linear system, which is so the called Extended Kalman filter (EKF). The EKF is an
applicable state estimation algorithm for nonlinear systems; however particular
attention should be paid to the accuracy and stability of the Jacobian matrixes when

the partial derivatives are employed in the linearisation procedure [39].
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The use of EKF has been studied to detect fault in an underwater vehicle with
actuator faults [40]. The fault detection problem is solved by evaluating any
significant residual changes to the interested behaviours of the underwater vehicle
outputs. Their results show that the EKF based estimation method is effective for left
and right thrusters fault detection of the underwater vehicle, and the use of low-pass

filter can greatly improve the detection quality.

The observer and state estimation fault detection method has also been studied for
railway vehicle systems. Goda et al. give an application by using a Kalman-Bucy
filter to detect the railway bogie faults and apply an isolation scheme to separate
these faults [1]. This application shows the possibility of detecting suspension failure
and conicity changes using state estimations from Kalman-Bucy filter. To simplify
the Kalman filter based estimator design, a linearised plan-view railway vehicle
model is developed. The model includes the lateral and yaw movements for the
wheelsets and bogies. The lateral accelerations and yaw velocities are assumed to be
measured by inertial sensors, with their associated measurement noises taken into
account. One advantage of this method is that the Kalman-Bucy filter uses only few
sensor measurements in estimating the states optimally [18]. The residual is
generated by the difference between the real measurement and estimated output
predicted by Kalman-Bucy filter. By checking the ongoing residual changes with an

experimental threshold, the faults can be detected.

There is another model-based fault detection study using the interacting multiple
model approach (IMM), which employs a number of dynamic models for fault
detection in railway vehicle systems. The IMM method explores an estimation
method using different dynamic railway vehicle models which cover typical failures
in the system structure, parameters and sensors [10]. As railway vehicle dynamics is
inherently interactive, this method can provide an effective way in detecting
component failures. In [31], the IMM estimator is designed based on eight typical

modes of a half vehicle model which include no failure, different level of spring and
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damper failures in secondary suspension system and some sensor errors, where the
mode probabilities and states of the studied measurements are estimated using
Kalman filters. The calculation results show that different mode probabilities change
with different kind/level of faults. Using IMM method, the faults can not only be
detected but also identified by comparison with the predefined mode sets. However,
this method may need to use a large number of models to get effective results in
practical railway applications, which can lead to more a complicated analysis and

also increase the computational burden and hardware cost.

1.2.3 Brief Summary

In summary, the above literature reviews have highlighted a number of issues in
condition monitoring and FDI problems. Although the model-based FDI methods are
becoming the fast increasing research topic in recent studies [41], the quality of the
analytical model is critical for the attainable quality of the fault detection problem. A
poor or impfecise model will lead to a false alarm or missed detection. It is
inevitable that the more complex the system model and the more model-dependent
the FDI technique, the more possibility that the detection will result in sensitivity
problems. Recently the robustness issue has received considerable attention,
especially in dealing with the decoupling of the disturbance and fault signals. For the
unstructured uncertainty systems, it is difficult to optimise the separation of the
disturbance decoupling and hard to distinguish the additive and multiplicative faults
[3] [12] [32] [41]. On the other hand, the model-based methods are fundamentally
applicable for linear systems, although they can be extended to the application of
nonlinear processes by analytical derivation or linearisation. However, there are
potential difficulties related to nonlinear properties in the linearisation process, and
stability issue associated with the model-dependent fault diagnosis, which may lead

to complicated solutions [35] [42].
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A novel FDI proposal, which can effecyively overcome these shortcomings by
carefully taking into account the specific structure and suspension component

configuration for the railway vehicle system, is thereby studied.

1.3 Approaches and Ideas Presented in this Thesis

This thesis presents a novel approach which is quite simple but effective for the FDI
problem in réilway vehicle suspension systems. It is formed as a data processing
method with emphasis on data comparison techniques, which requires little prior
knowledge of the system model except some basic parameters such as vehicle
travelling speed and the distance between suspensions. The proposed technique
focuses on the comparison of dynamic behaviours between the two suspensions
where identical components are normally used [43]. When there are no faults in the
suspension system, it can be readily shown that some of the motions (e.g. bounce
and pitch) of the bogie (and to a large extent the vertical movements at the leading
and trailing suspensions) can be considered decoupled because of the symmetrical
suspension configuration and that therefore there is little interaction between the two
motions. However a component failure (e.g. a damper) in either suspension will
introduce an imbalance into the system, with resulting in dynamic interactions
between motions. Due to the overall damping loss, the dynamic interactions mainly
bring two different interactive effects near the resonant natural frequency and
frequencies beyond that. One is the increasing response around the system natural
frequencies, and the other is the gain decrease along the higher frequency band,
whereas the second effect is more dominant because the frequency band of the
system response is much wider than the part near the natural frequency. The
interactions caused by the unbalanced suspension parameters are exploited in the
study and computed by cross correlation analysis as a measure of suspension

conditions.
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The proposed technique requires inertial measurements to be taken from the bounce,
pitch and roll accelerations. To reveal any interactive change, the two measured
accelerations are processed by computing their cross correlations, and by taking into
account the time shift between the track inputs at the two chosen suspensions. As
shown in the following chapters, the novel detection scheme is not only highly
sensitive to component faults but also robust under different external operational

conditions.

In this system, the accelerations are acquired directly from measurements through
the sensors mounted on the bogie/body frame. The signals can be processed
continuously and the results can be given instantly from every running time interval,
so fast detection ability can also be achieved. It will be shown that the correlation
change before and after the fault condition is quickly observed and that the fault(s)
can be detected in a real-time manner, and also be isolated by comparing the

different patterns between their correlation performances.

Based on a similar principle, a second processing method using relative variances is
also studied which may be used as a supplementary approach to the cross correlation
computations. The same measurements are required, so there is very little additional

hardware/cost involved.

1.4 Structure of the Thesis

This thesis is divided into six chapters, outlined as follows:

Chapter 1 gives a brief introduction to condition monitoring technology in railway
vehicle systems. The literature review gives the concept of the condition monitoring
technology and a background study of the current approaches and applications in

vehicle systems, where the features and limitations of these methods are
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summarised. Finally, the new approaches and ideas which will be presented in this

thesis are briefly described, followed by the structure of the thesis.

In Chapter 2, a conventional bogie vehicle is described and modelled both as a
conceptual and numerical model. Linearisation is applied in order to simplify the
modelling process. The vertical dynamic motions of the vehicle on random track

irregularities are investigated.

Chapter 3 presents the development of the proposed fault detection and isolation
technique in detail. Dynamic interactions introduced by suspension faults are
explained using a simple side-view conventional bogie model, and initial results and
effectiveness of the new FDI methods are illustrated. The detail of the data

processing methods is also provided.

Chapter 4 details the simulation studies using the proposed approach for the
suspension system under different operational conditions, and improvements to
rectify the detection results are given. The feasibility of the approach when used with

noisy measurements and for non-linear system is assessed.

In Chapter 5, a second fault data processing method using relative variance is

developed and assessed.

Chapter 6 summarises the work undertaken and outcomes of the study. Conclusions
for the effectiveness of the proposed FDI technique for railway vehicles are

presented. Suggestions for future work are also given.

1.5 Publication List

A total of five academic publications have been produced from this study as listed

below. A copy of the full papers are given in Appendix B.
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Chapter 2

Mathematical Models

2.1 Introduction

To develop an effective FDI scheme for a rail suspension system, it is important to
have a good comprehension of the bogie and suspension system, and a clear
understanding of the functions of each part and the relationship between individual

components.

In this chapter, an introduction to the bogie and suspension systems of a
conventional bogie vehicle system is presented, followed by the development of two
mathematical models. The first model is for the side view dynamics of a
conventional bogie. This simple model is used to simplify the theoretical analysis of
the dynamic interaction changes in different suspension conditions, and to ease the
development process of the proposed fault detection method as presented in chapter
3. The second and more comprehensive model includes all modes of a vehicle that
are influenced by the primary vertical suspensions (the focus of this study), i.e. the
bounce, pitch and roll motions of the bogies and the body frame. This model is used

primarily for performance assessments in chapters 4 and 5.

The special feature of a railway vehicle compared with other types of wheeled
transport is the constrained guidance provided by the track. The surface of the rails
guides the wheelsets, and the wheelsets and suspension systems of the bogies
support the carbody in its motion. With the development of high speed trains, the use

of bogies plays a very important role in safe railway operation and, less obviously,

high vehicle steering performance [44].



-24.

In a conventional bogie vehicle system, the bogie transmits all the longitudinal,
lateral, and vertical forces between the carbody and the wheelsets. The bogie may
also include tilting devices, lubrication devices for wheel-rail contact, and
mechanisms to provide proper positioning of wheelsets on curves. Therefore, the
design of bogies is crucial in achieving reliability and maintenance benefits [45]

[46].

2.2 Structure of a Conventional Bogie and Basic Components

In order to understand railway vehicle dynamics, it is common to investigate the
motion of a single vehicle carriage running on rails. The running equipment mounted
on a separate frame that can turn relative motions to the carbody is known as a bogie
(or truck as known in North America). This thesis will focus on a simple
conventional bogie, which has the common two-axle structure, to help clarify the
basic mechanism of railway vehicles. The key components of this type of bogie
include the bogie frame, the suspension systems, the wheelsets, the traction devices

and the brake equipments.

2.2.1 Bogie Frame

The bogie frame is a steel structure which is generally made of two side beams and
two cross beams formed into an H-éhape frame. Like the chassis of a lorry, it is a
framework which carries wheelsets via the primary suspensions and attaches the
carbody by the secondary suspensions. The force is transmitted from the wheelsets to
the bogie frame by the primary suspension and to the carbody by the secondary
suspension. The bogie frame can also carry the traction and braking drives. The
bogie frame is a basic consideration for the bogie design scheme as it is located in
the centre of the bogie and constitutes a large proportion of the total weight of the

bogie. Irrespective of the design of the bogie system, the stability of vehicles in
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motion is largely directed by the dynamics of the wheelset within the bogie frame
[47]. The bogie frame with its linkages is normally considered as a sprung mass for
the primary suspension systems and an unsprung mass for the secondary suspension
systems. For a four axle vehicle, the mass and moment of inertia of the bogie frame
are carefully selected so that the four axles can support the sprung loads under the

normal operating conditions [48].

2.2.2 Suspension Systems

Suspension systems consist of a variety of energy storage dissipating components
which may include simple mechanical springs, viscous and friction dampers, air
springs, active or semi-active components, and other associated linkages which
connect the wheelsets to the carbody. In general, a freight railway vehicle has only
one layer of suspension, and is therefore less complex than the passenger railway
vehicle which has more than one suspension system to improve passenger comfort.
In this thesis, the most commonly used conventional passenger bogie vehicle with
two suspension systems is used in the study. The two suspensions are located apart
from different parts of the bogie, and are designed to have various functions in
different frequency ranges. The primary suspension is mounted between the
wheelsets and the bogie frame, while the secondary suspension is placed between the
bogie frame and the bolster or the carbody. The whole suspension system is
necessary, not only for reducing the forces between the wheels and rails and isolating
the carriage from vibrations and bumps, but also for keeping the railway vehicle
passengers comfortable and maintaining safe riding. Normally the primary
suspension system comprises of elastic elements (springs) and dampers mounted on
each axle, and works at a high frequency to reduce most of the frequency content to
which the passengers are most sensitive. The secondary suspension system often
consists of a pair of air springs in the vertical direction and a variety of springs,

lateral and anti-yaw dampers working in the lateral and yaw directions. Operating
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differently from the primary suspension, the secondary suspension can further reduce
the vibration from the primary suspension to a lower level which is acceptable for
the comfort of the human body. Both suspension systems also help to provide
additional control and stability for the railway vehicle at high speed and allow the
bogie and carbody to move relatively to each other on curves [49]. In this thesis,

only the component faults in the primary suspension system are studied.

2.2.2.1 Primary Suspension

The springs in the primary suspension system play an important role for the railway
vehicle dynamics [50]. These springs may consist of coil springs, leaf springs and
torsion springs etc. They are commonly used as stiffness elements in the primary
suspension system, and the coil springs are the most important. Usually coil springs
are produced as a helix of steel wire, typically of circular cross-section. Compared
with other springs such as torsion springs and rubber-metal springs in the bogie, the
coil springs are cheap and commonplace. They are flexibly mounted not only in the
vertical, but also in longitudinal and lateral directions. All these springs provide very
little dampiné The characteristic of spring stiffness may be linear or non-linear as
illustrated in Figure 2.1, where the non-linearity is often represented as a
symmetrical piecewise linear relationship, which passes through the origin of the
force-displacement plane. In many research works, these elastic springs in the
railway vehicle suspension systems are often treatewd with linear properties [50]

[51].
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Figure 2.1 Spring stiffness characteristic [SO0]

In most common cases when the railway vehicleb suspension model is investigated,
the force generated by the suspension springs is proportional to the change in height
regardless of their initial displacements. Conventional bogie vehicles often use
stiffness components of which the spring rates are derived from the gravitational
force. Spring rates that are too hard or too soft will both affect the suspension
performance [51]. In practice the design or the selection of the stiffness is always a
compromise between conflicting criteria, for instance the need for high stiffness for
good high speed steering versus the requirement for soft stiffness to enhance
passenger comfort. Much effort has been spent in exploiting optimal solutions for
different applications. However, how to design the bogie or the selection of the
suspension component is not the relevant issue in this thesis and thus it is mentioned

but will not be studied further.
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Dampers are as important as springs in railway vehicle suspension systems, and are
commonly used. Damping or resistance force is often generated using viscous or

friction damping devices, of which hydraulic dampers are the most common [52].

Hydraulic dampers have a major influence on the stability and passenger comfort of
railway vehicles. Similar to the design considerations to the spring stiffness, the
design of the damper is a compromise between these two aspects. Often, hard
dampers are used for a railway vehicle running on very uneven rails at high speed,
because it is easy to increase the adherence to the rail in steering. On the other hand,
the hard damping may result in a reduction of passenger comfort. Unlike the springs
which dissipate the energy by a force proportional to the compressing (or expanding)
length, the dampers are characterised by a force in terms of the piston velocity.

Figure 2.2 shows the force-velocity relation of a typical hydraulic damper.
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Figure 2.2 Typical force-velocity properties of a hydraulic damper
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Studies of experimental test data show that asymmetrical dampers are considered for
a more accurate treatment of the primary suspension systems in real designs [50].
The hydraulic damper has an asymmetrical characteristic of damping force which
has a smaller value for compressing than for extending movement. The motion of
the wheels funning over convex irregularities causes larger forces than when
travelling over concave ones. The hydraulic damper with an asymmetrical
characteristic is typically suitable for providing a smaller force in compression and a

greater one in extension [51].

In other designs, the hydraulic dampers also have a series of elastic elements (e.g.,
springs) from the mountings or oil chambers, which give the hydraulic damper the
ability to provide both damping and stiffness. Nonetheless the separation is useful in
the modelling procedure which focuses on the main property and application of each
suspension component. For a real hydraulic damper, the condition of its seals can
greatly affect its performance of absorbing the vibration or shock. The reliability of
hydraulic dampers usually depends on the sealing between the shaft, piston and
body. When applied in railway vehicle suspensions, occasional malfunction of this
unit causes excessive pressure in the chamber which may result in leakage of the

working fluid, and hence loss of damping [52].

Although in reality the characteristics of the damper force are nonlinear and also
asymmetrical in the compression and extension motions, most vehicle dynamics and
control strategies use linearised damping and represent it as symmetrical for
simplicity [53] [54] [55]. Hence in this thesis, the modelling of the dampers in
conventional bogie vehicle suspensions and theoretical analysis of the proposed FDI
solutions will mainly be established using linear characteristics, which contributes
the same resistance forces at the same speed of movements in compression and
extension. It is noted that, the asymmetrical damping forces in compression and
extension more accurately represent railway vehicle dynamics, thus affecting the

availability of the proposed condition monitoring method in practical applications. In



-30-

this study, the bilinear (asymmetrical in compression and extension) damper mode is

also included for performance assessments.

2.2.2.2 Secondary Suspension

Secondary suspension system is important in filtering out the frequencies of
discomfort arising from the bogie frame and in maintaining the displacement of the
carbody to aéceptable limits. In the 1960s, secondary suspensions consisting of a
pair of air springs were commercially used in Japanese conventional express
railways. Afterwards such secondary suspensions became almost universal in
modern passenger railway vehicle applications [45] [46]. Apart from other
secondary spring stiffness and secondary hydraulic dampers in lateral and yaw
directions, the air spring is particularly important in providing vertical support of the
carbody [56]. Besides its practical advantages, the most significant are its provisions
of constant suspension frequency and ride height regardless of the vehicle load. To
enhance the possible safety standard in case of air loss that could result in a fall in
suspension, most air springs are also fitted with a special rubber stack to ensure

emergency carbody support [51].

The dynamic behaviour of an air spring is nonlinear and often complicated as it is
mainly based on fluid dynamic and thermodynamic mechanisms [57]. Understanding
the behaviour of the air spring is very important in modelling secondary suspension
system. In this thesis, interest is solely focused on the vertical behaviour of the
suspension systems and simplification of the air spring modelling is therefore
necessary. The vertical behaviour of an air spring has both stiffness and damping
characteristics. Unlike the hydraulic damper’s asymmetrical characteristic in the
primary suspension system, the equivalent symmetrical damping derived from the air
spring is often used in the railway vehicle secondary suspension system. It is the only
damping in that system and should be carefully considered in the modelling process.

For the interest of the railway vehicle frequency range in the vertical direction, the
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dynamic frequency of the primary suspension is high at 10-20Hz; however the
secondary suspension only provides vertical vibration within the range of 0-1Hz.
The differing frequency characteristic of various suspension systems is an important
criterion for the validation of suspension designs. In different railway vehicle
operational conditions, the deformation of the airspring will cause different force
behaviour in lateral and vertical directions. However, these force changes will have
little effect to the analysis of the force characteristic of the primary suspension

systems, which is due to its filtering effect.

Figure 2.3 and Figure 2.4 show simple diagrams of a physical air spring with air
reservoir and an equivalent mathematical representation used for modelling its
behaviour [58]. Here K, denotes the stiffness from the change-of-area of air springs,
in which, as the height varies the effective area changes, resulting in a change of
force even if the air pressure is constant. Kj is the stiffness representing the influence
of air in the main volume. X, is the stiffness representing the influence of air in the
additional air reservoir. The damping C, is parallel with the stiffness K,, and it
represents the damping of the surge pipe which connects the air chamber and the air
reservoir. Although the air mass in the pipe is small, its equivalent inertia is
significant when it passes through the narrow pipe at high velocity. This damping C,
arises from the air flow in the pipe or any orifices, which is often approximately as
being linearly related to the velocity in many studies. The other factor which affects
the air spring performance is the series stack stiffness, which rarely acts fast enough
in the dynamic vehicle system and has less effect than the other stiffness as a
contribution to air spring performance. For simplicity, the series stack stiffness does

not appear in the following model [51].
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Figure 2.3 Physical air spring model with air reservoir
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Figure 2.4 Air spring equivalent mathematical model [51]

Modern bogie design uses a smaller number of components in the secondary
suspension system than in the primary. This arrangement has added benefits such as
decreased component malfunctions and also reduced maintenance costs for the

secondary suspension system.

2.2.3 Wheelset

The bottom part of the bogie is the wheelsets, each of which consists of two wheels
connected by a common axle. The fixed solid axle is commonly used for
conventional bogie, although Independently Rotating Wheels (IRW) for railway

vehicles has recently engaged some consideration at a theoretical and experimental



-33-

level [59]. A wheelset is important in providing the safe gauge between the vehicle
and rail tracks, and in guiding and determining the motion on straight and curved
lines. Connected by the axle box, the wheels are critical factors in the railway rolling
characteristic because they are in direct contact with the rails. The wheels are made
from solid steel in specific shapes that can follow curves. In vehicle system
dynamics, the track irregularities can be transmitted to the primary suspension

systems via the rail-wheel interface.

2.3 Side View Model of a Bogie

This thesis does not cover the concept of wheel-rail contact, which has been the
subject of many studies elsewhére [60]. For the basic analysis and development of
the fault detection, a simple side view model extracted from a conventional bogie
vehicle is first presented in this section, which only includes one bogie and two
attached primary suspensions. The force exerted on the bogie from the secondary

suspension is also considered.

The model has two motions in the vertical directions, bounce z, and pitch ¢, as
shown in Figure 2.5. The standard dynamic equations for the two motions of the
simple bogie under the normal condition are readily derived and can be found in

references [43] [61] [62], as shown in equations (2.1) and (2.2).
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Figure 2.5 Side view diagram of a simple railway bogie

myZ, +2C,2, +2K 2, =C, (3, +1,,)+ K (2, +2,,)+ F,
1,, +2L,"C,0, + 2L’ K b, = L,,C, (2, ~ 2) + LK (2, = 2,,)

where

C, - damping coefficient of primary suspensions (nominal)

F,4 - Force exerted on the bogie from the secondary suspension
I, - the bogie (pitch) moment of inertia

L, - semi wheel space

m; - the bogie mass

K, - stiffness constant of primary suspensions (nominal)

2, - bogie bounce displacement

& - bogie pitch (angular) displacement

24, Zs2- track vertical displacement at the leading and trailing wheelsets

Q.1)

.2)



-35-

From equations (2.1) and (2.2), it is clear that there are no direct interactions
between the bounce and pitch movements of the bogie. The main link between them
is through the track inputs at the leading and trailing wheelsets, where the bounce

mode is excited by their sum and the pitch mode by their difference.

However the above equations are only valid when the stiffness constants and the
damping coefficients at both primary suspensions are the same, which is the case in
most vehicles under normal circumstances. For a more general case where the two
suspensions may not necessarily have the same values, equations (2.3) and (2.4) may
be derived. They show potential interactions between the bounce and pitch motions
when the suspension parameters are different, as the pitch movement may affect the

bounce mode and vice versa.

'nbgb +(Cpl "’sz)'z.b +(Kpl +Kp2)'zb +be '(Cpl —sz)'¢2b +lf7x '(Kpl "sz)'¢b

=Cpl A +Kpl 2y +sz "2, +Kp2 Z,+F; (2.3)
Ibé +lbx2(Cpl +Cp2) .¢2b+l‘b“'2(Kpl +Kp2) ) % +lbx . (Cpl ‘sz) ) z.b +be ‘ (Kpl —KpZ) 'Zb
=LGy 2+ LK, 2, -G 2y~ LKy 2, 4

where

Cp1, Cp2 - damping coefficients of (front and rear) primary suspensions

K1, K, - stiffness constants of (front and rear) primary suspensions

A further analysis of the proposed fault detection scheme will be presented with

respect to this side view model in Chapter 3.

2.4 Side/End View Model of a Vehicle

A more comprehensive model of a complete vehicle is used for the performance

evaluation of the proposed fault detection technique.
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A schematic diagram of a conventional railway bogie vehicle is shown in Figure 2.6,
where the configuration and main components have been previously introduced in
this chapter. The model consists of four wheelsets, two bogies (named leading and
trailing bogies on front and rear sides) and a carbody frame interconnected by
primary and secondary suspension systems. The main external excitations are track
geometries (deterministic inputs) and irregularities (random track inputs) transmitted
to the vehicle through the wheels, but attenuated through the use of the two layers of
suspensions. In railway vehicle design, same suspension components are normally
used at the four corners of each primary suspension and therefore the bogie
configurations are mostly symmetrical. The primary suspensions are mainly used to
control the running behaviour and stabilise the vehicle at high speeds and on curves,
whereas the secondary suspensions are designed to maintain ride height and ensure
reasonable ride comfort for passengers. Same air springs tend to be used for the
secondary suspensions on both sides (referred to as left and right sides) of each of

the two bogies.

T T ’ Cre
K3 lCn K ’ Cr
) ()

ZoZay ZuZ

Figure 2.6 A comprehensive side and back view of a conventional bogie vehicle
in vertical dynamics
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The railway vehicle has several motions in different directions such as longitudinal,
vertical, lateral and yaw. The corresponding suspension components in these
directions may be different due to different vehicle ride requirements. Of all the
directional motions, the vertical movement of the wheelsets is often directly
constrained to the track surface. In this thesis, the FDI problem of the vertical
primary suspensions is studied to demonstrate the principle and effectiveness of the
proposed methods; however the techniques may be extended for the condition
monitoring of suspensions in other directions or positions [43] [63]. According to
the carbody and two bogies in Figure 2.6, only motions directly related to the vertical
suspensions are modelled, including the bounce, pitch and roll movements of the

carbody and those of the two bogie frames resulting in a 9 DoFs model.

On the side and back view of the conventional bogie vehicle shown in Figure 2.6,
each bogie mass m, is connected between the two layers of suspensions and it is
supported by four springs and four dampers. The carbody mass m, is mainly
supported by two pairs of air springs in the secondary suspensions in the z direction.
For a stationary vehicle system straddled over the rails, the weight of bogie mass m;
or carbody m, is preloaded by the springs, and therefore its gravity is excluded from

the following modelling process.

Using Newton’s second law applied to the vertical motion, the equations of the

bounce motion of the vertical vehicle system can be written as
ma;=F; (2.5)

where, m is the mass of the car body or bogie, and a, and F, denote the acceleration

and force res;iectively in the z direction.

Also, equations of motion in the pitch and roll directions can be expressed as

AF, - L,
AF,-L, @6)

{Ix-da),/dt
I,-do,/dt

LEEDS UNIVERSITY LIBRARY
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where I, I, are the moments of inertia in the pitch and roll directions of the bogie or
carbody, w,, w, are their angular velocities, 4F;, 4F, are their force vectors acting on
one point, and Ly, L, are their vectors of position which point from points relative to

the rotational axis, all along the pitch and roll direction respectively.

As the acceleration a; can be described as the second derivative of the displacement
z of the corresponding bogies or carbody in the bounce direction, the force equation

(2.5) can be given as
m-Z=F, 2.7

Also, the angular velocities ;, @, are the derivative of the corresponding pitch angle
¢ and roll angle y respectively. The derivatives of the angular velocities wy, ®,
fepresenting the accelerations of the pitch and roll rotation angles, dw,/dr and dew,/dr
can be substituted by &’@/dr and d’y/dt respectively. Thus the torque expression in

equation (2.6) can be given as

{1, ‘§ =AF, L,
I,y =AF, - L, (2.8)

To consider that the vehicle operates along the rails, the track inputs z, and 2, provide
the external vertical stiffness force and damping force respectively through the
excitations by springs and dampers in the primary suspension. These forces are
attenuated through the primary suspensions and then regarded as the inputs to the
secondary suspensions which maintain the motions of carbody. The supporting force
applied by the secondary suspensions to the carbody simultaneously reacts back to
the bogies; this retrieved force has the same magnitude as the supporting force but
acts downwards. Therefore the overall forces related to every bogie include the
interactive parts from both primary and secondary suspension systems. The
magnitude of each of the forces is determined by the added multiplication of

stiffness rate with their relative displacement, and the damping coefficient with their
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relative velocity. These relative displacements and velocities are derived from the
relative movement of each wheel, bogie and carbody. Those are not only defined by
the inputs from the railway tracks, but also the performance of the mass-spring-

damper systems.

The bounce movement of the leading bogie is therefore written as

mb'z-bl =Fpﬂ +prr +Fpr1 +Fprr +Esl +Esr (29)

where Fpp, Fppe, Fpri and Fp,, are forces from the primary suspension system at the
front left, front right, rear left and rear right corners respectively; Fy and F;, are
forces from the secondary suspension system on the left and right sides (directions

are denoted in Figure 2.6).
Fu=Cp (Zy =2y =Lyt L)+ K (2 = 2 = Ly —Loyys)) - (2.10)

F=Cpp (20, — 2y ‘be¢'b1 + L)+ Kep (24, — 24y — L8 +Lyy)  (2.11)

F,, =Cy (2 2y + L8, =L, )+ Kp (z5 — 2y + Loy — Ly, (2.12)
F,, =Cp '.(z.:zr ~Zy+ thdn + L W)+ Keg (25, — 2, + Ly + Lyy) (2.13)

Fy=-K,-(zy+ Ly, — 2,y — Lyyfu -L,W.)
-C, (2, + Lbyl/}bl ~Z)—K, (2, + Loy —za) (2.14)

Fo==K, (2 = LyWy =24 — Ly By + Lyy¥sa)
- C, * (z‘,,, - Lhy(/}bl - z.dlr) - Kr ' (Zbl - Lbbel - Zdlr) (2‘15)

In equations (2.10) - (2.15), Crz, Crr, Crr and Cgg are the dampings of the hydraulic
dampers in the primary suspension system of the leading/trailing bogies, mounted at
the front left, front right, rear left and rear right corners respectively. These dampers

are the objects which will be studied later as the main subject of fault detection. In
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the conventional bogie vehicle design, they are normally identical with the same
damping coefficients. Krz, Krr, Kz and Kgrg are the springs with the same stiffness
rates, parallel with corresponding Crr, Crr, Crr and Cggp dampings at the four
suspension corners. At the same four corners and in the same order, z,;, zy,, z;z and
zyor represent the track inputs of the leading bogie in displacement, and 2y, 2y, 22

and 2,5, are their derivative track inputs in velocity.

Also, zp, ¢»; and y;; represent the bounce, pitch and roll movements respectively for
the leading bégie, Zpd, Ppa and Wy stand for the corresponding bounce, pitch and roll
movements for the carbody. L, and L, represent the half length of each bogie in the
x and y directions, and Lss and Ly, also denote the half lengths of the carbody in

their corresponding directions.

In equations (2.14) and (2.15), z4;; and 24, represent the vertical displacements of the
mid-point mass mm for the air springs assembled with the leading bogie. Figure 2.7
shows the arrangement of the alternative airspring model. Compared with the
previous equivalent mathematical model of the airspring shown in Figure 2.4, the
introduction of the mid-point mass m,, makes the force analysis in the secondary
suspension systems easier, as it has very little effect on the dynamic performance.
Therefore, this alternative airspring model shown in Figure 2.7 is applied in the

following analysis and simulation.
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Figure 2.7 Air spring mathematical model with mid-point mass

In this thesis, attention is focused on the possible failure of the dampers, although
the principle may be applied to the other components. Hence the springs in the

primary suspension system can be assumed to have the same spring rate K, for

simplicity.
Kp =K =Kp =Kpp =K | (2.16)

Substituting equations (2.10) - (2.16) into equation (2.9), forms the force equation

for the leading bogie.

Bounce equation for leading bogie

Mz, +(Cpy +Cp +Cy +Cp)z,, +4szbl
==L, (CFL +CFR _CRL —CRR)¢bI —Lby(CFL "CFR +CRL —CRR)(/./bl

+(Crzy +szrll)+(CFR211r +K,2,, )+(Cp 2,y +szry)+(CRR2

2.17)
+K z, )+ZF

2r pnr

where ZF) is the sum of the secondary force acted to the leading bogie
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LF=Fy + Fg
=-2C,z,, -2(K,+K,)z,, + 2K z,, + 2K L, ¢,
+(C,z,, + K,2,,)+(C,2,, +K,z,,)

(2.18)

Similar to the bounce equation of the leading bogie, equation (2.6) represents the
relationships between the moment of inertia and the torques in the pitch and roll

directions. It can be expanded and simplified as follows:

Pitch equation for leading bogie (rotation in x direction),

Ly + Li(Cp + Crp + Cy + Cia)dy + 41K 8,
==L, (Cp +Cprr = Cp, = Cprp)2zy + L, (Cp 2, + szm)
+ L, (Cppz,, + szllr) =L, (Cpzy + szm) =L, (Cre2,y, + szm)

(2.19)

and roll equation for leading bogie (rotation in y direction),

I byl/./.bl + Liy(CFL + CFR +Cp + CRR)‘/./bl + 4Lipr‘//bl
=-1, (Cr—Crr+Cp —Crp)zy + L, (Cp 2, + K pztll) (2.20)
- Lby (CFRz.llr + szllr) + Lhy (CRLEIZI + KPZIZI) - Lby (CRRZ.IZr + szIZr) + LbyAF;

where I, and I, are the moments of the bogie inertia along the pitch and roll
directions. 4F] is the difference between the secondary forces acting on the leading

bogie on the left and right sides

AF, =Fy — Fg
= —2L,,yC,!,/),,l -2L, (K, + Ky, + 2L Ky,
+(C,z, + K,2y,) = (C2,, + K,z;z)

.21)

Using a similar analysis approach, the force and torque equations for the trailing

bogie are summarised as:

Bounce movement for trailing bogie,
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M,z +(Cpy +Cpp +Cpr, +Ci)zy, +4K 2y,
= —be (CFL +CFR —CRL _CRR)(I"bz "Lby (CFL —CFR +CRL _CRR)U.II:Z
+(CFL2131 +K zl3l)+(CF .13r +szl3r)+(CRL214/ +K Z )+(CRR214r +K Z )+Z‘f‘2

4 p<1al piar

(2.22)

Pitch movement for trailing bogie,

beé"bz + Lix (Cr+Cipr+Cp +Cie )¢b2 + 4Lipr¢b2
==L, (Cpy +Crg =Cp = Crg)zyy + L (Cpp 2,5 + szzsl)
+ L, (Crzp + szISr)— L, (Cpz,y + szMI) =L, (Crezyy, + szm)

(2.23)

and roll movement for trailing bogie,

LW + Liy (Cr +Cp +Cp + Conl¥p + 4LiyK Y2

y P

= "Lby (CFL - Cm + CRL - CRR)ébZ + Lby (CFLé wt K P2 )
- Lby(CFRz.Br +K,2,,)+ L, (Cpzy +K,2,4)— L, (Cp Zar + K, 2,4, )+ L, AF,

p<i3r

(2.24)

where zs2, #»2 and 2 represent the bounce, pitch and roll movements respectively

for the trailing bogie.

In equations (2.22) - (2.24), zs31, Zi3r, Zwr and z,, represent the track inputs of the
trailing bogie in displacement, and Z3i, Z3, Zss and Z,, are their derivative track

inputs in velocity.

ZF; is the sum of the secondary force acting on the trailing bogie

ZFZ‘ =—2C'rz.b2 -_Z(Ka +K')Zb2 + ZI(azbd —ZKal'b:l.\¢bd
+Cin +K20)+ Chy +K 2) 225)

A4F, is the difference between the secondary forces acting on the trailing bogie on the

left and right sides

AF, =-2L, C,ys,, —2L, (K, + K, ), +2L Ky,
H(C 2 +K,240) = (Co2 i + K, 2,p) (2.26)
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The carbody also has 3 DoFs of bounce, pitch and roll movements in the vertical

direction, which are expressed below:

Carbody bounce movement

myz, + 4K, +K))z,,
=2K,z, +2K,z,, +Kz,, +Kz,, +Kz, +Kz,, (2.27)

Carbody pitch movement

Ludha + 40, (K, +K ),
=2L,,K,z,-2L,,K,z,, +L,, Kz, + L, K.z, —L,, K2, —L,, K 2,5, (2.28)

Carbody roll movement

] bdyl;,bd +4[’§dy(Ka +K.\' )Wbd

=2LMyLbyKaWbl +2LbdyLbyKa‘//b2 +Lwstzdu _LvstZd]r +L‘,,KSZ‘,2, -L\’Ksz . (2.29)

where z4 and z,, are the vertical displacements of the mid-point mass m,, for the air

springs connected within the carbody and trailing bogie.

The equations for the mid-point masses of the air springs are given as:

mmEdlI + Crédll + (K: + Kr )zdll
=(C,z, +K,z,) +(L,,Cy,, +L, Ky, )+Kz,+L,,Ké,+L, Ky, (2.30)

mmédlr + Crédlr + (K_\- +K’ )zd|,.
= (Crz.bl +Krzbl) —(Lhycrl/./bl +LbyKr‘//b]) +Kszbd +Lbd\,Ks¢bd _Lb Wea (2.31)

mz.,+C.2+(K, +K,)z,,
=(C.2,, +K,2,,) +(L,,C¥, + L Ky, )+ K 2, — L, K s + L KW, (2.32)

M,z + C,z,, +(K, +K)z,,
=(C2,+K.2,)- (Lbycr'/./bZ +L, Ky,)+Kz,,-L, Kb, ~ L, KW, (233)



-45 -

Since the modelling of the conventional bogie vehicle in the vertical direction is of
main interest, the longitudinal, lateral and yaw movements are not modelled above.
The vertical vehicle model contains 13 DoFs in overall, i.e., bounce, pitch and roll
modes for each bogie and the carbody, and a bounce mode for every air spring
(defined in equations (2.17) - (2.33)). The mathematical model is therefore 26"

order.

2.5 Modal Analysis

Railway vehicle models are highly complex and of high order, even when a limited
number of motions considered as in this study. It is therefore essential to ensure that

correct and accurate models are used.

Modal analysis provides a powerful means to validate the models. The equations of

the motions can be organised in a state-space form:
X=Ayex+ Bu (2.34)

where x and u are state variables and track input vectors respectively. A more

detailed explanation of the variables in equation (2.34) is provided in Appendix A.

The state space equation (2.34) represents a linearised conventional bogie vehicle
model with 13 DoFs in the vertical direction. The state variable x represents the
bounce, pitch and roll motions of the carbody, bogies plus the additional mid-point
mass of the air springs. All variables in the system matrix A5 and input matrix B4
are related to the characteristics of the vehicle system and the parameters of the two-
layer suspension systems. The system response is also defined by the input vector u
which is comprised of the random irregular vertical track inputs (as only the vertical
motions of the vehicle system is emphasized in this thesis), although in the normal

case railway track inputs may have two types of input, one being the deterministic
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input (e.g. gradient) and the other the random input due to irregularities [38]. A more
detailed property of the random track input in the vertical direction will be

introduced in the next section.

The parameters of the conventional bogie vehicle model, which are taken from a

typical passenger train, are given in Table 2.1.

Table 2.1 Relevant parameters of the conventional bogie vehicle model

Variables Definitions and values

Cri, Crr, Cri, Crr | Damping of hydraulic dampers in bogies (17900Ns/m)
C, Damping for every airspring (30kNs/m)

Loax Carbody pitch inertia (2310000kgm?)

Lray Carbody roll inertia (14400kgm’)

Ipy Leading or trailing bogie pitch inertia (2000kgm?)

Iy, Leading or trailing bogie roll inertia (720kgm?)

Lpax Half length of carbody in pitch motion (9.5m)

Lyay Half length of carbody in roll motion (0.75m)

Ly: Half length of every bogie in pitch motion (1.25m)

Lsy Half length of every bogie in roll motion (0.75m)

K, Change of air stiffness for every airspring (1N/m)

K, Spring stiffness for leading or trailing bogie (2500kN/m)
K, Reservoir stiffness for every airspring (254kN/m)

K Airspring stiffness (5084N/m)

my Mass of leading or trailing bogie (2500kg)

Mpd Mass of the carbody (38000kg)

My Mid-point mass of every airspring (5kg)

Using MATLAB, the cigenvalues of the carbody and the two bogies can be

calculated and are shown in Table 2.2.
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Table 2.2 Eigenvalues for vertical vehicle model

Frequency (Hz) Damping
Bounce 0.68 0.16
Carbody mode Pitch 0.84 0.19
Roll 0.84 0.19
Bogie mode Bounce 10.57 0.23
) Pitch 14.07 0.32
(leading)
Roll 14.79 0.31
Bogie mode Bounce 10.57 0.23
Pitch 14.07 0.32
(trailing)
Roll 14.79 0.31

The eigenvalues given in the first three rows of Table 2.2 indicate that the carbody
bounce, pitch and roll motions are of low frequencies (<1Hz), which is necessary to
ensure comfort for the passengers. The last six rows, from fourth to ninth, represent
the frequency mode for the leading and trailing bogies. The leading and trailing
bogies have the same structures and identical components; they also have the same
natural frequencies and damping ratios. It is clearly evident that after the filtering
effect from the primary suspension systems, the dynamic frequency modes of
bounce, pitch and roll for either bogie still have higher frequency vibrations (>10Hz)
compared with the corresponding eigenvalues for the carbody. The damping ratio for

the vertical motions of the carbody and two bogies are around 0.2.

For passenger railway vehicle with conventional bogie, the bogie bounce frequency
between 10-20 Hz is generally accepted, for the carbody it is around 1Hz, and the
effective damping ratio of the vertical vibration is usually located within the range of
0.1-0.3 [50]. Compared with these criteria, the side and end view of the model can
be validated and thus accepted for further simulation assessments. The eigenvalues

in the vertical direction are also independent of the vehicle operating speed, as

expected.
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2.6 The Properties of Vertical Track Inputs and Modelling

As only the vertical and related motions of the vehicle are considered in the study,
only track irregularities in the vertical direction are included. Track geometries such
as gradients are design features and tend to affect vehicle dynamics at low
frequencies. Whilst it would not be a problem to include gradients in the
simulations, they are not expected to affect the effectiveness of the proposed

methods or to alter the conclusions of the study.

The rail track provides a displacement and its derivatives to each of the wheels of the
railway vehicle. As a result of track misalignment, the track inputs are irregular.
Some work has been done in modelling the track profile, using a stationary Gaussian

stochastic process [50] [64].

Based on previous studies and experimental results in the track irregularities, some

assumptions are made in the study:

(1) All track irregularities are considered as stationary random processes with zero
mean;
(2) The probability density of the track irregularities is thought of as Gaussian;

(3) The cross-correlation between any two of the irregularities is zero [65] [66] [67].

To realise the stationary Gaussian random process of the track irregularity, the wave
number Q (rad/m) is introduced, which indicates the rate of cycle change with
respect to the distance. For a train travelling along the track at a velocity V, it can be

substituted by the angular frequency w follows that
w=VQ (2.35)

The relationship of the Power Spectral Density (PSD) between the wave number Q

and angular frequency @ can be expressed as
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S«D=%S@) (2.36)

According to [67] the PSD of the vertical track irregularity can be modelled as

follows

274,Q°2

Sv(Q)=QZ(QZ+Q':’) (2.37)

where A4, is the roughness factor in the vertical direction, £, is the rail critical wave

number above which the track input is negligible.

In many studies, a commonly employed form
|

S,(Q) = Q—’; (2.38)

is often applied to replace the PSD in equation (2.37) in order to get a simplified and

appropriate vertical track inputs.

To reflect the rounding off effect at high frequencies in equation (2.37), an
additional low pass filter is also used to give a more realistic generation of the power

spectrum [61] [64] [67] [68].

1 ztdo}_con.mat

: 1
*sqri2*An*Vs -
‘lﬂ.l_lhr pitsqri(2 ) —~ 3 . b—Pi  zt_con.mat
— 2nd-Order
Band-Limited Low Pass Filter Integrator
White Noise Gain

Figure 2.8 Vertical track irregularity generation scheme

As shown in Figure 2.8, the time series vertical track input is obtained from a Band-

Limited White Noise block with a selected random seed. The magnitude of the track
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input is dependent on the railway vehicle speed V, and a low pass filter with cut-off
frequency of 80Hz is added in the loop in order to reduce the high frequency content
above the critical wave number £, and to reflect the general track irregularities which

have high order in the denominator.

Figure 2.9 shows the vertical displacement of the track input obtained from the
simulated data in Figure 2.8, and Figure 2.10 indicates its first-order derivative at the

vehicle speed of 50m/s.
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Figure 2.9 Vertical track input in displacement
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Figure 2.10 Vertical track input in velocity

-60
! :

-70f .
N
E -
[4a)
T -80r -
()
: 1 .
£ o0} 80 4
w Hz i
(@)
n
a - 4

f 10

Frequency (Hz) i

Figure 2.11 PSD of vertical track input in displacement (Vs=50m/s)

Figure 2.11 shows the PSD of the simulated vertical track input obtained from Figure

2.9. The PSD value is much richer at long wavelength (low frequency), with a
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tendency to decline towards short wavelength (high frequency). There is a high rate
of decrease around 80Hz, which denotes the steep drop near the critical wave
number Qc. Compared with the experimentally measured track data with resonance
falls in the frequency range 30 to 100Hz, the simulated track data of the vertical
track input in displacement and the derivatives shows they are reasonably close [68].
Simulated data tends to provide a richer and more evenly distributed power spectrum

which is useful in ensuring that the study covers a wide range of frequencies [38].

2.7 The Motion of the Vehicle under Random Irregular Excitations

The time series vertical track inputs obtained from the Matlab/Simulink environment
are used to simulate the railway vehicle response in the vertical direction. The
operating speed of 50m/s (180km/h) for the vehicle is chosen. The typical

parameters of the vehicle system used in the simulation are shown in Table 2.1.

Two random inputs that conform to the PSD distribution are used in the simulations
for the left and right sides of the track, where the difference between the inputs is
typically 10% (also in a random manner). The inputs to all the wheelsets are the
same, but there are time delays betwéen them, which are determined by 1=2"L/V;
between the leading and trailing wheelsets of each bogie and t=2+(L;-L;,)/V; between
the trailing wheelset of the leading bogie and leading wheelset of the trailing bogie,

where Ly is the half distance between the centre positions of the two bogies.

The vehicle system is first considered to be operating under the normal conditions.
The springs and dampers in the primary suspensions are considered as linear
components, together with a linearised air spring model used to simulate the
secondary suspensions in the vertical direction. Because it is assumed that there are
no faults in the springs and dampers in the suspensions, their corresponding

parameters are identical and the vehicle structure is symmetrical.
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Figure 2.12 The bounce acceleration of leading bogie
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Figure 2.14 The roll acceleration of leading bogie

Figures 2.12 to Figure 2.14 show the bounce, pitch and roll motions of the leading
bogie in the vertical direction respectively. They are all random in nature because the
excitations from the track are irregular. Given the typical values of the parameters of
the conventional bogie vehicle, the amplitudes of the bounce, pitch and roll
accelerations are related to the level of the track inputs. Figures 2.13 and 2.14 both
show the angular accelerations for the pitch and roll motions separately. It can be
seen that the pitch acceleration is nearly 10 times greater then the roll acceleration.
This is because the track input irregularity in the simulation is about 10 times the
difference in irregularity between the two rails, which results in much smaller roll

acceleration compared to the pitch acceleration.
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Figure 2.15 The bounce displacement of leading bogie

The simulation result for the bounce displacement of the leading bogie is shown in
Figure 2.15. It is found that the bounce displacement is very similar to the vertical
displacement track input shown in Figure 2.9 at low frequencies. The good match of
the vertical movement of the bogie shows that the bogie follows the slow changes of
the rail track. The difference between them is that the bounce displacement of the
bogie is smoother than that of the vertical displacement track input. This difference is
mostly due to the fact that the primary suspension system has a filtering effect which

can filter out the higher frequency components of the track input.

For the trailing bogie, similar responses can be observed as those of the leading

bogie.
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Figure 2.16 The bounce acceleration of the carbody

Figure 2.16 shows the bounce acceleration of the carbody at the mass centre. It is
apparent that the random distribution of the carbody bounce acceleration is mainly
due to the combination of the bounce motions of the leading and trailing bogies. Its
magnitude (0.2m/s’ in RMS) is much smaller than the bounce acceleration of the
leading bogie shown in Figure 2.12 (10m/s” in RMS). Its waveform is also much
smoother than the bogie bounce acceleration. Both effects are of course due to the

filtering function of the secondary suspensions (i.e., the air springs).

It is also observed that the range of the bounce acceleration of the carbody is
considerably smaller and smoother, which indicates that the height of the carbody
changes very little in response to the excitation from the track input even if the train
is running at high speeds. On the other hand, as the secondary suspension system
works effectively in the very low frequency range; other vibrational effects in the high
frequency range can be negligible. This property is very helpful in simplifying the

following FDI problem, because the forces from the secondary suspensions are
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filtered out at around 1Hz, and hence can be omitted in the following analysis for

simplicity.

2.8 Summary

This chapter gave the mathematical models of the conventional bogie vehicle,
followed i)y the modal analysis and vehicle dynamics study in the vertical direction
with random track irregularities. It revealed a close relationship between the vertical
dynamics and the design of railway suspension component. It is obvious that the
vibration appears by the excitation of random irregularities in both suspensions, and
the main frequencies of their vibrations are detérmined by the characteristics of the

suspension systems.

By monitoring the vibrational information of the selected suspension, the faulty

condition can be possibly indicated.
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Chapter 3

Fault Detection Scheme Based on Changes in Dynamic Interactions

3.1 Introduction

In the development of a novel FDI scheme in railway vehicles, it is essential to
understand the construction and configuration of the vehicle system. Their dynamic
interactions also need to be understood clearly [69] [70]. In chapter 2, the
fundamental structure and principal components of a conventional bogie vehicle are
introduced and the side view model for a simple bogie has been developed for the
FDI scheme analysis. With the aid of this model, this chapter presents the basic
concepts of the proposed technique for the fault detection of vehicle suspensions,
explained by examining the consequences of a component fault in terms of

additional dynamic interactions.

This novel approach is simple but very effective for the FDI problem for railway
vehicle suspensions, and it requires much less prior knowledge of the railway
vehicle systems concerned in the study. There is no need for additional complex
modelling and detailed knowledge of external conditions such as track irregularities.
It also offers potential benefits of robustness against nonlinearities and uncertainties

as well as that of easy tuning.

3.2 Fault Detection Concept from a Simple Railway Bogie

In this study, the FDI scheme focusing on damper failure in the primary suspension
systems is developed. To clarify and simplify the basic concept, the side view bogie

model in the vertical direction is used in the analysis, as shown in Figure 2.5. As
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noted previously, the components used in the same railway vehicle suspension (i.e.
springs and dampers) are largely identical. The proposed FDI technique is based on

system dynamic interaction changes caused by component faults.

3.2.1 Analysis of Dynamic Interaction

The dynamic interactions caused by possible component faults have been illustrated
using the equations of motions in the form of bounce and pitch movements of the
simple bogie model as given in equations (2.3) and (2.4). By introducing the sum
and difference of their corresponding damping coefficients and stiffnesses, they can

be modified to give equations (3.1) and (3.2).

mz, +C,z2,+K, 2, +1,C, ¢ +L K pd¢b

1 . . (3.1)
=E[Cps(zll +2,)+ K, (2, +2,)+C, (2, —2,)+ K (2, _th)]"' F,
1 b&b +be2pr§51,+be2 K, 8 +L,C.2,+L,K,z,
L (.2)

; [Cm(z'” -Z,) +K,»-(Zn —ZIZ)+de(Z.II +Z.IZ)+Kpd(zll +z,2)]

where
Cps=Cpi+Cp2
Cpa=Cp1-Cp2
Kps=Kp1+Kp?
Kpa=Kpi1-Kp2

When the bogie is operating under the normal condition (K,;=K,s C,i=Cp2),
equations (3.i) and (3.2) may be simplified to equations (3.3) and (3.4), which
indicate clearly that the bounce and pitch movements of the bogie are independent

and that there is no direct dynamic coupling between these two motions. The force
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F; from the secondary suspension only affects the bounce motion but not the pitch

motion.

. . 1 R |
mz,+C.2,+K z, =§ Cps(z,, +z,2)+—2-Kps(z,, +z,2)+(E,) (3.3)

“ ; 1 . .y, ]
Ih +L G 4L Ko = LGl = 20) +5 LK =20) (34)

However, when one of the faults occurs, the two suspensions become different and
the structure of the suspension becomes asymmetrical. The imbalance between the
suspensions cause interactions between the bounce and pitch motions in two ways.
Dynamically, equations (3.1) and (3.2) are no longer independent as two pitch terms
appear in the bounce equation and two bounce terms in the pitch equation.
Externally, the bounce motion is now also affected by the difference between the
track inputs at the front and rear suspensions which predominantly excites the pitch
motion. The pitch movement is also affected by the sum of these two input signals
which predominantly excites the bounce motion. The interaction between the two
motions introduces an additional correlation between the different dynamic modes.
The correlation will change with different types of suspension component faults (i.e.
by not only the extent of the imbalance, but also the location of the failure), which
will be used to detect how much unbalance (i.e. due to component fault) may exist in

the system, and to isolate the fault.

In practice, the bounce and pitch accelerations may be readily obtained through the
use of inertial sensors mounted on the bogie frame [18] [19]. The two accelerations
may be expressed in the form of transfer functions in equations (3.5) and (3.6)
replacing the general equations (3.1) and (3.2). It cab be seen that, in bounce
equation (3.5), the 3" and 4™ terms are introduced due to the imbalance caused by a
component failure, which represent a response change to the track inputs at the

leading and trailing wheelsets respectively. The 5™ term is represented as the
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additional interaction stimulated by the pitch motion, and finally the 6™ term is
related to the secondary suspension force Fyu(s). In pitch equation (3.6), the
imbalance also presents a response change to the leading and trailing wheelset track
inputs shown in the 3" and 4™ terms, and the 5™ term indicates the extra interaction
which results from the bounce motion. The secondary suspension force Fy(s) clearly

has no effect on the pitch motion.

| C,s+K, C,s+K,
z”(s)'z mys® +C,s+ K, Za(s)* 2 mys* +C, s+K £0(9)
1 Cus+K,, des+K
+—.
2 ms2+C S+K, Za(s) - 2 m, s +C,s+K, Za(s) 3.5)
LX(C s+K_) 2
e NO R Fy(s)
m,,s +Cp,s+K mys*+C, s+ K,
Cs+K Cs+K,
AO=F e e MO T £,
2 LS+LCs+LK, 2 ]s2+l1,,C +2LK
Cs+K., Cs+K,,
. 5.6 ol o 20 69
"2 I9+L] Cs+LK 2 Is+L/C,s+2L K,
L(Cs+K,) .
pt pd (S)

bs +lbx C S+2be Kpm

The modal decomposition process can be applied by substituting equation (3.6) into
equation (3.5) to remove the pitch acceleration from the bounce equation, and
substituting equation (3.5) into equation (3.6) to remove the bounce acceleration

from the pitch equation, which leads to equations (3.7) and (3.8) respectively:

'z',,(s)—— Gy(5)-[Gi(9)2,(5)+ G ()5, ()] + — )F<s) G.7)
_ br L, B,(s)s 2
36 =5 o) [Gu 692, = Gale2a )] -2 09 6w

where
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G5 = A (D4,(5)
A‘.(S)A‘(S)—be Bd(s)
6 (9 2o st Kn) (| LB,
T A(s) 4,(5)
o (s)_z( ps+Kp) (1 1B,Gs)
BT 4,0) A,(5)
2(c, -s+K,,
Gl =0
¢
_2(C,,2 s+K,, B (s)
Gy,(s)= y, ( ) A (s)]:|

A.(s) = m,s? +C s+ K,
A()=1,s"+L,C, s+ LK,
B,(s)=C,s+ K,
B,(s)=C_s+K,,

Equations (3.7) and (3.8) can be further simplified to equations (3.9) and (3.10) by
neglecting the term relating to the secondary suspension force Fy(s), which has much

smaller effects compared to that of the track inputs (due to the filtering effect).

5,(s) = % .Gy(9)-[Gpy ()%, (5)+ Goa (9)3,0(5)] (3.9)

(Zb (5)= Lzhx -G, (S)'[Gzn (5)Z,,(s) —Gp(s)Z,, (S)] (3.10)
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Equations (3.9) and (3.10) show clearly that the bounce and pitch motions of the
railway bogie can be largely decoupled in the balanced condition, i.e. By(s)=0. Their

simplest transfer function forms can therefore be expressed in equations (3.11) and

(3.12).
() = %-[Gz(s)'z'”(s)+ G, (s)%,,(s)] (3.11)
(5= 222 [6,(5)24(5) - Gy ()25 (5] a.1)
where
R e

B, (s)
G,(s)=—2
f A, (s)
The difference between the normal (equations 3.11 and 3.12) and faulty (equations

3.9 and 3.10) conditions will be further analysed in frequency domain.

3.2.2 Frequency Response Comparisons of the Analytical Models

By comparing the two sets of transfer functions between the normal and fault
conditions, it is obvious that the filtering effect of the primary suspensions on bogie
motions would be different in different cases. The gain of the common term Gy(s) is
very close to unity in the no fault case, but in a fault condition the response is
magnified in 'Fhe frequency region around the two bogie modes (by up to 66% if the
damping coefficient at the trailing damper becomes zero) as shown in Figure 3.1.
However, there is no noticeable change at the high or low frequency ranges and

therefore the overall effect of the term Gy(s) will be limited.



-64 -

Magnitude (dB)

Cp2=75%, M,=1.01

20 100
Frequency (rad/sec)

Figure 3.1 Bode plot of Gy(s)

Equations 3.9 - 3.12 also show how the bounce and pitch motions are excited by
track inputs at the leading and trailing wheelsets. Each of the two inputs influences
only one of the two terms in the dynamic equations through the corresponding
suspension. Therefore the changes due to a component failure in one suspension will
only be reflected in the corresponding part of the responses, while the effects to the
other part will be insignificant. As demonstrated in Figure 3.2 and Figure 3.3, a
reduction of the damping coefficient to half in the front suspension alters significantly
how the bogie bounce mode responds to the track input at the leading wheelset
(through G;), but has little effect on its response to the delayed track input at the
trailing wheelset (through G;>). On the other hand, a similar damper failure occurring
at the rear suspension affects the bogie bounce motion mainly through the track input
at the trailing wheelset (through G;;), but not at the leading wheelset (G;;). 1t is
notable that for either G;; or G;», the damping fault on the corresponding front or
rear suspension side will cause an increase in gain around the resonant frequency but

conversely a reduction across the wider range of the high frequency, which makes the
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overall magnitude in performance decrease. A similar trend may be observed for (7>,
and G, for the pitch motion. The sensitivity of detecting a suspension fault directly

from acceleration measurements is compromised by this ‘partial non response’ to

suspension changes.
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3.3 Fault Detection Scheme by Correlation Evaluation

In contrast with other methods presented in Chapter 1, the proposed new method
attempts to overcome the problem of insensitivity to component faults by detecting
changes in dynamic correlations between the bounce and pitch (and between bounce
and roll, pitch and roll when the roll motion is also considered) accelerations which

can be readily achieved using cross correlation calculations.

- Equation (3.13) shows the Cross Correlation Function (CCF) between the bounce

and pitch accelerations.
N .. . .
Ry (m) = le,,(n+m)-¢b(n) (3.13)

where m/[-N, NJ is the number of the sampled time shift between the two signals. N
is the number of sampled data for the CCF calculation. For a fixed sampling interval
At (4t=0.001s in this thesis, with a fixed sampling rate of 1kHz), a time window T
which contains a period of sampled signal is required. In order to achieve consistent
results, the time window T=N-4t should be much greater than 4t in order to have
enough lagged products at the selected highest lag that a reasonable accurate result is

still obtained. The bounce signal Z,(n) is shifted by m with respect to the pitch

signal @, (n). The signals #,(n+m)and ¢, (n) are then multiplied together and the

sum of the product is determined. The process is repeated for other values of m until

the whole set of Rgp(m) is obtained.

Using the ‘de-coupled * forms of bounce and pitch acceleration in equations (3.9)
and (3.10), the CCF value Rgp(m) can be decomposed with respect to the
relationships from different combinations of track input multiplications, as shown in

equation (3.14).
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R(Z, (1), 8, () = =R(g,, (1), 22, (M) + R(g,, (1), g, ()

3.14
+ [R(gn (n), g, (’7))—, R(g12 (n), g,, (n))] ( )

where R(a, b) denotes a cross correlation operation of a and b, and g;;(n), g12(n),

g2:1(n) and g,;(n) represent the time domain representations of the relative terms in

equations (3.9) and (3.10).

When a vehicle travels on a track, the track input profiles at the two wheelsets are
exactly same and the only difference between them is the time delay which is
determined by the vehicle speed and the length between the two wheelsets. g;; and

g22 are the responses to the track inputs Z,and Z,, respectively and hence the first

term on the right hand side of equation (3.14) should give a peak negative cross

correlation at the negative time shift (negative cross correlation is due to ‘- sign’ of

the CCF, negative time shift is because the track input Z,, is left shifted to track

input Z, ). Similarly, g;> and gz; are excited by the track inputs Z,, and Z,
respectively and their cross correlation in the second term on the right hand side of
equation (3.14) has a positive peak at the positive time shift. However, the cross

correlations at Os time shift result from the combined effect of (g,;, g2;) and (g;2

g22); g11 and g2 are caused by the same track input Z,, g, and 222 are also excited

by the same track input but this time the track input Z,,. In the no fault condition,

the two separate cross correlation functions contribute the same cross correlation in
magnitude but act oppositely to cancel each other; therefore the third term in the
square bracket should give an overall zero correlation at Os time shift. The
cancellation of cross correlation values at Os time shift is helpful to understand the

minimum interaction effect of the suspensions when no fault has occurred.

In the no fault condition, the cross correlations of the bounce and pitch accelerations
are expected to be of largest magnitude at the positive and negative time shifts

(£Tshift), but minimal (or near zero) at Os time shift. Figure 3.4 illustrates expected
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scenarios for the CCF values between the bounce and pitch motions at these specific

time shifts.

Magnitude of CCF
A
Positive
Peak CCF
Negative
Time Shift
» Time
Positive
Time Shift
Negative
Peak CCF

Figure 3.4 Demonstration of cross correlation for bounce and pitch motions

Under the abnormal conditions, where one of the suspension components has failed,
the absolute value of cross correlations at the +Tg; may be reduced due to the
increased attenuation on the overall effect of the random track input in a wide range
of frequencies as illustrated in Figure 3.2 and Figure 3.3. However, the cross
correlations at Os time shift can be significantly changed (in the positive or negative
direction depending on the type and location of the fault) because the asymmetry
between the two suspensions removes the balance in the 3™ term of equation (3.14)

and hence cancellation is no longer possible.

The detection of suspension faults can therefore be achieved by monitoring cross
correlation changes at the three specific time shifts. Figure 3.5 represents the overall
scheme of the proposed fault detection and isolation approach using the basic bogie
motions in the vertical direction. The scheme also considers the roll motion of a

bogie, and therefore involves the cross correlations of any two motions of the bogie.
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Similar to the cross correlation between the bounce and pitch motions given in
equation (3.13), equations (3.15) and (3.16) give the other two cross correlations

between the bounce and roll, and pitch and roll motions respectively.

RBR(m)=g'Z'b(n+m)-v7b(n) (3.15)

R,, (m)= g&,,(mm)-w,,(n) (3.16)

where the definitions of m and N are as defined in equation (3.13).

Té perform the fault detection/isolation, the acceleration signals are assumed to be
measured using inertial sensors mounted on the bogie frame [19]. These
acceleartions are then processed to derive the changes in the level of interaction by
computing their cross correlations, and by taking into account the time shifts
between the track inputs. If a suspension component fault occurs, a distinct peak or
an obvious change of a peak may be found at the specific time shifts in the cross
correlation of any two selected signals. Using the predefined tuned thresholds, it
gives the faulty information that corresponds to different suspension changes. The
changes in the cross correlations are monitored and the fault is therefore detected.
On the other hand, the manner of the cross correlation changes differs with cross
correlation computations of different combinations of two motions, depending on
the locations of the faults. This property is very useful and makes the fault isolation

possible. More details will be presented later in the following chapters.
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Figure 3.5 Overall fault detection and isolation scheme

The implementation of the proposed cross correlation techniques is straightforward.
The measured acceleration signals from the sensors are directly sent to the selected
correlator, the measurement of vehicle speed is also used as an additional data input
to the computation process to determine the time delay between the two wheelsets.
The cross correlation of two signals is computed and the results at the specific time
shifts are selected according to the vehicle speed and wheel space. Their cross
correlations present the relationships of the two related measured signals, and their

changes in magnitude can be used as indicators of the suspension condition changes.

Rather than the use of the cross correlation magnitude, it is also useful to express the
cross correlation function in a normalised form, which has a scale of [-1, +1]. Using
the basic motions in the vertical direction, the corresponding normalised cross

correlations of the studied bogie are defined in equations (3.17) - (3.19).
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Ry (m)
Cr =
m ‘\/EBB 0)- R, (0) G.17)
Rz (m)
Cix =
" T ® 2a®) G189
R (m)
Cpr(m) = (3.19)

VR (0)- Ry (0)

where Cgp(m) is the normalised cross correlation between the bounce and pitch
modes, Cgr(m) and Cpr(m) are the normalised cross correlations between the bounce

and roll, and the pitch and roll motions respectively.

Rss(0), Rpp(0) and Rgp(0) are the values of auto correlation of the bounce, pitch and

roll motions at zero time delay, as defined as equations (3.20) - (3.22).

R, (0) = évh-,;..z.b(n)-'z'b(n) (3.20)
R, (0) = }iéfb(n)-é}(n) 3.21)
Ry (m) = "Zh:‘.l‘/'/.b(n)"/)‘b(n) (3.22)

The use of the normalised cross correlation offers a clear advantage in improving the
detection reliability in changing conditions. As the track input is irregular and not a
strictly stationary process in practice, the magnitude of the basic motions of the
bogie may be different at different track sections. The cross correlation computations
will therefore have certain unevenness even when the other operational conditions
are unchanged. More significantly, the level of vibration on the bogie is highly
dependent upon the travelling speed of the vehicle even when the track conditions
remain the same. The fault detection would have to use fault thresholds that are

tuned to speed as well as track conditions which can be very difficult in practice.
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Those uncertainties are readily removed by using normalised cross correlation (CCF
coefficient). As these CCF coefficients are generated from the CCF values by
normalising the cross-spectrum with the auto-spectrums, they are therefore much
less affected by changes in operational conditions. Due to the normalisation of the
CCF coefficient technique, the detection accuracy can be well improved, in the
aspects of either due to a vehicle travelling at different speeds and/or the difference

of rail track geometries.

3.4 Pre-filtering

Last section has illustrated the possibility to use correlation evaluation in detecting
suspension component faults. It is also studied from Figures 3.1 - 3.3 that the
frequency responses of the studied bogie mode have the largest magnitudes near
their natural frequencies. As the track irregularity used in this thesis has limited
frequency distribution around up to 80Hz, the performance of the correlation
evaluation will be easily affected by the resonance caused by the largest frequency
responses near the natural frequencies. This effect will be occurred in both the
normal and fault conditions, particularly in the fault condition where the resonance
becomes increased due to the reduced damping by the damper failures, which could
cause the associated oscillations in the cross correlation results and result in

difficulties in detecting changes at the specific time shifts.

To remove the problem, the measurement signals should be filtered before the cross
correlation computation is implemented. Band-stop filters are selected to remove the

frequency contents near the resonance [7] [61].

As shown in Figure 3.6, the measured accelerations are fed to a band-stop filter,
which is designed to suppress the content near the bogie natural frequencies. After
filtering, the required magnitude of the signals consisting of other frequency contents

can be obtained for the correlation evaluation.
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Figure 3.6 Band-stop filter mode for the acceleration measurements

The band-stop filter is designed as a second order filter which can effectively reduce
the magnitude within its bandwidth at twice the rate of the basic first order filter, i.e.

40 dB per decade, as expressed in equation (3.23).

s +2nlw, s+ 0} i<l
st +2fw,s+0? (3.23)

n

H(s)=

where w, is the notch frequency where the maximum attenuated frequency is
located, and { is the damping of the band-stop filter. By tuning the parameter 7, a

suitable band-stop filter for the conventional bogie system is selected and equalised

in (3.24).

52 +4.664s +4352

H(s)=—
s? +93.295+4352

(3.24)

The bode diagram of the selected band-stop filter is shown in Figure 3.7, where the

low cut-off frequency is set at 7Hz, and the high one is 20Hz.
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Figure 3.7 Bode diagram of the selected band-stop filter

To compare the difference of the cross correlation evaluation between the signals
without filtering and those using band-stop filters before their calculations, the CCF
values and coefficients between the bounce and pitch accelerations are computed.
This example is illustrated in the no fault condition and at the vehicle speed of 50m/s,
their simulation results are shown in Figure 3.8 and Figure 3.9, respectively. From
both Figure 3.8 and Figure 3.9, it is noticed that a sinusoidal component exists in
either the CCF value or coefficient computation when the band-stop filters are not
applied, which is mainly caused by the resonances near the bogie natural frequencies
as expected. However, the resonance of their corresponding CCF value or coefficient
is largely removed in the band-stop filter mode, which makes the interested peak

values more distinctively and easily identified.
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Figure 3.9 CCF coefficient for bounce and pitch accelerations (without and
with Band-stop filter, Vs=50m/s)

The band-stop filtering mode is beneficial to deal with the resonant fluctuations

during the correlation evaluations and give consistent clarified correlation results.

hence the sensitivity of the fault detection can be improved. Furthermore, the filter
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can be simply formed from a commonly used design and could be easily used in

practical applications. Therefore, the simulations in the following chapters will focus

on the band-stop filter mode.

3.5 Effect of Measurement Noise on Fault Detection

In practical situations, the accelerations are measured by inertial sensors and may be
corrupted by noises within the sensor frequency range due to inaccuracies and/or the
amplifiers immediately following the sensors. The proposed fault detection approach

can be shown very robust against the sensor noise as illustrated below.

3.5.1 Noise Effect on Cross Correlation Magnitude

If it is assumed that the bounce, pitch and roll accelerations are measured in the

presence of sensor background noise, then these measurements can be modelled as

in equations (3.25) - (3.27).

Z,(n)=s,(n)+n,(n) | (3.25)
8,(n) = 5,(n) +n,(n) (3.26)
W,(n)=s5,(n)+n.(n) (3.27)

where s4(n), sp(n) and s,(n) are assumed to be the ideal acceleration outputs. #,(n),
ny(n) and n.(n) are their corresponding measurement noises which are normally
uncorrelated with each other and with the ideal acceleration signals, as expressed in

equations (3.28) and (3.29).

R,, (m)=R, (m)=R, (m)~0 | (3.28)



-77 -

R, (m)=R,, (m)=R,, (m)=R,
= R,, (m)=R,, (m)=R,, (m)=0

ny (m) = Rs,np (m) = Rspnr (m)
(3.29)

Hence the effects of the uncorrelated sensor noise can be neglected from the
correlations between the measured accelerations. Equations (3.30) - (3.32) present

the approximation of the cross correlations of the measurements with and without

noise.

Ryp(m)= R, (m) (3.30)
Ry(my=R,, (m) (3.31)
Rpyp(m)=~ R, , (m) (3.32)

3.5.2 Noise Effect on Normalised Cross Correlation

The effect of the measurement noise cannot be directly removed for the CCF
coefficient computation, because the normalisation involves auto. correlation
processing between the noise signals which will result in non-zero auto-correlated
values at Os time shift. To illustrate this, equations (3.33) shows the relationship of

the normalised cross correlations between the bounce and pitch motions with

measurement noise.

Ry (m)
Ry;(0)- R,.,(0)
) R,, (m)+R,, (m)+R,, (m)+R,, (m)
"R O+, O+, 0+R,, OIR,, O+R , O+, 0K, O]

C,.(m)=
BP \/
(3.33)

As given in equations (3.28) and (3.29), the correlation of the noise signal with each

other and with the ideal acceleration signals tend to zero, Cgp(im) can be written as
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R, (m)

Cpp(m)=
VR, O +R,, (O][R,, (0)+R,, (0)]

(3.34)

To compare with its normalised cross correlation without measurement noise, the
theoretical normalised cross correlation prediction between the bounce and pitch

motions Cspsp(m) is defined in equation (3.35).

R, (m)
= NROTNO (3.35)

Csl,sp (m)

Dividing \/Rs,,s,, (0)-R, . (0) in the numerator and denominator of the right term of

equation (3.34), and substituting equation (3.35) into equation (3.34), Csp(m) is

given in equation (3.36) in the form of

C g (m) Cown, (1)
g (M —\/ X (0) X (0) (3.36)
[1+ =22 Z7.[1 + —2~2——]
R, (0) R, , (0)
Let
(02 =R, (0)
c? =R, (0)
1) " (3.37)
O, =Run (0)
o) =R,, (0)

2 . . .
where o , o7 , 0, and o, are the variances for the ideal bounce and pitch

accelerations, and their corresponding sensor noise signals respectively.

Substituting equation (3.37) into equation (3.36), it gives equation (3.38)
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Ci,s, (M)

Cop (m) = e (338)
O-n an
\/(l+—; )1+ =)
(e} (o}

Sy s

P

It is noticed although the CCF coefficient may be affected by the noise to signal ratio
(NSR), for the railway acceleration measurements which have relatively small
(typically 1~2%) sensor noises, the noise effect on the normalised cross correlation
is very trivial. For instance, the CCF coefficient only reduces 0.01% for NSR at 1%,
and decreases less than 0.07% for a NSR at 2.5%. Thus é similar relationship for the

normalised cross correlation (CCF coefficient) can also be expressed in equations

(3.39) - (3.41).

Cop(m)=C,,, (m) (3.39)
Cpr(m=C,,, (m) (3.40)
Cpr(m)=C, , (m) (3.41)

It is therefore clear that the sensor noises from the measurements have little effect on
the overall correlation results, this will be further verified in chapter 4 using both the

normal and fault conditions.

3.6 Running Detection Scheme

For an on-line detection, a running cross correlation calculation is more useful. The
running detection can be achieved by selecting an appropriate fixed moving time
window T, where a constant amount of acceleration measurements within the period
of the latest time window are stored and used for cross correlation calculations.
Given a chosen sampling rate 4t, the acceleration signals for the cross correlation

evaluation are measured and updated at each sampling.
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Equation (3.42) - (3.44) give the expressions of the running CCF coefficients
between the bounce and pitch, the bounce and roll, and the pitch and roll motions

respectively.

S5 (nem+k-Ar)- g, (n+k-AF)
Sop (k- Atym) =12 (3.42)

\/ﬁé,f(n+k-m)-ig}5,,2(n+k-m)

S5, (n+m+k-Ar)yi, (n+k-Ar)
Son (k- At,m) =22 = (3.43)
Y2 (n+k-A)-Y ik (n+k-Af)

S, (n+ me+ k- Aty i, (n+ - Af)
Son(k- At,m) == = (3.44)
SO (n+k-AD)- Y07, (n+ k- A

n=}

with

where fpp(k:dt,m), fer(k-dt,m) and fpr(k:4t,m) denote the running CCF coefficients
of the k4t time instance at time shift m, between the bounce and pitch, the bounce
and roll, and the pitch and roll motions respectively. k represents the samples, and

Tomi is the total processing time for the fault detection.

For each new computation step, equations (3.42) - (3.44) are repeated and only one
newest sampled data is added and therefore the buffer for data storage will be
updated at every step. Assuming the bogie accelerations begin to change due to a -
component failure, their relevant CCF coefficient computation will also start to vary.

As time passes, more and more acceleration measurements under the fault conditions
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are acquired and buffered in their time windows, and consequently their CCF
coefficient levels gradually deviate from fault-free positions to the new steady values
till the buffers are fully filled with acceleration signals under the fault conditions.
The duration of their cross correlation changes lasts approximately the same time as

the selected time window. Figure 3.10 shows the diagram of the running detection

scheme.

Track
Inputs
i Normalised
Suspension N Yes
> System Buffer » CCF [®] Selector FDI

No

Figure 3.10 Running detection scheme

In the running detection scheme, the selection of the size of the time window is a
trade-off between the speed and reliability of the fault detection. If the length of the
time window is short, the detection is quick but cross correlation is more likely to be
affected by other changes or uncertainties in the system, which may cause a false
alarm. On the other hand, a long time window increases the reliability of the fault
detection, at the cost of slow detection speed. A moving time window of 2 seconds
has been found in this study to give a satisfactory compromise between false alarm
probability and detection speed, although this may change in practice for different

vehicles and/or operating conditions.

3.7 Summary

From the analysis of a simple railway bogie model with symmetrical components

used in the suspensions, it was obvious that there is a close link between the
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interaction change and the suspension component imbalance. This link was
exploited in order to develop a new and effective fault detection scheme using cross
correlation evaluation, which is expected to be sensitive in detecting suspension
faults directly from its acceleration measurements, as it will be shown in the
performance assessments. The tuning of the scheme and noise effect on the cross
correlation computation were analysed. The feasibility for fault isolation by
comparing cross correlations between different bogie motions was also described
and more detail will be provided in the following chapter. Additionally, the on-line

detection scheme processed with a running time window has been briefly introduced.
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Chapter 4

Simulation Results and Assessments

4.1 Introduction

The previous chapter presents the development of a novel fault detection and
isolation scheme which exploits the relationship between component fault(s) and
changes in dynamic interactions in the primary suspension. This chapter will study
the performance of this novel approach in detail. Assessments are carried out using
simulation results using the model involving the bounce, pitch and roll motions of a
conventional vehicle as illustrated in Figure 2.6 in the MATLAB/Simulink software

environment.

4.2 Results from Direct Simulated Data

As shown in Figure 2.6, there are four primary suspensions on each bogie, identified
as front left and front right at either side of the leading wheelset and rear left and rear
right at either side of the trailing wheelset. Simulation results from the leading bogie
of the vehicle model are used in the assessment. Similar performance of the fault
detection and isolation for the trailing bogie is expected. The focus is on the primary

suspension and the coupling effect of the secondary suspensions is relatively small.

It is possible to use direct measurement of the bogie acceleration and typically use of
the RMS value to monitor the suspension performance, but as stated before the
sensitivity and robustness to the fault conditions are not expected to be as good as
the proposed method. In this section, the RMS values of the bounce acceleration of

the leading bogie in normal and with its front left damper at 50% failure are given
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performance comparison, as case 4.1 shown in Figure 4.1 and Figure 4.2. Unless

otherwise specified, this chapter will use the same front left damper fault.

Case 4.1: front left damper has 50% damping loss, vehicle speed at 50m/s.

Computations: bounce acceleration measurement and running RMS (2s of data)

Unit (m/s?)

40 { ‘normal |
50 ~~==—front left at 50% . b

0 0.2 0.4 0.6 0.8 1
Time: (s)

Figure 4.1 Bounce acceleration for case 4.1
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Unit (m/s?)
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-0} |
-20f "—— normal -
----=front left at 50%
-30 ey e : R :
2 3 4 ¥ 6 7 6 . -
Time: (s)

Figure 4.2 Running RMS of bounce acceleration for case 4.1
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It is observed the difference between the normal and fault conditions is small. In
both Figure 4.1 and Figure 4.2, the overall acceleration of the leading bogie is only
slightly reduced, as although the damper fault reduces the damping of the bogie
mode and increases the resonance near the natural frequency, the responses at wider
high frequencies are lowered. This damper fault also affects the other bounce

accelerations at the other three corners, but these changes are even smaller.

The pitch and roll motions of the leading bogie show phenomena similar to those of
the bounce fnotion in this fault condition. Although there is a link between the bogie
vibrations and the conditions of the suspension, the sensitivity of the acceleration
measurements or the RMS calculations for practical fault detection is low. Similar

results can be found for those faults occurring in different locations of suspension,

which is expected.

4.3 Fault Detection with Cross Correlation

Clear improvements may be achieved via the proposed approach using cross

correlation evaluation, by using case 4.2.

Case 4.2: front left damper has 50% damping loss, vehicle speed at S0m/s.
Computations: CCF value of bounce and pitch accelerations (2s of data)
CCF value of bounce and roll accelerations (2s of data)

CCF value of pitch and roll accelerations (2s of data)

Figure 4.3 shows the CCF value of the bounce and pitch accelerations for case 4.2,
where Figure 4.3(a) gives the results of one of the cross correlation calculations and
Figure 4.3(b) is zoomed in x-axis to show those which are of particular interest to
the system. As explained in chapter 3 the typical cross correlation “changes” due to

component fault occur at the points of the specific time shifts 0 and +7 seconds and
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this case T =2L;/Vs=0.05s for the semi-wheel space of 1.25m and the railway
vehicle travelling at a speed of 50m/s. Under the normal conditions, the two peaks at
+0.05s time shifts in Figure 4.2 indicate that the correlation between the bounce and
pitch motions is mainly caused by the inputs to the two wheelsets (same input with a
time shift of 0.05s and on both left and right track sides). The negative peak at -0.05s
time shift is due to there is a negative sign for the correlation between the front and
the rear track inputs to the bounce and pitch motions respectively, and the positive
peak at +0.05s time shift is due to the rear track inputs to bounce motion being
positively correlated with the front track inputs to pitch motion. However the two
peaks at £0.05s time shifts are similar in magnitude, because under the no fault
condition the corresponding suspension components have the same parameters and
their track inputs are also the same except for the time delay. At Os time shift, their
correlation is minimal (near to zero) because of the cross correlation cancellation
between the front and rear parts of the suspensions, as explained in the development

of the FDI technique in the previous chapter.

Those are changed as a result of a damper fault, which leads to reduced levels of
correlation at £0.05s time shifts and a negative spike at Os time shift. The reduction
in correlation at £0.05s time shifts is mostly due to the reduced damping which
results in an overall decrease in bounce and pitch responses. The spike at Os time
shift is due to the imbalance between suspensions at the leading and trailing
wheelsets, as the effect of inputs at the leading side can no longer cancel out those at
the trailing side. As it can be seen from equation (3.14), this cross correlation under
the fault condition of case 4.2 will give a negative sign, because the front left damper
failure gives rise to a decreased correlation in the positive direction. The sign of the
spike at Os time shift is therefore dependent on the different damper fault conditions,
and its correlation change appears to be far more sensitive than those at £0.05s time

shifts, consequently it can potentially provide a more useful indicator of the faults

[63].
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Figure 4.3 CCF value of bounce and pitch accelerations for case 4.2

The CCF values in the same fault condition are also processed from the bounce and

roll motions, and the pitch and roll motions as shown in Figures 4.4 and Figure 4.5
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respectively. It is observed that the two cross correlations are close to zero in all time
shifts in the no fault condition. This is because there are no differences between the
suspension components in either the front and rear, or the left and right sides, which
denotes a neutral cancellation effect and shows a minimum interaction between the
two motions. For the assumed front left damper fault, similar spikes (both negative)
are observed at Os and +0.05s time shifts in Figure 4.4, and at Os (negative) and
+0.05s (positive) time shifts in Figure 4.5, due to the imbalance between the
suspension components. However, the CCF values show little changes at -0.05s time
shift in both Figure 4.4 and Figure 4.5, this is due to the effect that the imbalance on

the front (or left) side of the suspensions can still be neutralised provided by the rear
side suspensions are fault-free, as the influence of the faulty suspensions is cancelled

processed mutually with symmetric suspension parameters on the rear side.
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Figure 4.4 CCF value of bounce and roll accelerations for case 4.2
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Figure 4.5 CCF value of pitch and roll accelerations for case 4.2

Case 4.3 rear right damper has 50% damping loss, vehicle speed at SOm/s.
Computations: CCF value of bounce and pitch accelerations (2s of data)
CCF value of bounce and roll accelerations (2s of data)

CCF value of pitch and roll accelerations (2s of data)

Case 4.3 presents a same level of damper fault occurring at a different position, and
the effect of the dynamic interactions on the cross-correlations is equally clear, as
shown in Figures 4.6 to 4.8. In this fault condition, the peak CCF value of the bounce
and pitch at Os time shift becomes positive in Figure 4.6. This is because the fault in
the rear right damper contributes a smaller negative, which leads to an overall
positive correlated peak. In Figure 4.7, the bounce and roll CCF also results in
positive peaks at Os and -0.05s (rather than negative peaks at Os and +0.05s time
shifts as in case 2) time shifts. For the CCF value between pitch and roll motion in
Figure 4.8, their correlation changes occur at Os and -0.05s time shifts, but it gives a

negative peak at Os time shift compared with a positive value (also at Os time shift)

previously shown in Figure 4.7.
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Figure 4.6 CCF value of bounce and pitch accelerations for case 4.3
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Figure 4.8 CCF value of pitch and roll accelerations for case 4.3

From the above results in cases 4.2 and 4.3, it can be seen that a suspension fault can
be detected by monitoring the changes of peaks at specific time shifts. However the
selection of the thresholds to detect the changes can be difficult to accommodate for
different vehicle operational conditions, such as different speeds, because variance of
these external conditions can affect the magnitudes of cross correlation computation
even when there is no change in the suspensions as stated before. Unsuitable

thresholds may result in missed detections or give false alarms. Case 4.4 gives an

example to illustrate this problem.

Case 4.4: front left damper has 50% damping loss, vehicle speed at 25nvs.

Computations: CCF value of bounce and pitch accelerations (2s of data)

Figure 4.9 compares cross correlations of the bounce and pitch motions of the same
condition as in case 4.2, but at two different speeds of (a) 50m/s and (b) 25m/s. It is
clear that the peaks of the cross correlations under the normal condition at +0.05s
time shifts at high sped (50m/s) are much higher than those at +0.10s at low speed

(double time shifts due to the vehicle speed being halved to 25m/s). All the cross
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correlation peaks at the specific time shifts are changed correspondingly with the

damper fault, however the extent of the changes is different at the two speeds.
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Figure 4.9 CCF value of bounce and pitch accelerations for cases 4.2 & 4.4

It is clear that the cross correlation changes at the special time shifts can provide an
essential monitoring of the suspension health conditions, and different damper faults
may have different change patterns, which are useful in determining the fault location.
However the use of CCF value has the limitation that the detection would have to be

tuned to different train operational conditions and/or different track inputs [43].

4.4 FDI with Normalised Cross Correlation

Case 4.5: front left damper has 50% damping loss, vehicle speed at SOm/s.
Computations: CCF coefficient of bounce and pitch accelerations (2s of data)

CCF coefficient of bounce and roll accelerations (2s of data)
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CCF coefficient of pitch and roll accelerations (2s of data)

The use of the normalised cross correlation technique is therefore proposed to
overcome the difficulty. The CCF coefficients between the leading bogie bounce and
pitch motions, the bounce and roll motions and the pitch and roll motions are shown
in Figure 4.10 to Figure 4.12, respectively. The most significant change in Figure
4.10 appears at Os time shift. The normalised correlation between the bounce and
pitch motions is decreased from O under the normal conditions to about -0.2 in the

fault conditions, while the other two peaks at +0.05s time shifts are less evident.
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Figure 4.10 CCF coefficient of bounce and pitch accelerations for case 4.5

For the CCF coefficients between the bounce and roll motions in Figure 4.11, the
most sensitive correlation change to the fault is at +0.05s time shift where a decrease
from around O to -0.4 is observed. The changes to the CCF coefficients of the pitch
and roll motions also occur at +0.05s time shift, but it increases from around 0 to

+0.5 in the positive direction as shown in Figure 4.12.
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Figure 4.11 CCF coefficient of bounce and roll accelerations for case 4.5
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Figure 4.12 CCF coefficient of pitch and roll accelerations for case 4.5

In both Figure 4.11 and Figure 4.12, there are additional CCF coefficient reductions

at Os time shift but relatively small compared with those at +0.05s time shift.



Case 4.6: front right damper has 50% damping loss, vehicle speed at S0m/s.

955

Computations: CCF coefficient of bounce and pitch accelerations (2s of data)

CCF coefficient of bounce and roll accelerations (2s of data)

CCF coefficient of pitch and roll accelerations (2s of data)

The changes of CCF coefficients may appear in different manners when a fault occurs
at a different position in the suspensions. Figure 4.13 to Figure 4.15 give the CCF
coefficient results for case 4.6. The CCF coefficient changes in Figure 4.13 are very
similar to those of case 4.5 shown in Figure 4.10, but in Figure 4.14 and Figure 4.15
the CCF coefficients (that involve the roll accelerations) at +0.05s time shift are

changed in the opposite direction compared to those with a front left damper fault as

in Figure 4.11 and Figure 4.12.
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Figure 4.13 CCF coefficient of bounce and pitch accelerations for case 4.6
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Figure 4.15 CCF coefficient of pitch and roll accelerations for case 4.6

Case 4.7: rear left damper has 50% damping loss, vehicle speed at 50m/s.

Computations: CCF coefficient of bounce and pitch accelerations (2s of data)
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CCF coefficient of bounce and roll accelerations (2s of data)

CCF coefficient of pitch and roll accelerations (2s of data)

Figure 4.16 shows the CCF coefficient changes of the bounce and pitch motions with
a damper fault in the rear suspension. As the fault occurs in the rear suspension side
rather than the front (left & right) side, the CCF coefficient at Os time shift increases
from O to around 0.2 (in positive direction) compared with those that decrease in the
negative direction for cases 4.5 and 4.6. Another difference can be seen in Figures
4.17 and 4.18, where the main changes of the CCF coefficients between the bounce
and roll, or the pitch and roll motions occur at -0.05s time shift compared with those
at +0.05s time shift in cases 4.5 and 4.6. There is also a relatively smaller CCF
coefficient change at Os time shift in Figures 4.14 to 4.15 and Figures 4.17 to 4.18,

for similar reasons as those in Figures 4.11 to 4.12.
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Figure 4.16 CCF coefficient of bounce and pitch accelerations for case 4.7
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Figure 4.17 CCF coefficient of bounce and roll accelerations for case 4.7
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Figure 4.18 CCF coefficient of pitch and roll accelerations for case 4.7

Case 4.8: front left damper has 50% damping loss, vehicle speed at 25m/s.

Computations: CCF coefficient of bounce and pitch accelerations (2s of data)
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Because of the normalisation, the CCF coefficient evaluation is expected to be
insensitive to external condition changes. Using the same damper fault conditions but
with different vehicle speeds in case 4.5 and case 4.8, Figure 4.19 shows the CCF
coefficient performances between the bounce and pitch motions. Although the track
inputs become much smaller at the lower speed, the reduction of the CCF coefficients
(in response to the damper fault) at Os time shift remains the same as that at the
higher speed, and only minor differences are observed at the +0.05s and +0.10s time

shifts. The side effect of the speed change is effectively reduced by using the

normalised CCF.
Case 4.5 at 50m/s
1 T L
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0.5 4 at 1=0.05s ;
L &
- s negative peak ~negative peak -
T at t=0s
_1 ' 1 s 2 1
- - 0 0.1 0.2
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negative peak

\

¥~ _negative peak
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0

Time Shift: (s)
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Figure 4.19 CCF coefficient of bounce and pitch accelerations for cases 4.5 &
4.8

From above simulation results, it is realised that either the CCF value or coefficient
evaluation can be used as an indicator of suspension component faults by monitoring

the correlation changes at the selected time shifts [43]. Same level of component fault
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fault tends to give similar level of cross correlation changes for a selected CCF
computation, although faults in different suspension location may lead to different
change patterns. This CCF coefficient technique is particularly useful in the fault
detection, as it can be made largely independent of the different external situations

such as vehicle speed, and the use and tuning of thresholds can be made easier.

4.5 Results with Random Noise

Case 4.9: front left damper has 50% damping loss, vehicle speed at 50m/s, bounce
and pitch accelerations with 2.5% measurement noises.
Computations: CCF coefficient of bounce and pitch accelerations without fault (2s

of data)

CCF coefficient of bounce and pitch accelerations in fault condition

(2s of data)

This section considers the effect of measurement noise on fault detection based on

correlation analysis. The noise level is set to 2.5% of the maximum output of the

ideal sensors.

Figure 4.20 and Figure 4.21 show the CCF coefficient results for case 4.9 under the

normal and fault conditions respectively, where there is little difference that can be

observed.
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Figure 4.20 CCF coefficient of bounce and pitch accelerations for case 4.9 (no
fault)
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Figure 4.21 CCF coefficient of bounce and pitch accelerations for case 4.9
(fault condition)
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These results support the theoretical analysis presented in the previous chapter that
the sensor noises do not present a significant problem for the proposed fault

detection approach, which is a clear advantage compared with other methods.

4.6 Fault Detection for Bilinear Dampers

The mathematical models where all suspension components are assumed to be linear
are used in the assessment of all previous cases. Whilst it is a common practice to
use linear models in the study of vehicle dynamics, it will be very useful to examine
the performance and robustness of the proposed fault detection method for

suspensions that present highly non-linear properties.

For the typical hydraulic damper used in railway vehicle primary suspensions, their
damping forces of compréssion and extension movements are not necessarily equal,
and the extension damping force is considerably larger than that in compression,
which can be represented in the model with bilinear characteristics [52] [55].
Derived from the force-velocity characteristics experimentally, the compression and

extension damping forces due to the asymmetrical bilinear damper are expressed in

equation (4.1) [55].

£ 0.48C, -2, 2,20
Z),,t) = . .
@ 1.52C, -2, 2,<0 (4.1)

where C; is the local equivalent linearisation damping, which is an average of the
bilinear compression and extension forces when the relative piston velocity is

smaller than a; or a; shown in Figure 2.2, and 2; is the relative velocity of the

damper piston.

Case 4.10: bilinear damper models, front left damper has 50% damping loss, vehicle

speed at S50m/s.
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CCF coefficient of pitch and roll accelerations (2s of data)

Using the bilinear dampers, the following simulation is focused on the CCF
coefficient evaluation as it is unaffected by the change in external conditions. Figure
422 shows the simulation results of bounce and pitch motions for case 4.10,
indicating a similar level of sensitivity to the fault compared with the result using the

linear damper for case 4.5 shown in Figure 4.10.
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Figure 4.22 CCF coefficient of bounce and pitch accelerations for case 4.10

Similar CCF coefficient results using the bilinear dampers can also be observed by
comparing the performances between the bounce and roll, and the pitch and roll
motions shown in Figure 4.23 and Figure 4.24, respectively. Compared with the
corresponding CCF coefficient results involved roll acceleration in case 4.5, their
correlation results show the consistent results are also achievable for the proposed
method for both linear and bilinear damper models. A fuller assessment of different
types and levels of faults using linear or bi-linear dampers is given in Table 4.1 and
Table 4.2 respectively. From the data in these two tables it is equally found that the

similarities can be observed for any possible damper fault and in any location.
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Figure 4.23 CCF coefficient of bounce and roll accelerations for case 4.10
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Figure 4.24 CCF coefficient of pitch and roll accelerations for case 4.10

Compared to other model-based fault detection schemes which normally need to

linearise a complicated dynamic system, there is a clear advantage of the proposed
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Compared to other model-based fault detection schemes which normally need to
linearise a complicated dynamic system, there is a clear advantage of the proposed
method. As it can give a handy analysis for non-linear systems, and therefore make

the fault detection easy to implement.

4.7 Fault Detection for Suspensions in the Trailing Bogie

Up to now, the simulations are carried out for the damper fault of the suspensions in
the leading bogie, however the conventional bogie railway vehicle has two bogies -
leading and trailing. The two bogies are normally identical in both the structure and
the components used. Therefore the fault detection results of the leading bogie are

expected to be equally applicable to the trailing one.

Case 4.11: linear damper models, front left damper in the trailing bogie has 50%
damping loss, vehicle speed at S0m/s.
Computations: CCF coefficient of bounce and pitch accelerations (2s of data)

CCF coefficient of bounce and roll accelerations (2s of data)

CCEF coefficient of pitch and roll accelerations (2s of data)
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Figure 4.26 CCF coefficient of bounce and roll accelerations for case 4.11
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Figure 4.27 CCF coefficient of pitch and roll accelerations for case 4.11

It is clearly seen from Figure 4.25 to Figure 4.27 that the CCF coefficient results

from either bounce, pitch and roll motions of the trailing bogie are very close to those
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of case 4.5, which shows the proposed technique may be expandable to monitor
conditions of other suspensions where the interactions may be introduced by the

component failures in them.

4.8 Running CCF Results

The above analysis has shown the simplicity and effectiveness of the proposed
approach in detecting faults from the historical data taken from a period of
measurements. Chapter 3 also introduced the notion that this approach can be applied
as a running detection scheme. For on-line practical implementation, it is worth using
running cross correlation calculations with a fixed moving time window to reduce the

latency of the fault detection process.

In this section, the running detection scheme is examined with the damper fault(s)
occurring in different time periods and, as usual, in different locations. In the interest

of clarity, only the results which are most sensitive to the fault conditions are shown.

Case 4.12: bilinear damper models, a total simulation time of 20s; 1" damper fault at
the front left suspension occurs at 5s, 2™ fault at the front right suspension after 10s,
and 3" fault at the rear left suspension after 15s; all the damper faults are assumed to
be a 50% loss of their nominal damping values; vehicle speed at 50m/s.
Computations: running CCF coefficient of bounce and pitch accelerations (2s of data)
running CCF coefficient of bounce and roll accelerations (2s of data)

running CCF coefficient of pitch and roll accelerations (2s of data)

Figure 4.28 shows the CCF coefficient between the bounce and pitch motions for
case 4.12 at Os time shift, where the CCF coefficient is increased in the negative
direction after 5s when the first damper fault occurs in one of the front suspensions
(on the left side). The coefficient is further increased negatively at the time of 10s due

to a second damper fault occurring in another front suspension (on the right side), as
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In this section, the running detection scheme is examined with the damper fault(s)
occurring in different time periods and, as usual, in different locations. In the interest

of clarity, only the results which are most sensitive to the fault conditions are shown.

Case 4.12: bilinear damper models, a total simulation time of 20s; 1* damper fault at
the front left suspension occurs at 5s, 2™ fault at the front right suspension after 10s,
and 3™ fault at the rear left suspension after 15s; all the damper faults are assumed to
be a 50% loss of their nominal damping values; vehicle speed at 50m/s.
Computations: running CCF coefficient of bounce and pitch accelerations (2s of data)
running CCF coefficient of bounce and roll accelerations (2s of data)

running CCF coefficient of pitch and roll accelerations (2s of data)

Figure 4.28 shows the CCF coefficient between the bounce and pitch motions for
case 4.12 at Os time shift, where the CCF coefficient is increased in the negative
direction after 5s when the first damper fault occurs in one of the front suspensions
(on the left side). The coefficient is further increased negatively at the time of 10s
due to a second damper fault occurring in another front suspension (on the right
side), as the two front side faults worsens the asymmetry in the suspension system.
When a third damper fault occurs in the rear suspension after the time of 15s, the
CCF coefficient is actually improved because the imbalance between the front and

rear suspension sides becomes less severe.

Figure 4.29 gives their CCF coefficient between the bounce and roll motions. The
changes of their CCF coefficient indicate that an asymmetry between the left and
right suspensions exists when there is a fault at the front left damper only (between 5
- 10s), or when the fault on the one side of the bogie is more severe than the other
side (after 15s), which deviates the CCF coefficients apart from zero. When the roll
motion is in balance before the time of Ss or retrieved to balance again between 10 -

15s, their cross correlations are very close to zero as expected.
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A similar scenario is observed from the CCF coefficient between the pitch and roll
motions as shown in Figure 4.30. Their CCF coefficients reflect not only the
imbalance level of the roll motion but also the pitch in the suspension system. Their
correlations are very close to zero under the normal condition (0 - 5s), as the same as
those in Figure 4.28 and Figure 4.29. The CCF coefficient appears to be insensitive
to fault when there is only an asymmetry in the pitch motion until the roll motion
also becomes asymmetric, as it is shown that the front left & right damper faults
(between 10 - 15s) cause an imbalance in the pitch direction, which contributes no
change to the CCF coefficient. Only in the time periods 5 - 10s and 15 - 20s when
both pitch and roll motions are imbalanced, obvious change of the CCF coefficients

can be observed.
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Figure 4.28 Running CCF coefficient of bounce and pitch accelerations for
case 4.12
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Figure 4.30 Running CCF coefficient of pitch and roll accelerations for case
4.12

Case 4.13: bilinear damper models, a total simulation time of 20s; 1* damper fault at
the front left suspension occurs at Ss, 2™ fault at the front right suspension after 10s.
and 3™ fault at the rear left suspension after 15s; all the damper faults are assumed to
be a 50% loss of their nominal damping values; vehicle speed at 50m/s and 25m/s
respectively.
Computations: running CCF value of bounce and pitch accelerations at two speeds
(2s of data)
running CCF coefficient of bounce and pitch accelerations at two

speeds (2s of data)

The running simulation results are also carried out to compare the performance of the
cross correlations at different vehicle speeds. Figure 4.31 shows the running CCF
values results, it is observed that the changes of the two correlations correspond to
the same faults, but the level of change at low speed is obviously smaller as the CCF

values are largely dependent on the magnitude of the track irregularities.
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Figure 4.31 Comparison of running CCF values of bounce and pitch
accelerations for case 4.13 at different speeds

However, the running CCF coefficients in Figure 4.32 only show minor differences
between them at the different speeds. This makes the use of running CCF coefficient

more convenient than the running CCF value in the fault detection, and therefore the

use and tuning of the thresholds can be easily achieved
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Figure 4.32 Comparison of running CCF coefficients of bounce and pitch
accelerations for case 4.13 at different speeds

4.9 Fault Isolation

Previous assessments have shown that proposed detection method reacts to different
fault(s) in different manners, in terms of the sensitivity at different time shifts
(negative, 0 and positive) of the cross correlations and/or the sign (negative, positive)
of the CCF results. This feature can be therefore used to determine the exact location

of a fault.

Case 4.14: using linear and bilinear dampers, vehicle speed at SOm/s.

Computations: CCF coefficient of bounce and pitch accelerations, with 75%, 50%,
25% and 0% of the normal damping coefficient, and for different
locations of dampers
CCF coefficient of bounce and roll accelerations of the same
conditions

CCF coefficient of pitch and roll accelerations of the same conditions
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CCF coefficient of bounce and roll accelerations of the same

conditions

CCF coefficient of pitch and roll accelerations of the same conditions

Table 4.1 shows how each linear damper fault affects the CCF coefficients between

the bounce and pitch, bounce and roll, and pitch and roll accelerations at negative, 0

and positive time shifts, and Table 4.2 gives the CCF performances of the bilinear

dampers.

Table 4.1 CCF coefficient changes with linear damper faults

Bounce/Pitch Bounce/Roll Pitch/Roll

Tanin | 05 | +Tap | -Temip | 05 | +Tsnip | ~-Tomp | 05 | +Tomis
No Fault | -0.50 | -0.03 | +0.49 | -0.03 | -0.05 | -0.02 | -0.03 | +0.02 | +0.02
CrL75% | -0.48 | -0.12 -0.32 | -0.49 -0.50 | +0.48
CrL50% | -0.46 | -0.22 -0.28 | -0.57 -0.49 | +0.56
CrL25% | -0.43 | -0.31 -0.22 | -0.61 -0.44 | +0.60
Cr 0% | -0.38 | -0.41 -0.14 | -0.65 -0.36 | +0.64
Crr 75% | -0.48 | -0.12 +0.27 | +0.47 +0.52 | -0.46
Crr 50% | -0.46 | -0.22 +0.25 | +0.56 +0.50 | -0.55
Crr25% | -0.43 | -0.32 +0.19 | +0.61 +0.45 | -0.59
Crr 0% | -0.38 | -0.41 +0.12 | +0.64 +0.37 | -0.63
Cr 75% +0.06 | +0.48 | -0.38 | -0.42 -0.57 | +0.40
CrL 50% +0.16 | +0.46 | -0.46 | -0.40 -0.66 | +0.37
CrL 25% +0.26 { +0.43 | -0.51 | -0.34 -0.70 | +0.30
Cr 0% +0.35 | +0.38 | -0.56 | -0.26 -0.73 | +0.22
Crr 75% +0.06 | +0.48 | +0.37 | +0.38 +0.55 ] -0.39
Crr 50% +0.16 | +0.46 | +0.45 | +0.38 +0.65 | -0.37
Crr 25% +0.26 | +0.43 | +0.50 | +0.32 +0.69 | -0.30
Crr 0% +0.35 | +0.38 | +0.55 | +0.25 +0.73 | -0.22
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Table 4.2 CCF coefficient changes with bilinear damper faults

Bounce/Pitch Bounce/Roll Pitch/Roll
Toip | Os | *Tomip | T | Os | +Tspip | -Tomipe | Os | +Tonip
No Fault | -0.49 | -0.02 | +0.48 | -0.03 | -0.04 | -0.02 | -0.01 | +0.02 [ +0.01
CrL 75% | -0.47 | -0.11 -0.28 | -0.42 -0.42 | +0.41
CrL 50% | -0.45 | -0.21 -0.27 | -0.53 -0.45 | +0.52
CrL25% | -0.42 | -0.31 -0.22 | -0.59 -0.41 | +0.58
Crp 0% | -0.37 | -0.41 -0.15 | -0.62 -0.34 | +0.61
Crr 75% | -0.47 | -0.12 +0.24 | +0.40 +0.44 | -0.41
Crr 50% | -0.45 | -0.21 +0.24 | +0.52 +0.47 | -0.52
Crr25% | -0.42 | -0.31 +0.20 | +0.58 +0.42 | -0.57
Cer 0% | -0.37 | -0.41 +0.13 | +0.61 +0.34 | -0.61
CrL 75% +0.07 | +0.47 | -0.33 | -0.35 -0.47 | +0.35
CrL 50% +0.17 | +0.45 | -0.43 | -0.36 -0.60 | +0.36
CrL 25% +0.27 | 40.41 | -0.48 | -0.31 -0.65 | +0.31
Cre 0% +0.37 | +0.37 | -0.53 | -0.23 -0.69 | +0.23
Crr 75% +0.07 | +0.47 | +0.30 | +0.31 +0.47 | -0.34
Crr 50% +0.17 | +0.45 | +0.41 | +0.34 +0.59 | -0.35
Crr 25% +0.27 | +0.41 | +0.47 | +0.29 +0.65 | -0.30
Crr 0% +0.37 { +0.37 | +0.52 | +0.22 +0.69 | -0.23

The CCF coefficients at a time shift that not sensitive to a particular faults are not
included in the two tables. There is a clear correlation between the degree of a
fault(s) and the level of change in CCF coefficients, which can be very useful to
determine if a replacement is needed, and the urgency of tﬁe replacement. For the
purpose of fault isolation, only two of the three cross correlation results (i.e.
bounce/pitch, bounce/roll & pitch/roll) are sufficient to identify a fault. For instance,
a fault on the front side (either left or right direction) of the bogie decreases the CCF
coefficient between the bounce and pitch motions, and the CCF coefficient between

the bounce and roll motions will also be reduced if this damper fault occurs in the
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left direction of the bogie. Using this unique information provided by the two

combined CCF coefficient results, the fault can be thereby isolated.

Tables 4.1 and 4.2 can be simplified to Table 4.3 which illustrates the relationship

between different suspension faults and the CCF results. The arrows in bold indicate

one being more sensitive to fault(s).

Table 4.3 Cross correlation changes with different damper faults

Type of Bounce/Pitch Bounce/Roll Pitch/Roll
damper fault| .7, | 0s | +Tin| -Tonn | Os | +Tow | -Town | O | +Ton
Frontleft | / N N N N 7
Frontright | / N 7/ 7 7/ N
Rear left 7 N N N N Va
Rear right / N / /7 /7 N

Table 4.4 illustrates how a damper fault can be isolated using the results at zero time

shift of bounce and pitch, and bounce and roll cross correlations.

Table 4.4 Logic sequences for fault detection and isolation

Change tendency Faulty damper isolation

Bounce/Pitch | Bounce/Roll | Frontleft | Frontright | Rearleft | Rear right

N\ N - - -
7 - v - -
N - -- v -
7

- - -- v

N

Similar results can be obtained from the different correlation combinations such as
between the bounce and roll, the pitch and roll motions, or between bounce and roll,

pitch and roll motions. The cross correlation changes at £0.05s time shifts (at the
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vehicle speed of 50m/s) also enable isolation of faults, so there is no shortage of

information.

4.10 Summary

In this chapter the concept and scheme for fault detection using the described
correlation technique was examined under different conditions. The simulation
results were assessed by studying the sensitivity of this technology. Special attention
has been given to the CCF coefficient computation as it is robust to the changes of
external operational conditions. The reliability of the technique was also verified by
examining the proposed method for the vehicle model with bilinear dampers. The
effect of measurement noise was studied. The results and analysis show the
feasibility and consistency of the proposed technique for detecting faults in railway

vehicle suspensions.

Based on this fault detection study, fault isolation performance was also verified by
exploring the link between different patterns of correlation changes and individual
faults. The results show that the proposed approach is helpful not only in detecting a
fault in the suspension systems, but also in isolating the location of the fault and

identifying the severity of the failure.
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Chapter 5

Condition Monitoring Using Relative Variance

5.1 Introduction

A novel data processing scheme using cross correlation has been developed for the
FDI problem in railway suspension systems. In Chapter 4, simulation results and
assessments of the scheme have demonstrated that suspension component faults can

be effectively detected and isolated via monitoring the correlation changes.

The present chapter introduces a supplementary technique based on the same fault
detection principle as described in Chapter 3. This approach will focus on the

changes in variance of the bogie accelerations.

5.2 Fault Detection Scheme

So far, this thesis has described the development and validation of cross correlation
as a data processing tool which could provide acceptable fault detection and
isolation results, with the advantage of avoiding a complicated system model and
providing easy threshold tuning. The same principle of detecting the dynamic
changes and asymmetry caused by a component fault can be exploited using a
different data processing technique. This chapter investigates the suspension health
conditions by using short-term variances and further the relative variances method.
An important issue is to determine how the variance or relative variance changes are
related to component failures under different operational conditions. Firstly,
characteristics of this fault detection scheme are briefly introduced. Secondly their

performances are studied and compared with the previous technique. The issue of
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the measurement noise and the use in non-linear systems are also investigated.

Finally, the use of relative variance in the context of fault isolation has also been

assessed and compared.

To examine the practical use of the method, the overall computational requirements
are now studied in terms of the relationship between the bogie accelerations at the
positions above the suspensions and the suspension components. In practice, the
measurements of the bounce, pitch and roll motions can be readily measured using
inertial sensors mounted on the bogie frame [19]. By using the same conventional
bogie vehicle system shown in Figure 2.6, the dynamic equations of the
accelerations above the four primary suspensions may be easily derived from the

three basic measurements and bogie geometrical parameters as given in equations

(5.1) - (5.4).
Zy ='z',,+L,,x-é5°,,+L,,y-gi/',, (5.1
Zeg =2y + Ly 4, — Ly, ¥, (5.2)
P =%, =Ly -8y + Ly, ¥/, (5.3)
Frw =2y =Ly @y = Ly, ¥/, (5.4)

where 2y, Zz, Zx and Zg are the corner accelerations corresponding to the front

left, front right, rear left and rear right primary suspensions of the studied bogie.

It is noticed from equations (5.1) - (5.4) that the responses of the four corner
accelerations will be very similar until a fault occurs, because a fault can break the
system symmetry and change the responses by affecting the corresponding parts of

bounce, pitch and roll motions.
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The basic bounce, pitch and roll motions can also be inversely described in the form
of the four corner accelerations outlined in equations (5.1) - (5.4), which gives
equations (5.5) - (5.7).

Zp Y Zpp t Zp * Zpg

Z, = 2 (5.5)

Zp, t Zpp —Zp — Zpp

9y = il (5.6)

bx

l[/ = .Z.FL _.Z.FR +.Z.RL - .Z.RR
’ AL, (5.7)

To study the relationship among the four corner accelerations, equations (5.1) - (5.4)
can be firstly transformed by replacing equation (2.17) and equations (2.19) - (2.20)

into them, which leads to equations (5.8) - (5.11).

Ib)',/L:y Zy ¥(Cpy +Cra +Cyy +Cp) 2, +4K, -2,

—(Iby /Liy -m,)-z, "(Iby /L:y -1, /Lix)be ¢b

+(Cp +Crp = Cp = Cre) (2, + L, '¢.1,)

+(Cp =Cir +Cp, —Cre) (2, + L, W) (5.8)
=3(Cp 2, +Kp 2, )+ (Crp 2, + K2 2,)

+(Cro 2, +Kp2,5,)=(Crp v 25, + K, *Z,8) +ZF, + AF,

Iy 1L} 2y +(Cpp +Cop +Coy +Crp) 2 +4K 5 - 2,

_(Iby /L:y -m,)-z, _(Iby/Liy -1, /L:x)be '51,

+(Cy +Crmp = Cp = Cre) (2 + L, '¢.b)

~(Cp =Crr + Cp =Cre) (2, = Ly, -y,) (5.9)
=(Cr n +Kp 2, )43(Crz 2, + K, “Z18)

~(Cr 22, +Kp 23 )+(Cpg 22130 + Kp - 2,52) + ZF, - AF,
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I,,y/Lf,y Zoy +(Cr +Crp +Crp +Crp) 25 +4K 2,
-, /12 -m,)- 3+, /L, -1, /L)L, -4,

~(Ci +Cp =Cr =Cra) (2, = Ly, - 8,)

+(Ch =Crp +Cp = Crr)- (2, +L,,y ‘W)

=(Cr 2, +Kp20) = (Crn 203 + Ky 242)

+3(Crp 22, + Kpo2,0) + (CrptZpp + Kp 2 2,52) +ZF, + AF,

I, 1L}, Ze +(Cop +Cpg +Cpy +Cp) 20 +4K, - 24
—.(Iby /L:y _mb)'.z.b +(1by /Liy —be /Lix)be .ﬁ.b

—(CI-'L +CFR _CRL _Cm)°(2b _be '¢b)

-(Cp, —Cpz +Cp —CRR).(z'b _Lby 'l/}b)

==(Cp 20, +Kp 2, )+ (Crp2,p +Kp 2 2,2)

+(Crp 229, + Kp 2,3, )+3(Crp 2,05 + Ky 2 2,2) +ZF, — AF,

(5.10)

(5.11)

Then, by substituting equations (5.5) - (5.7) into to equations (5.8) - (5.11) removes

the bounce, pitch and roll motions, the relationship of the four corner accelerations

can be formed and their simplified expressions are given in equations (5.12) - (5.15).

31, /Lf,y +my)l4:z, +2C,, +Cppr +Cp ) 2, +4K, -z,
—(Iby/Lf,y —my) 42, +(Cp +Cra =Cp =~Cpr) 22,
—(Iby/Lf,y -my)4-Zy +(Cp, —Crp +Cp, —Crr)/ 22,
—(Iby/Lf,y -my)/4-Z,,

=BC,, 2, ¥CrrZyr ¥ Cri 2,00 —Crr * Z12r)

+K,(3z,, +z,8 + 2,2, = Z,52)+ ZF, + AF,

(31by/Liy +my )4 -2 +(Cpy +2C 0 +Crp) 2 +4K, - 25
—(Iby/Lf,y -my)/4-Zy +(Cp +Cpry =Cp —Crp)/2-2,
-1, /Liy -my)l4-Z,

-, /Liy -my)/4:-Zp —(Cp =Crp +Cp —=Cpr)/2-2,,
=(Crp, 2y, +3C 1 20p —=Crp v 2,5, +Crp v 2,58)

+K,(z,, +32,5 — 2,5, +2,02)+ZF, - AF,

(5.12)

(5.13)
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(31,,y/Lf,y +my) 42y +(Cp +2C, +Cpe) 2y +4K, -2,

—, /Ly, —-m) /472, +(Cp =C g +Cp =C )22,

—(I,,y/Lf,y -m,)/4.-Z,,

—(Iby/Lf,y —my)/4-Zpy =(Cp +Crp =Cp —C )22, (5.19)
=(Cry, 2y =Cix 2ux +3Cx 2,0, +Crr *Z2,10)

+ K, (2, = 2o +32,5, +Z,5:) + ZF, + AF,

(31, 1Ly, +m) /42 +(Cpy +Cpy +2Cp0) 240 + 4K, - 2

~ (L, 1 L: —m,)/ 4%,

~ (I 1L =my) 4% =(Cpy = Crg +Cry =C )22

~(y, Ly, —m)/4 2y —(Cpp +Crg =Cpy =Cpp )22y, (5.15)
=(=Cp 24, +Cix 2y + Cri 2121 +3C iz *Z,3z)

+K,(-z,, +2,p + 2,5, +32,5) +ZF, - AF|

For the four corner accelerations under the normal condition, there are little
interactions among them due to the balance in the design which is symmetric in
structure and in which identical components are commonly used, as shown in
equations (5.12) - (5.15). Apart from that, the corner accelerations are also caused by

the non-uniform distribution of the bogie mass (I,,/Ls,” # ms) and the effect of the

forces from the secondary suspensions.

From equations (5.12) - (5.15), it is clear that the four track inputs for each corner
accelerations are not equally distributed. The track input at the suspension concerned
is three times the magnitude compared to the others that are not directly connected.
The random track inputs at both sides of a track are normally expected to have
similar magnitude and frequency distributions, so the overall response of the four
corner suspeﬁsions should present a very similar variance with only a time shift
between leading and trailing suspensions. Unless a suspension fault occurs, the
variance change of the bogie acceleration will be expected to be very small. This
characteristic will be used in the following detection scheme and the changes of the
variances at the corner accelerations will be used to determine the health condition

for the studied suspensions.



-122 -

The concept of variance change detection is investigated using the same leading

primary suspension system which is specified in Figure 2.5. A schematic diagram of

the technique is shown in Figure 5.1, with three stages included in the

IYYY

FDI

—>

implementation.
Bounce
Pitch
Roll .
=07, ) Relative
—»] Conversion »
—_ Variance
Measurements Accelerations
Above 4
Suspensions

4 RVs

Figure 5.1 Schematic Diagram of FDI Using Relative Variance

Suspension
Status

The first stage is to derive the four corner accelerations from the basic bounce, pitch

and roll motions, which can be measured with a single sensor box, using equations

(5.1) - (5.4). Secondly the variances of the four accelerations can be estimated over a

fixed number »n by buffering the samples of the derived accelerations in a fixed time

window, as shown in equations (5.16) - (5.19).

V() = S (200 (1) - Er)? /n

izk

Vg (k) = i-(fpn (- Z;)z/n

imk

k+n-1 —
MOENEMOE fm)’/n

ink

k+n-1 —
Ve () = 5 ('z'm(i)—'z'm)z/n

i=k

(5.16)
(5.17)
(5.18)

(5.19)
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where k is the step for each set of the sampling acceleration, n is the number of

samples in the time window.

Then the FDI problem may be investigated by using variance estimation over a
running time window, as for the cross correlation evaluation. It is possible to use the
variance valués in fault detection, as any changes in the suspensions will influence
the bogie accelerations especially at the location where a faulty component is
directly connected. However the direct use of the variance values will be affected by
changes in external conditions in the same way as in the previous scheme with the
direct use of cross correlation calculations, because the variance values can be
affected by the track inputs which are non-deterministic and may vary in different
time periods. Also, the change of railway vehicle speeds causes different input
excitations to the suspensions and consequently affects directly variance changes. It
is impractical to measure the track inputs directly or to predict their changes in
magnitude under different locations and at different speeds. However, because all
suspensions are assumed to have the same configuration and components under the
normal conditions, the variance for each corner acceleration will be similar when the
studied suspensions are excited by the same set of track inputs. On the other hand,
the variance of one corner acceleration located above a faulty suspension will have a
distinct change compared to the others. Therefore, the variance disturbance problem
due to external conditions may be overcome by comparing the four outputs of the
variance calculations using the concept of majority ‘voting’, as the variance values
should be similar under nominal conditions but differ if there is a fault at one or
more of the suspensions - as far as the probability of all the four suspensions failing
at the same time in the same manner would be extremely low. The process of
‘voting’ is achieved/simplified through the use of normalisation similar to that for
the cross correlations, as shown in equations (5.20) - (5.23). The normalisation

essentially provides a means of relation comparison of the variances of the bogie
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accelerations above the four accelerations, without the need to examine directly the

difference between them.

RV (k)= Vo (k) + V() i ;ZFZIf’j—)m) +V ook +m) (3.20)
RV o) = Vi (k) + Vg (k) j-;,?(kl«:( ]j-)m) + Ver(k +m) G.21)
RV (k)= Vo (k—m)+ VF:(I): f",’n()kf Vg (k) + Vg (k) (5.22)
RV (k) = 4> Ven (k) (5.23)

Vo (k=m)+ Vg (k—m) + Vi, (k) + Veg (k)

where m is the number of delayed sampling time steps which is decided by the wheel

space and the vehicle speed.

It is noted that the relative variance calculations at the two rear suspensions in
equations (5.22) and (5.23) are almost identical to those for the two front
suspensions in equations (5.20) and (5.21) except for a delayed time interval m. As
m is the exact time delay of the track inputs between the front and rear suspensions,
these four equations (5.20) - (5.23) should always give the normalised variances for
the same track input conditions. The relative variance for each corner acceleration
will remain iargely similar under the normal condition even when the railway
vehicle speed changes. Only a fault in a component (e.g., a damper fault pre-
assumed in this thesis) is expected to cause relevant changes to their relative
variances. The most significant variance change is expected to coincide with the

fault at the particular suspension and therefore fault isolation will also be possible.
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5.3 Performance Assessments

In this section, simulations are carried out to assess the performance of the proposed
supplementary fault detection technique. The running RMS and variance values of
the corner accelerations are given for comparison, and the performances of their
relative variances are assessed under different operational conditions. The inclusion
of RMS results in the study is to demonstrate the improved fault detection sensitivity

of the new scheme.

5.3.1 Fault Detection Using RMS Values

Case 5.1: front left damper has 50% damping loss.
Computations: running RMS of front left acceleration at 50m/s (2s of data)

running RMS of front left acceleration at 25m/s (2s of data)

In Figure 5.2, the RMS value of the front left acceleration shows a clear difference
between the normal and fault conditions. At a higher speed of 50m/s, the RMS value
of the front left acceleration decreases from around 11m/s’ to 8.5m/s* (2.5m/s?
reduction) when the fault occurs. It is known that a reduced damping increases
resonances for the basic bogie motions, but suppresses higher frequency content
more severely, which results in an overall reduced acceleration for the random track
inputs [61]. The accelerations above the other three suspensions remain largely

unchanged, which is expected because of the location of the only fault assumed in

this case.

At the lower speed of 25m/s, a similar pattern of RMS changes can be observed in
Figure 5.3. However, the magnitude of the change is less, its RMS value only
decreases from 7.8m/s’ to 6m/s* (1.8m/s’ reduction). The difference of the RMS
value and also its reduction at the lower speed is expected because of the smaller
track irregularities. This could make fault detection difficult to determiné as the

RMS reductions are more dependent on the operational conditions.
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Figure 5.2 Running RMS of front left acceleration for case 5.1 at S0m/s
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Figure 5.3 Running RMS of front left acceleration fro case 5.1 at 25m/s

5.3.2 Fault Detection Using Variance Values

Case 5.2: front left damper has 50% damping loss.
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Computations: running variance of front left acceleration at 50m/s (2s of data)

running variance of front left acceleration at 25m/s (2s of data)

Compared with the RMS values of the front left corner acceleration in case 5.1, case
5.2 gives their running variance results shown in Figure 5.4 and Figure 5.5
respectively. It is clear that the difference in variance between the normal and fault
conditions is increased. The magnitude of its variance is reduced from 120m°’s* to
70m’/s* (a reduction of 50m°/s) at a speed of 50m/s, and from 62m°/s* to 37m’s” (a
decrease of 25m’/s") at a speed of 25m/s. For both speeds, the percentage change in
variance is high at about 40% which clearly indicates a higher sensitivity to fault
compared with the RMS method which only exhibits about 20% change in
magnitude. There are also changes to the other corner accelerations, but they are

smaller for similar reasons as for the RMS calculation.
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Figure 5.4 Running variance of front left acceleration for case 5.2 at S0m/s
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Figure 5.5 Running variance of front left acceleration for case 5.2 at 25m/s

A similar pattern of changes for the other corner accelerations can also be observed
when different damper faults occur. Table 5.1 gives detailed information of the RMS
and variance fault detection results when corresponding dampers have a 50%

damping loss.

Table 5.1 Comparison of fault detection using running RMS and variance
methods (Bilinear, Vs=50m/s)

Changes in Percentage Frontleft | Frontnght | Rearleft | Rearright
No fault 100% 100% 100% 100%
Front left at 50% 73.8% 94.6% 103.5% 93.7%

RMS Front right at 94.5% 73.8% 93.6% 103.4%
Rear left at 50% 103.6% 96.3% 76.5% 94.5%
Rear right at 50% 95.9% 103.8% 94.7% 76.2%
No fault 100% 100% 100% 100%
Front left at 50% 54.5% 89.6% 107.1% 87.8%

Variance | Front left at 50% 89.3% 54.5% 87.7% 107.0%
Front left at 50% | 107.3% 92.7% 58.6% 89.3%
Front left at 50% 92.0% 107.8% 89.7% 58.1%
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It is clear from the table that only changes of the corner acceleration that are directly
related to their corresponding damper fault are significant, which is very useful for

fault isolation. Clearly, the variance method is much more sensitive to fault(s) in all

cases.

The variance calculation can be used to provide direct and sensitive information
relating to the changes in suspension condition, so it is possible to use their changes
in magnitude as indicators of a fault in the component fault detection process. On the
other hand, fluctuations are observed even when the vehicle is operated at a constant
speed, as shown in Figure 5.4 and Figure 5.5. The fluctuations are causéd by changes
in track input irregularities, especially where low frequency components become
more dominant. Due to the uncertainty, it may not always be clear that a fault has
occurred for a higher RMS or variance value under the normal conditions or a lower
value under the fault conditions. Similar to the fault detection using the CCF value
for the bounce, pitch and roll motions, the selection of the fault detection thresholds
will have to be highly adaptive to both vehicle speed and track conditions which

would not be straight forward to achieve in practical applications [71] [72].

5.3.3 Fault Detection Using Relative Variance

The proposed use of relative variance (i.e., normalised) in equations (5.20) - (5.23) is
intended to overcome the problem. It minimizes the influences associated with the
variation in track irregularities and the difference in travel speeds, as all variance
calculations are normalised over four accelerations which effectively removes the

effects of external conditions.

Case 5.3: front left damper has 50% damping loss.

Computations: running relative variance of front left acceleration at 50m/s (2s of

data)
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running relative variance of front left acceleration at 25m/s (2s of

data)

Figure 5.6 and Figure 5.7 show the running relative variance for case 5.3 at the two
different speeds. At either speed, the relative variance results show two advantages
compared with variance value evaluation. Firstly, their relative variances are much
smoother under both the normal and fault conditions, the fluctuation seen in the
variance values is much less significant. Secondly the relative variances have a similar
reduction from 1 to around 0.6 ~ 0.7 (a reduction of 30% ~ 40%) regardless of the
speed changes. This improved robustness against external condition changes is very
beneficial in fault detection processing, as the selection and tuning of the thresholds

will be comparatively easier when applied with the relative variance approach.
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Figure 5.6 Running relative variance of front left acceleration for case 5.3 at
SOm/s
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Figure 5.7 Running relative variance of front left acceleration for case 5.3 at
25m/s

Case 5.4 the front left damper has 50% damping loss at Ss, a total simulation time of
10s, vehicle speed at S0m/s.
Computations: running variance of four corner accelerations (2s of data)

running relative variance of four corner accelerations (2s of data)

To study how the other three corner accelerations are affected by a damper fault.
case 5.4 is used to present the different performance changes of the four corner
accelerations front left, front right, rear left and rear right, where their variance
results are shown in Figure 5.8 and corresponding relative variance results shown in

Figure 5.9.

In Figure 5.8, it can be seen that the variance for the four corner accelerations are
very similar under the normal condition (0-5s). However, it is observed that an
overall reduction of the system damping after 5s due to the damper fault at the front
left suspension is observed, leading to the magnitude of variances of the four corner

accelerations being reduced. The variance of the front left corner acceleration has the
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largest reduction as expected. The front left damper fault causes an unbalance
between the front left and rear left corner accelerations, which causes the variance of
the rear left corner acceleration to remain at a relatively high level. The damper fault
also leads to the asymmetry between the front left and front right corner
accelerations. However, the change pattern of the variance of the front right corner
acceleration is different from that of the rear left one. Simulation results show that
the variance of the front right corner acceleration has a small reduction, which is
mainly affected by the fact that the track inputs in the left-right direction have 90% of
similarity. The variance of the rear right corner acceleration changes only a little as
expected, as can be seen from equations (5.12) - (5.15), that a fault occurs diagonally
across in the suspensions has very small effect on the acceleration at this point. The
understanding of their corner acceleration changes in variance is helpful in
recognising the different performances of the relative variances normalised from their

variance combinations, even when the fault conditions are changed.

200
180} )
1601 y
140} Rear left Acc Rear right Acc
L
£ 120 A »,.--« i VN«":’" o .
v& ,‘. J\.:'-"v /: y Sl
NE 100 ™ F) *lvo:-::./.h_"jv&w P ‘ll
5% Front ‘: ht A |
o rng ce
601
N T Front left Acc
201 Front !
0 , . damper at 50% ; _ :
Time: (s)

Figure 5.8 Running variance of four corner accelerations for case 5.4
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In Figure 5.9, it is observed that the relative variance of the front left corner
acceleration is the most sensitive to the fault for obvious reasons. Its magnitude has a
significant reduction of 40%. There are also smaller changes in the other three
relative variances. The relative variances of the front right and rear right corner
accelerations are only slightly varied whereas that of the rear left corner acceleration
is increased by 20% - 30%. The increase of the relative variance of rear left corner
acceleration is because its variance is the largest in the fault condition shown in

Figure 5.8.
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Figure 5.9 Running relative variance of four corner accelerations for case 5.4

Case 5.5: bilinear dampers, one of the dampers in the primary suspension has 50%
damping loss at 5s, a total simulation time of 10s, with 2.5% measurement noise,
vehicle speed at S0m/s.

Computations: running relative variance of four corner accelerations with fault

occurred in the front left damper (2s of data)

The issue of measurement noise and its performance with bilinear dampers are also

considered. Figure 5.10 shows the relative variance results in detecting the bilinear
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damper fault occurred in the front left damper, with an additional 2.5% measurement

noise on all the corner accelerations. It is clear from Figure 5.10 of case 5.5 that the

outcomes have a consistent match with those relative variance changes in Figure 5.9,

hence the effects of measurement noise on the relative variance detection method is

very low. It is also shown that it can work effectively in both linearised and non-

linear systems.

15 . ; ' ; -

1.4 Rear left Acc 1

1.3 o Hyi-’.ﬁ“.-’-*“*""""w“‘

19} ,-...""“f Rear right Acc

Rl Y SR st
1 i s G AR

1
Front right Acc -

0.9t
0.8f Front left Acc
0.7} T ) -
0.6r1 Front “
] - damper at 50% : : 5
LR W e S AR T
Time: (s)

Figure 5.10 Running relative variance of four corner accelerations for case 5.5

5.4 Fault Isolation

The proposed relative variance approach is not only valid for detecting suspension

faults, but also useful in their isolation. This is due to the strong link between the

relative variance of any particular acceleration and the corresponding suspension. To

outline this, the cases of one single damper fault occurring separately in the other

three suspensions are also studied by evaluating their relative variance changes.
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Case 5.6: bilinear dampers, one of the dampers in the primary suspension has 50%
damping loss at Ss, a total simulation time of 10s, with 2.5% measurement noise,
vehicle speed at 50m/s.
Computations: rtunning relative variance of four corner accelerations with fault
occurred in the front right damper (2s of data)
running relative variance of four corner accelerations with fault
occurred in the rear left damper (2s of data)
running relative variance of four corner accelerations with fault

occurred in the rear right damper (2s of data)

Figures 5.11 to Figure 5.13 compare the performances of the relative variance
changes for cases 5.6. It is shown that the change pattern of their relative variance is
different from different faults. The significant reduction in the relative variance of the
acceleration corresponds to the damper fault at the same position, whereas the effect

on the other three relative variances is relatively limited.
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Figure 5.11 Running relative variance of four corner accelerations with front
right damper fault in case 5.6
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Figure 5.12 Running relative variance of four corner accelerations with rear
left damper fault in case 5.6
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Figure 5.13 Running relative variance of four corner accelerations with rear
right damper fault in case 5.6

Table 5.2 confirms how the relative variance performances are affected by each of the
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Table 5.2 confirms how the relative variance performances are affected by each of
the damper faults. The percentages in this table show that each specific damper fault
will only cause a significant reduction in the relative variance of the corresponding
acceleration at the faulty suspension, and there is a clear pattern of the relative
variance change caused by various damper failures. By comparing their different

change tendencies, the all damper faults can be tagged, which makes fault isolation

possible.

Table 5.2 Changes of relative variances for different dampers but at same fault
Ievel (Bilinear, Vs=50m/s)

Faulty damper Front left Front right Rear left Rear right
No fault 99.2% 99.8% 100.2% 100.9%
Front left 64.4% 104.3% 125.6% 105.7%

Front right 103.7% 64.7% 105.9% 125.6%
Rear left 121.2% 107.9% 67.7% 103.2%
Rear right 106.6% 122.6% 103.2% 67.6%

The relationship between the relative variance and the extent of a fault is also
evaluated. Table 5.3 and Table 5.4 give the examples of how the relative variances
(of the bogie accelerations at the front left and rear right damper respectively)
change when.a damper fails partially at different damping coefficients. There is a
clear correlation between the level of the faults and their corresponding relative

variances, which can be useful in the implementation of maintenance on demand in

the future.



Table 5.3 Changes of relative variances for front left damper faults at different

levels (Bilinear, Vs=50m/s)
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Front left Front left Front right Rear left Rear right
75% 80.5% 103.3% 113.3% 102.8%
50% 64.4% 104.3% 125.6% 105.7%
25% 52.4% 102.6% 135.8% 109.3%

0% 47.5% 97.0% 141.3% 115.1%

Table 5.4 Changes of relative variances for rear right damper faults at
different levels (Bilinear, Vs=50m/s)

Rear right Front left Front right Rear left Rear right
75% 102.3% 111.7% 103.0% 83.0%
50% 106.6% 122.6% 103.2% 67.6%
25% 111.2% 131.6% 100.0% 57.0%
0% 115.8% 137.6% 94.4% 50.1%
5.5 Summary

This chapter has presented a supplementary and similarly convenient fault detection
scheme focused on the comparison of the different behaviours of the bogie corner
accelerations. Different with the cross correlation method which investigates the
dynamic interaction change between the basic bogie motions, the relative variance
approach studies the relationship of corner acceleration changes in variance under
different fault conditions. Calculation and comparison of their relative variances at all
the four suspensions reveal a close link between their changes and different fault

conditions, which can be used as an easy way for both fault detection and isolation in

suspension systems.

The feasibility of this technology is evaluated in different conditions and with

measurement noise for non-linearity in the system. Similar with the FDI performance
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using normalised CCF, their results also show the effectiveness and robustness of the
technique as the FDI problem can be simply solved by comparing the relative
variances in most cases, without detailed knowledge of the bogie and external

conditions.
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Chapter 6

Conclusions and Future Work

This dissertation is summarised in section 6.1, and future work is proposed in

section 6.2.

6.1 Conclusions

Focused mainly on the primary suspensions of a conventional bogie railway vehicle,
this research has investigated a novel fault detection and isolation technique, which
is expected to provide improved sensitivity to component faults in the railway
suspension systems. The research methodology is detailed in the chapters and brief

summaries are given here.

Firstly, a side view of a simple bogie and a side and end view of a conventional
railway bogie vehicle were modelled. The suspension systems were reviewed, with
emphasis on the primary suspensions, and the response of the bogie and carbody in
the vertical direction was investigated using a series of irregular track inputs. As the
railway vehicle with conventional bogie design is very popular for passenger

vehicles, its study is essential for improving condition monitoring techniques.

Secondly, based on the simple bogie model, the basic concept of the proposed fault
detection scheme was investigated. The study of the mathematical model revealed an
important property of the vehicle, where symmetric components are commonly used.
The analysis of its dynamic equations shows their basic motions have minimum
interactions unless there is a fault which may deteriorate the balance and magnify

their interactions. The introduction of cross correlation technology can effectively
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improve the detection ability and sensitivity, by detecting the changes caused by the

faulty suspension component at specific time shifts.

Thirdly the cross correlation was studied in order to detect a primary suspension
component fault. Attention was mainly paid to the damper failure in the primary
suspension as this is the most common component fault in railway suspensions. The
basic bounce, pitch and roll motions in the vertical direction were measured directly,
and fault detection was carried out by the correlation computation between the
selected motions with filtering. The performance of fault detection using this
approach was studied between different bogie motions and under different
conditions, the simulation results showed that faults could be detected quickly on the
basis of their corresponding correlation changes. Fault detection performance was
further improved by introducing normalised cross correlation (CCF coefficient),
which can overcome the influence of track irregularities on geometry and speed
change. The CCF coefficient is more robust and effective than the CCF value. The
cross correlation approach also exhibits good performance in dealing with noisy
measurements, performs well in non-linear vehicle systems and also gives equal
detection ability for faults occurred in both bogie, which shows the feasibility and

potential for practical usage.

In addition, a supplementary approach using relative variance was studied. It focused
on the corner suspension accelerations derived from the basic bogie motions. It was
also simply in implementation and sensitive to suspension faults. Affected by a
damper fault, the dynamics and asymmetry of the corner accelerations may change
compared with the nominal fault-free condition. The relationship of their relative
variance changes with the suspension health status was analysed. The detections
were processed under different fault conditions, and their simulation results showed
that the relative variance approach was as robust as that of the normalised cross
correlation approach. It was also proved a reliable method of faults in noisy

measurement environments and for non-linear systems.
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Finally, the fault isolation scheme was developed, in which the results of either cross
correlation or relative variance changes were not only sensitive in fault detection but
also beneficial in fault isolation as each of them is specifically partial to different
suspension changes. The performance of fault isolation was evaluated in different
fault conditions; the pattern of their changes for a designated fault was found to be
unique which indicates that an individual fault can be isolated from the different
change patterns. Using a running scheme, both fault detection and isolation could be

achieved after 2 seconds of the selected time window.

The key points noted from this work can be briefly concluded and highlighted as

follows:

(1) A suspension component fault can unbalance the suspension symmetry, leading
to increased interactions between the selected features. The interaction can be

analysed as a level of indication of the fault.

(2) A fault condition can be detected effectively by monitoring the cross correlation
or relative variance changes directly calculated from the motion measurements under
different vehicle operation conditions. The cross correlation or relative variance
results of different suspension faults show that any individual fault may also be

readily isolated by exploring and comparing their different change patterns.

(3) The proposed methods are very sensitive and reliable in distinguishing different
fault conditions; the use of normalisation and relative quantities enhance the
robustness of the detection schemes against non-fault changes such as the operating

speed and statistical non-stationary of the track irregularities.

(4) The scheme is simple as there is no need to model difficult characteristics for
complex dynamics. The proposed methods take advantages of the vehicle suspension
configurations are often symmetrical, therefore it is largely independent of detailed

vehicle profile and parameters, making it easy to implement and tune in practice.
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(5) The fault detection and isolation scheme based on cross correlation or relative
variance can yield accurate results despite measurement noise from sensors and is

also viable for non-linear systems.

(6) The technique may be equally applied to monitor conditions of other suspension
systems including lateral primary suspensions, secondary suspensions and possibly
extended to report health conditions in other dynamic systems with symmetrical

configurations.

6.2 Future Work

Although the methodology has been well studied, and has verified the cross
correlation or the relative variance approaches as practical tools for the FDI analysis
of suspension systems in railway vehicles, there is still potential for improvement.
Future work is therefore needed to develop the generality, improve the accuracy and

broaden the applicability. This future work includes:

(1) To assess the detection method for other railway vehicles in order to achieve
better and generalised results, this may be applicable to other common passenger

railway vehicles, freight wagons and light trams.

(2) To include the present proposal to track irregularity with gradients, from which
the dynamics of railway suspension systems may be affected; therefore it is useful to

carry out some comparison studies between them.

(3) To verify the accuracy of the proposed approach via experiments, possibly via a
scaled-down test rig firstly, and then followed by the experimentation to a real

railway vehicle.
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Appendix A

The matrix and variables of equation (2.34)

In this appendix each element of the matrices A2 and Bjs used in equation (2.34)

are given, where Ay is a 26x26 system matrix and Bjs is a 16x16 input matrix of

the conventional bogie vehicle, x and u present the state variables and track input

vectors respectively.
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The coefficients in matrices 42 and B, are defined as:

a_, =—4K, + K.,)/m,,
A g =qup = =0 = K, /m,
A =01 = 2K, /m,,

a,, ==K, +K )Ly 11,y

Ay g =Ay40 =—A3 3 =3y = KL, /1,
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Ay46 ==y =2K, Ly 11,
a5 =—4K,+ KL}, 11,
Qs g ==As g =05y =—asy =KLy, /1,
Q5.0 =05 5 =2K L, L, 11,
Ay, =09, =0y, =0a,,=2K,/m,
Ay =0Qg_y=—0a=—a;3,=2K L, /m,
;.6 =—0Ayg = a,.¢=-a53¢=2K,L,, Im,
Ay ==Qys =Agg ==y 5 = Ay = =0 =33 =03, =-2C,/m,
Ay =dg10 =Qyyyy = a3, =—2K, +K,)/m,
Ar16 =g = Ay = a3 =2K, /' m,
Apg9 =—Qg19 =0y 35 =013 55 =-2C. L, /m,
Qy_30 = =G930 = Q)12 =—qj356 =2K,L,, I m,
a5, =0ay,=2K,/m,
Q5. = Ay =2K,L,, /m,
Qs g =Qis9 = Ay =ay3 =C, Im,
Aysg = Ajs.go =gy =y =K, I m,

Aysys =—(Cpy +Cpp +Cp +Cpp +2C, )/ m,
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Q5.6 = Ay = (4K, +2K, + 2K,)/m,
5.7 =—~(Chy, + Crg =Cr, =Crp) Ly I my
Ay5.10 =—(Chy, =Crz + Cp, —Cip) Ly, I m,
a5 ==(Cpy, +Crz =Cpp =Cr)Ly 11,
@y =~(Cpq +Cip +Crp +Coe) Lo 11,
Aprgg =y =—4K, L}, 11,
Qg =0Ays.6 ==2Ly4 Ly, 11,
Agq =01 =Aysy =—0ys3 =C, L, 11,
Qpog = —01g10 =Ays1y ==y 44 =K, L, /1,
Aio.1s =~(Cpp, +Crg =Cr. =Cpe) Ly, 1 1,
Qg9 ==(Cpy +Cpp +Cpy + C,\,R)Lf,y /1,
Ao = 353 =—(4K , +2K, +2K )L} /1,
Ay =—(Ch +Clg +Cpy +Crp +2C, )/ m,
3193 ==(Cly + Cip = Chy. = Cre) Ly Iy
3135 = ~(Cly, = Cin + Cly. = Cie )Ly, I m,
g =—(Cly + Cig = Cho. = Coe) w1

Ayp3 ==(Cly, +Ciz + Chr. +Ch )qu /1,
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Ays.9 ==(Cly +Crg =Cp. =Cre)Ly, 11,
@525 = ~(Chy, +Cip +Cpy +Cia) L3, /1,
and
bs,=C,, I m,
bis.3 =bis.a =bis.6 =bys =byo =byy =bys =bys =K, I m,
bsy =Cix I m,
bis.s =Cp I m,
bis.y =CppIm,
by, =CyL, 11,
biyy =bys ==byg ==byg =by o =by 1y ==byyy ==by s =Ky L, 11,
b,y =Cu Ly 11,
bys ==Cup Ly 11,
by ==Craly 11,
byo,=CpLyll,
bio_y ==bio.s =big.s = =bio_g =by51g ==bys 1y =bysy ==by s =K, L,y 11,
by =—CulL,, /1,

bl‘)—S = CRI. Lby /1 by
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Bio.; ==CprpLs, ! I,
by =Cpy I m,
by =Cix/m,
by =Cp /m,
byras = Cre I M,
by o =Cr Ly 1y
by =ClrLy [y
by ==Cr Ly 1y
bysas = ~CraLly /1
by =Cr Ly, 114,
bysy =—CirlLs, /1,
bysys =Cr Ly, 11,

bysys = ‘C;eRLhy 1 by
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A novel scheme for the fault detection and condition monitoring of vehicle suspensions is presented
in this study. The gew technique exploits the dynamic interactions between different vehicle modes
caused by compoaent fulures in the system, leading to a simple but effective solution. Compared
with many model-based fault detection techniques, the proposed techaique does not require complex
mathematical models of the system and it overcomes potential difficulties associated with nonlinearities
and parameter vanations in the system. The use of inexpensive inertial sensors and ease of tuning make
the practical implementation of the proposed scheme straightforward. A conventional sailway vehicle
i3 used in the study to illustrate the basic ideas as well as the effectiveness of the novel fault detection
method, although the general principle is applicable to other systems.

Keywords: fault detection; suspensions; vehicle dynamics

1. Introduction

On-line fault detection and condition monitoring for dynamic systems are becoming increas-
ingly important because of the potential benefits of detecting component failures at their
early stages, to prevent further deterioration in performance as well as to ensure timely
repair/replacement of faulty components. In the long term, the availability of reliable condi-
tion momitoring systems can replace scheduled regular services with maintenance on demand,
leading to substantial savings in the total life cycle costs.

The most commonly used fault detection schemes directly measure signals using sensors
mounted as close to the point of interest as possible and analyse the data using time and/or
frequency domain signal processing, e.g. to find signatures or footprints related to particu-
lar faults [1,2). The approach of direct measurement requires in-depth understanding of the
system concerned and its effectiveness in fault detection may also be affected by variations
or uncertainties of external conditions such as the level and properties of input signals and
disturbances.
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Model-based approaches compare a real ‘physical’ system with mathematical representa-
tions of the system (the model). Fault detection may typically be achieved by either finding
the coefficients in the models that are associated with particular components using parameter
identification techniques or analysing the difference in measured and estimated outputs (the
residual). There have been a number of studies of the approach for both automotive [3,4,5]
and railway [6,7] applications. Clearly, the development of an appropriate model for model-
based methods is essential, in addition to a detailed knowledge of the system concerned. For
systems that are dynamically complex and‘or nonlinear, model-based approaches may lead
to the use of high-order and’or linearised multiple models which can be difficult for practical
implementation.

This paper presents a novel approach that 1s sumple but very effective for fault detection for
vehicle suspensions, which would not require the knowledge of many of the system parameters
as needed for model-based approaches. The proposed technique is focused on the comparison
of dynamic behaviours between the two suspensions where identical components are normally
used. When there are no faults in the system, it can be readily shown that the bounce and pitch
motions of the bogie (and to a large extent the vertical movements at the leading and trailing
suspensions) are decoupled because of the symmetrical suspension configurations. Therefore,
there is little interaction between the two motions. However, a component failure (e.g. a
damper) in either of the suspensions will introduce an imbalance into the system, resulting in
dynamic interferences between the motions. The level of interactions therefore provides a key
indication of suspension conditions.

Thus paper is structured as follows. The general principles of the proposed detection method
are explained in Section 2. Section 3 introduces a conventional railway vehicle, the mathemat-
ical mode] of which includes the bounce, pitch and roll motions of the vehicle body and two
bogies. The algonithms for the proposed fault detection technique are also given in Section 3.
The performance assessments are grven in Section 4 and main conclusions are described in

Section 5.

2. Basic principle of the fault detection technique

With the help of the side-view model of a simple railway bogie (or truck as known in North
America) as illustrated in Figure 1, the basic principle of the proposed technique for the fault
detection and condition momtoring of vehicle suspensions may be explained by examining
the consequences of a component fault in terms of additional dynamic interactions [8].

The dynamic interactions introduced due to faults in the system are best illustrated using
the equations of motions in the form of pitch and bounce movements of the bogie as given in

Secondary
o J suspension
Direction
of travel 2
—

Figure 1. Side-view diagram of a conventional railway bogie.
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Equations (1) and (2).
myZp + Cpsly + KpsZb + LuxCpato + L Kpady
1 . s ..
=3 [Cpstia + 20) + Kpelza +20) + CpalGa — Z0) + Kpa@a —z0)] + Fa (1)
by + L Cpud + L Kpstv + LixCpaZy + Lox KpaZy

L . . . .
= —29- [CpeGut = 20) + Kps(zn — 20) + Cpalin + ) + Kpa(2u + 20)] @

where

Cou=Cp + 2y Kpa= Ky — K2

Kps = Kpt + K2, Cpa = Cp1 — Cp2.

In most rail vehicles, the same components are commonly used for the two suspensions and
hence the same (or at least closely matched) coefficients are expected. Therefore, in the no-
fault condition (Kp1 = Kp2,Cst = Cs2), Equations (1) and (2) may be simplified to Equations (3)
and (4), which indicate clearly that the bounce and pitch movements of the bogie are largely
independent and there 1s no direct dynamic coupling between the two motions. The main
link between the two is through the track inputs at the leading and trailing wheelsets — the
bounce mode is excited by the sum of the two and the pitch mode by the difference between

the two.
- . 1 . . 1
myly + Cplb + Kpelo = ECps(:tl +20)+ Ekps(:ll + 20) + (Fa). 3)
o 2 . 2 1 - - 1
by + Lh,cps% + Lh, Kpsd’b = E Lbscps(ztl —in)+ EthKps(zll - ). )]

However, in abnormal conditions where the two suspensions become different, the imbalance
between the suspensions causes interactions between the bounce and pitch motions in two
ways. Dynamically, Equations (1) and (2) are no longer independent as two pitch terms appear
in the bounce equation and two bounce terms in the pitch equation. Externally, the bounce
motion is now also affected by the difference between the track inputs at the front and rear
suspensions, which predominantly excites the pitch motion, and the pitch movement is also
affected by the sum of the two input signals, which predominantly excites the bounce motion.
Therefore, the degree of correlations may be used to detect how much imbalance (i.e. due to
component fault) may exist in the system.

In practice, the bounce and pitch accelerations may be readily obtained through the use
of inertial sensors. The two signals may be expressed in the form of transfer functions in
Equations (5) and (6) for the general case from Equations (1) and (2), where the term related
to the secondary suspension force (Fg) is neglected because its effect 1s much smaller when
compared with that of the track input (due to the filtering effect). Note that the last three
terms (in the second line) in both equations are introduced due to the imbalance caused
by a component failure, the first two of which represent a changed response to the track
input mainly at the wheelset where the suspension failure occurs and the third represents the
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additional interaction between the two motions.

1 Cps+Kps Cps + Kin

1
Zus)+ 3

Zols) = 2’ mys? + Cpss + Kps 2’ myps? + Cpss + K Zu(s)
1 deS + Kpd . des + Kpd -
~. Z -=.
t 2 T4 s + Ky 10 2 miosT + Cyus + Ky 2
Lo (Cpas + Kpd)
&
" mpS? + Cpes + K b(5). )
- Ly, Cous + K Ly Cpss + K,
$p(s) = =~ ——F—F Zy(s) - - ——p——F Za(s)
2 K24 LECpus+ LE Kps 2 hs 4 L4,Cpes + 2L Kps
Ly, Cpas + K 5 Ly, Cpds + Kpd =
. Zu(s) + —==. 4
MR L, Cpes + LE, K, HO+ 5 e + L2, Cpes +2L¢, Kps Z2()
Ly, (Cpas + Kpq) .
- B T M Zi(s), ©)
lbs" + LMCP;S + ZLNAP‘
where

A(s) = mys? + Cpes + Ky
Ap(8) = hs? + L, Cpes + LY Kps.
By(s) = Cpss + Kps,

By(s) = Cpas + Kpq.

Substituting Equation (6) into (5) removes the pitch acceleration from the bounce equation and
substituting Equation (5) into (6) removes the bounce acceleration from the pitch equation,
which leads to

" 1 e v
Zy(s) = 3 Go(5) - [G(5) 2y (5) + G1a(5) Za ()], a
$u(s) = Tb - Gols) - [Gn($) Zu (5) — Ga(s) Zo(s)] (%)
where
_ A (5)A4(5)
Gols) = A (s)Ay(5) = LE, By(s)?’
_ 2Cp1-s + Kp1) _ 13 Ba(s)
Gn)=—">5— " ( A505)
2(Cp2- s + Kp2) ( {, Ba(s)
Gre)==—"725 )
= Z(Cpl s+ Kpl) Bd(S)
Gnls) e 1-— (s))
2(0,.2 -5+ Kp) Ba(s)
Guls) Ag(5) (l ta (r))]
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In the balanced condition, i.e. By4(s) =0, Equations (7) and (8) may be simplified into
Equations (9) and (10).

2y(5) = 3+ [6:9)20() + Go(5) Za(s)]. ®
Py(5) = 1‘2—"’ [Ge(5)2u(5) = Gy(5)Zo(s)], (10)
where
G = 0, Gols) = f@‘(’; .

By comparing the two sets of transfer functions between the normal and fault conditions, it is
obvious that the filtering effect of primary suspensions on bogie motions would be different
in different cases. The common term Go(s) is of the unity gain in the no-fault case, but in a
fault condition magnifies the responses in the frequency region around the two bogie modes
(e.g. by up to 66% if the damping constant at one of the dampers becomes 0 and the other
remains as normal). However, the overall effect of this term will be limited as the magnitude
response in the high- or low-frequency regions is almost unity in all conditions.

Equations (7)~10) also show how the bounce and pitch motions are excited by the track
inputs at the two wheelsets. Each of the two inputs influences only one of the two terms
in the dynamic equations through the corresponding suspension. Therefore, changes in one
suspension (e.g. due to component failure) will only be reflected in the corresponding part of
the responses. A reduction of the damping coefficient in the front suspension alters largely
how the bogie bounce mode responds to the track input at the leading wheelset (through Gy,),
but has little effect on its response to the delayed input at the trailing wheelset (through Gia).
On the other hand, a damper failure at the rear suspension affects the bounce motion mainly
through the track input at the trailing wheelset (i.e. through Gi3), but not that at the leading
wheelset (G11). A similar observation may be made on Gy and G for the pitch motion.
The sensitivity for detecting a suspension fault directly from acceleration measurements is
compromised by this ‘partial nonresponse’ to suspension changes.

The proposed new method overcomes the problem of insensitivity (to faults) by detecting
changes in dynamic correlations between the bounce and pitch accelerations, which can be
readily achieved using simple cross-correlation calculations. If X(a, b) is used to denote a cross-
correlation operation of a and b, the following relation may be derived from Equations (7) and
(8) (or Equations (9) and (10)), where g11(9), £12(t), £21(r) and g22(?) correspond to the time
domain representations of the relative terms in the two equations:

XGE@O), ¢0))=Xenu(), —gn())+X@En), 1)
+X(811(), gn()) - X@End¢). gn) (11)

Because profiles of track inputs at the two wheelsets are exactly same and the only difference
between the signals is the time delay (Tg3) determined by the vehicle speed and wheel-base,
£11 and gy are the responses to the track inputs 1 and 2, respectively, and hence the first term
on the right-hand side of Equation (11) should give a peak cross-comelation at the negative
time shift Tuia. Similarly, £12 and g1 are excited by the track inputs 2 and 1, respectively,
and their cross-correlation (the second term on the right-hand side) should peak at the positive
time shift Tenin. On the other hand, the third term should give the maximum correlation at zero
time shifts as g11 and g1 are both caused by the track input 1. The fourth term also peaks at
zero time shift because g13 and g2 are related to the track input 2.
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In the nominal condition (with no faults in the system), the cross-correlations of the bounce
and pitch accelerations are expected to be at the largest values at positive and negative time
shifts (& Tup), but at the minintum (or zero) at the zero time shift. The latter is because the last
two terms in Equation (11) tend to cancel each other out as the two suspensions are the same
and the track inputs are also the same albeit with a time delay.

When one of the suspensions fails, the cross-correlations at the +Tgua may be modified
due to the increased attenuation on the effect of the random track input over a wide range of
frequencies. More critically, the cross-correlations at the zero time shift can be significantly
increased because the asynunetry between the two suspensions removes the balance between
the last two terms of Equation (11) and hence cancellation 1s no longer possible.

Detection and isolation of suspension faults can therefore be achieved by changes at the three
specific time-shift points in cross-correlation calculations. A more comprehensive assessment
of the effectiveness of the proposed fault detection technique 1s carried out using a full bogie
railway vehicle as presented in the following sections.

3. System description and fault detection algorithins

The conventional railway vehicle consists of a body frame and two bogies, a schematic diagram
of which is given in Figure 2. The fault detection of the vertical primary suspensions is studied
to demonstrate the principle and effectiveness of the proposed method, although the techniques
may be extended for the condition monitoring of suspensions in other directions or positions.
Therefore, only motions directly related to the vertical suspensions are modelled, including the
bounce, pitch and roll movements of the body and those of the two bogies, resulting in a nine-
DoF model. The dynamics of the air springs in the secondary suspensions are approximated
using a linearised model. The mathematical models used in the simulation study are developed
in Matlab/Simulink with two different types of dampers in the primary suspension. One is the
linear damper model and the other is a bilinear damper model (with the damping coefficients
in the rebound and compression modes of 1.52C; and 0.48Cs, respectively) - the latter 1s used
to evaluate the performance and robustness of the new teclmiques for nonlinear systems.

A random track, representing the roughness of a typical main line, 1s derived to gue an
appropnate spatial power spectrum (An. / A ) for the track vertical position, which is then
filtered using an additional low-pass filter to take into account the generalised power spectrum
that has higher order tenmns in the denominator.

vy g
1
VA ———
/ g |/ | i
& < . N
éi} / ___%w:___f‘:'_ }udng Bogu Trailing 8090\‘ ...........
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Figure 2. Conventional bogie vehicle for the study.
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The detection scheme involves the use of a single sensor box mounted on the bogie frame
in a centre position to measure the bounce, pitch and roll accelerations of the bogie. The issue
of sensor noises has been considered in the study, but it has been found to have little effect on
the outcome of cross-correlation computations, as sensor noises are relatively small (typically
1%) and more significantly uncorrelated — hence the effect at any spectfic ime shift of the
correlation calculations 1s very low.

The principle introduced in Section 2 may be extended to explore the cross-correlations
between any two of the bounce, pitch and roll accelerations. The results are compared at
three specific time shifts — O time delay for correlations due to the same input excitations and
+/— time delays due to the time difference between the track inputs at the leading and trailing
wheelsets. Equations (12)~(14) give the cross-correlation coefficients between the bounce and
pitch accelerations, between the bounce and roll accelerations and between the pitch and roll
accelerations. The cross-correlation coefficients reflect the normalised correlations between
the two signals and, therefore, are much less affected by the changes in operation conditions
due to a vehicle travelling at different speeds and/or on different tracks where the vibrations
experienced on the bogie frame would vary even when the vehicle condition remains the same.

Spp(k)
V58B(0)Spp (0)

Sgr(k)
V/S88(0)SkR(0)

Spr(k)
VSpp(0)Sgr(0)

The auto-correlation Sy of a signal (x) and the cross-correlation Sy, of any two signals
(x, ») may be calculated using Equations (15) and (16), respectively. For any chosen sam-
pling interval of T, the time window for each cross-correlation calculation is Tw =N*T,
from a total of N number of sampling intervals. The number of shifted intervals k may be
varied from — N to N for a complete set of cross-correlation calculations, although in prac-
tice only values at and near k =0 and & time delay between the two wheelsets (Tn) are of
particular interest for the proposed fault detection scheme.

SCpp(k) = (12)

SCpr(k) = (13)

SCpr(k) = (19)

N

See(0) = )_x(D) - X(0), (15)
=]
N

Sey(k) =Y X(E+K) - ¥ (). (16)
|

4. Performance assessments

There are four primary suspensions on each bogie, identified as front left and front right
at either side of the leading wheelset and rear left and rear right at either side of the trailing
wheelset. The desired output of any effective scheme is not only to detect fault(s) in the system,
but also to identify the location of the fault(s) as well as the degree of failure if possible.
Figures 3—5 show the normalised cross-correlations (i.e. the coefficients) between the bogie
bounce and pitch accelerations, that of bounce and roll motions and that of pitch and roll
motions, respectively, where three different conditions of the front left damper are compared:
(1) no fault, (2) damping coefficient set to 50% of its normal value and (3) complete failure
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Figure 3. Cross-comelation of the bounce/pitch accelerations (fault at the front left suspension).
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Figure 4. Cross-correlation of the bounce/roll accelerations (fault at the front left suspension).

of the front left damper. The vehicle speed is set at 50m/s, as in most other cases unless
indicated otherwise. The time delay from the leading wheelset to the trailing one 1s calculated
asOOSsﬁorthewheelbaseofz 5 m. A second-order band stop (notch) filter is also used in data

processing before cross-correlation calculations and is tuned to have the low and high cut-off
ﬁaqamesat?mdzol-lz,respecuvely between which natural frequencies of the bogies
modes are normally found. The use of the filter is to reduce the effect of increased resonance
of the bogie modes due to the reduced damping by the damper failures, as the associated
oscillations in the cross-correlation results can cause difficulties in detecting changes at the
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Figure 5. Cross-correlation of the pitch/roll accelerations (fault at the front left suspension).

The most significant changes in Figure 3 appear at the zero time shift. The correlation
between the bounce and pitch motions is increased (in negative direction) from around zero in
the normal condition to about — 0.25 when the damping constant is reduced to 50% and further
to — 0.45 for the complete damper failure. For the cross-correlation between the bounce and
pitch in Figure 4, however, the most sensitive point to the fault is at the positive time shift
of 0.05s where a similar pattern of changes 1s obtained — the time of 0.05s is significant
because it defines the relationship to the wheel-spacing and vehicle speed. The changes in the
cross-correlation of the pitch and roll accelerations are also at the positive time shift, but it is
increased in the positive direction as shown in Figure 5.

When a fault occurs at a different suspension, the changes i cross-correlations are equally
sensitive, but appear in different ways. For example, for a fault at the front right suspensions,
the cross-correlations (that wnvolve the roll accelerations) at the positive time shifts are in the
opposite direction to that in the case of the fault at the front left suspension. For a fault at
the rear left suspension, the increase (due to fault) in the cross-correlation of the bounce/pitch
motions is in the positive direction as opposed to the negative direction in the previous two
cases and the most significant changes (due to fault) in the cross-correlation of the bounce/roll
motions are at the negative time shift of 0.05s.

A full assessment for different faults 1s given in Table 1, where only the results that are
affected by faults are shown and the most sensitive ones highlighted in bold. It 1s clear from
the table that not only different faults may be 1solated using a combination of two or three cross-
correlation calculations (and their results at different time shifts), but also a strong correlation
exists between the degree of damper failure and the cross-correlation values, although the
relationships appear to be nonlinear.

The proposed fault detection method remains effective when there are nonlinearities in
the system. For a bilinear damper with the damping coefficients in the rebound and com-
pression modes of 1.52Cs and 0.48C;, respectively, Figures 6 and 7 show the normalised
cross-correlation of the bounce/pitch accelerations and that of the bounce/roll motions respec-
tively, which indicates a similar level of sensitivity to the fault compared with results from
the linear dampers as in Figures 3 and 4. A full assessment of different faults with the bilin-
ear damper 15 given in Table 2, and again the same pattern of changes to any possible fault
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Table 1. Cross-correlation coefficient values (with the linear damper).
Bouance/pitch Bounce/roll Pitch/roll
Negative 0Os Positive  Negative Os Positive  Negative 0s Positive
Nommal —0.50 - 0.03 +0.49 —0.03 — 0.05 -0.02 —0.03 +0.02  +0.02
CrL 75% —0.48 -012 +0.49 —-032 -—-049 —-050 4048
Crr 50% —0.46 -022 +0.48 -028 -057 —049 4056
CrL 25% —-0.43 - 031 +0.47 -022 —061 -04 4060
Cr 0% —038 —-041 +043 —-014 063 —~036 +064
Crr 75% —0.48 -012 +0.49 +027 4047 +052 —046
Crr 50% —0.46 -022 4048 +025 4056 +050 ~055
Crr 25% —0.43 —-032 +046 +0.19 +061 +045 ~0.59
Crr 0% —0.38 —-041 +0.43 +012 4064 +037 —063
Cr1 75% - 0.50 +006 +048 - 038 ~0.42 - 057 +0.40
Cry 50% - 0.50 +016 +046 - 046 —0.40 - 0.66 +0.37
CrL 25% - 0.48 +026 +043 - 051 - 0.34 —-0.70 +0.30
Cr1 0% —0.45 +035 +038 - 0.56 - 0.26 -0.73 +0.22
Crr 75% - 0.50 +006 +048 +0.37 +0.38 +0.33 —~0.39
Cgg 50% - 0.50 +016 +046 +045 +0.38 +0.65 -~ 0.37
Crr 25% —0.48 +026 +043 +0.50 +0.32 +0.69 -0.30
Crr 0% —0.45 +035 4038 + 058 +0.25 +0.73 -0.22
1 v v
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Figure 6. Cross-correlation of the bogie bounce/pitch accelerations (with a bilinear damper).

conditions is observed. Compared with modern model-based fault detection schemes, there
is therefore a clear advantage of the proposed technique that it works well without the need
for modelling often complex and sometimes difficult nonlinear characteristics which exist m
many dynamic systems.

The proposed method reveals a general link between the level of dynamic imbalance m
the system and the cross-correlation calculations, although the relationship appears to be
nonlinear as mdicated in the tables. In practice, some level of asymmetries may exist even
in normal conditions as the suspensions cannot be assumed to be perfectly identical. This
problem of normal asymmetries may be overcome in practice by detecting derivations of the
cross-correlations from the original/normal conditions.
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Figure 7. Cross-correlation of the bogie bovnce/roll accelerations (with a bilinear damper).
Table 2. Cross-correlation coefficient values (with the bilinear damper).
Bounce/pitch Bounce/roll Pitch/roll
Negative Os Positive  Negative Os Positive  Negative Os Positive
Normal - 0.49 —-002 4048 -0.03 —-004 -0.02 - 0.01 +0.02 +0.01
CrL 75% - 0.47 -011 4048 -028 -—042 -042 4041
CrL 50% — 045 -~021 4047 -027 ~033 —-045 4032
CrL 25% ~0.42 -031 4045 -022 -059 —0.41 +0.58
Cr 0% ~ 037 -041  +042 ~0.15 —0.62 —~034 4061
Cer 75% ~0.47 -012 4048 +024 4040 +044 —041
Crr 50% - 0.45 -021 +047 +024 4052 +047 -032
Crr 25% —0.42 - 031 +0.45 +020 4058 +0.42 —-0.57
Crr 0% ~-0.37 -041 4042 +0.13 +061 +034 —-061
Crr 75% - 0.49 +007 047 -0.33 -0.35 - 0.47 +0.35
Crr 50% - 049 +017 4045 —0.43 - 036 - 0.60 +036
Cgr 25% — 047 +027 +041 —0.48 —~031 - 0.65 +0.31
Crr 0% —~0.44 +037 4037 —0.53 - 023 - 0.69 +0.23
Car 75% —0.49 +007 +047 +0.30 +031 + 047 —-0.34
Czr 50% ~0.49 +017 4045 + 041 + 034 +0.59 —0.35
Czr 25% - 0.47 +027 4041 +0.47 +0.29 +0.65 -~ 0.30
Czr 0% —0.43 +037 +037 +0.52 +0.22 + 0.69 -0.23

For on-line real-time detection, running cross-correlation coefficients with a moving time
window of fixed duration may be used to monitor the changes at the three specific time shifts.
Figures 8—10 show the normalised cross-correlations of the bounce/pitch, bounce/roll and
pitch/roll accelerations, respectively, where a partial fault at the front left suspension is set at
5s; a second fault at the front right suspension 1s set at 10s and a third fault at the rear left
suspension 1s set at 15 s. For clarity of the figures, only the results that are most sensitive to

the set fault conditions are shown.

In Figure 8, the cross-correlation between the bounce/pitch motions is increased in the
negative direction at 5 s for the first fault (in one of the front suspensions) and further increased
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Figure 8. Running cross-correlation coefficient of the bogie bounce/pitch accelerations (with a bilinear damper).
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Figure 9. Running cross-correlation coefficient of the bogie bounce/roll accelerations (with a bilinear damper).

at 10 s due to the second fault (also in the front suspensions), as the fault worsens the asymmetry
in the pitch direction. When the third fault occurs at 155, the cross-correlation 1s actually
improved because the imbalance between the front and rear suspensions is made less severe
for the pitch mode.

In Figure 9, the changes in the cross-correlations indicate that an asymmetry between the
left and night suspensions exists when there is a fault at the front left damper only (between
5 and 105s) or when the fault on the one side of the bogie is more severe than the other side
(after 155). Before 5 s and between 10 and 155, the bogie is balanced in the roll direction and
the cross-correlations are close to zero. A simular scenario is observed in Figure 10, where
the cross-correlations also reflect the level of the roll motion imbalance in the system. The
asymmetry in the pitch motion appears to be only sensitive to the bounce/pitch correlation.
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Figure 10. Running cross-correlation coefficient of the bogie pitch/roll accelerations (with a bilinear damper).
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Figure 11. Running cross-correlation coefficient of the bogie bounce/pitch accelerations (with a bilinear damper,
at 25 m's).

Because of the normalisation, the cross-correlation coefficients are insensitive to changes in
the vehicle speed. Figures 11-13 show the same cross-correlation results as in Figures 8-10,
but at half of the speed (25 m/s). Although the track input excitation becomes much smaller
at the lower speed, only munor differences may be observed between the two sets of results.
This 1s significant because it implies that fault detection 1s largely independent of the input
excitations and therefore the use and tuning of thresholds for fault detection can be made
easier regardless of the vehicle operation conditions such as speed.

Comparisons with other (more conventional) fault detection schemes have suggested that
the new method can be significantly more sensitive to suspension faults, e.g. the relative
sensitivity of a detection based on rms accelerations is about 10% for a half-failed damper
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Figure 13. Runnung cross-comrelation coefficient between the bogie pitch and roll accelerations (with a bilinear

damper, at 25m’s).

when compared with 20% or better for the proposed technique — more detailed information
may be found in [9].

5. Conclusions

Effective fault detection and condition monitoring of vehicle suspensions do not necessanly
require soplusticated and/or difficult to implement techniques. This paper has presented a
radically new method based on cross-correlations between the measurements from bogie-
mounted mertial sensors. A detailed analysis of the proposed detection method has been
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provided, which 1s backed up wath simulation results using the models of a conventional bogie
railway vehicle.

The proposed method has been shown to be very sensitive in distingwishing different fault
conditions. It 15 robust and advantageous in dealing with complex dynamic and nonlinear
systems, as there 15 no need to model (and use in the detection) those dufficult charactenistics.
The measurements required for the detection techmque are simple and inexpensive to obtain.
The scheme 1s simple and largely independent of vehicle configuration/parameters, and hence
easy to implement/tune in practice.

Although the vertical primary suspensions are the subject of this study, the technique may
be also applied to detect faults 1n lateral primary suspensions and in secondary suspensions
and possibly extended to momitor the conditions in other dynamic systems with symmetrical
configurations — more detailed work would be needed for different applications.

Further work 1s now focused on the development of a scaled-down test nig to venify exper-
imentally the proposed detection method and to demonstrate the effectiveness of the new
condition monitoring approach.
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Appendix 1. Symbols and parameters

Cpi-Cp2 damping coefficients at the front and rear primary suspensijons
I pitch inertia of bogie

Kp1 Kp2 spring stiffnesses of the front and rear primary suspensions
Lox balf-axle space of the bogie

LyxLy hatf space of the vehicle body (pitch and roll directions)

mp bogie mass

2.0 vertical track inputs at the front and rear wheelsets
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This puper presents a novel method for the fault detection and condition monitoring of rail vehicle
suspensions. The proposed technique takes advantage of the vehicle (suspension) configurations that
arc often symmetrical, and cxplores the additional dynamic interactions between different motions of
a bogic or body caused by the failure of suspension components. The basic principle of the proposed
detection method is presented and the interactions duc w suspension fault conditions are analysed
using a conventional two-axle bogie. Side-view models of a bogie vehicle are used in the study to
demonstrate the cffectiveness of the novel method in detecting damper faults in the suspensions. Both
lincar and bi-lincar dampers are studied.
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1. Introduction

On line fault detection and condition monitoring for rail vehicles offer a number of ben-
efits to railway systems/operations. Detection of component failures at their early stages
will prevent further deterioration in vehicle performance and enhance vehicle safety. Timely
repair/replacement of the faully components will lead to increased operational reliability and
availability. The need for scheduled maintenance and associated costs can be significantly
reduced. because maintenance in the future may be carried out on demand.

The condition monitoring systems developed so far in rail vehicle applications are mainly
based on the direct measurement of relevant signals which are analysed using time and/or
frequency domain signal processing, e.g. to find features or signatures related to particular
faults [1.2]. There are some recent studies that look into parameter identification and estimation
techniques based on physical models of the vehicles [3-7). Those model-based techniques
compare a real system with a mathematical model of the system, and the performances are
therefore affected by the appropriateness and complexity of the models.

This paper presents a novel approach that is simple but very effective for the detection
of suspension faults. The new detection method requires very little knowledge of the system
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(i.e. the bogie), apart from some basic parameters such as vehicle travelling speed and distance
between suspensions. The proposed technique is focussed on the comparison of dynamic
behaviours between the two suspensions where identical components are normally used. When
there are no faults in the system, it can be readily shown that the bounce and pitch motions of
the bogie (and to a large extent the vertical movements at the leading and trailing suspensions)
are decoupled because of the symmetrical suspension configurations. Therefore, there is little
interaction between the two motions. However, a component failure (e.g. adamper) in either of
the suspensions will introduce an imbalance into the system, resulting in dynamic interferences
between the motions. The level of the interactions therefore provides a key indication of
suspension conditions.

The basic idea of the proposed technique is explained in Section 2, with the help of a
conventional bogie. In Section 3, the side-view models of a full bogie vehicle are used to
demonstrate the effectiveness of the proposed technique in monitoring hydraulic dampers
used in primary suspensions. Non-linearity of the dampers and associated fault detection are
considered. Practical issues such as sensing and data processing are also discussed. Main
conclusions are described in Section 4.

2. Concept of the detection method

The principle of the proposed technique can be illustrated by using the side view model of a
single conventional bogie as shown in Figure 1. Standard dynamic equations for the bounce
and pitch motions of the bogie may be readily derived and can be found in many references,
as given in Equations | and 2. From the two equations, it is clear that there are no direct
interactions between the bounce and pitch movements of the bogie. The main link between
the two is through the track inputs at the leading and trailing wheelsets—the bounce mode is
excited by the sum of the two and the pitch mode by the difference of the two. Also the force
from the secondary suspension only affects the bounce motion and not the pitch.

mpZp +2C2 + 2Kpzp = Cp(Zn + 22) + Kp(zn + 202) + (Fa) (n
Iy +21.2.Cob, + 2L Koty = LisCpl@n —20) + Lac Kz —2:2) )

where C,, damping coefficient of primary suspensions (nominal); Fy, Force exerted on the
bogie from the secondary suspension; [, the bogie (pitch) moment of inertia; L, , semi wheel
space; m;, the bogie mass; K, stiffness constant of primary suspensions (nominal); z,, bogie

Secondary
‘ suspension
Direction of
travel

s 7
Ao,

Figure 1. Side view diagram of a conventional railway bogie.
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bounce displacement; &, bogie pitch (angular) displacement; z,,, z,;. track vertical displace-
ment at the leading and trailing wheelsets.

However, Equations 1 and 2 are only valid when the stiffness constants and the damping
coefficients at the two primary suspensions are the same, which is the case in most vehicles
under the normal circumstances. For the case where the two suspensions may not necessarily
have the same values, two more generic equations (Equations 3 and 4) can be derived. The new
equations show clear interactions between the two motions, as the pitch movement affects the
bounce mode and vice versa. Therefore, the degree of correlations may be used to determine
how much unbalance (i.e., due to component fault) may exist in the system,

mb:;b + (Cpl +Cp.'!) ‘ éb + (Kl’l + KpZ) -2+ be . (Cpl - CpZ) '¢b
+ Lpy - (Kp1 — Kp2) < ¢pp = Cpy 2+ Kpt 2 +Cpa- 2020 + Kp2 -2+ (Fq)  (3)

Ly + LE(Cpt +Cp2) - @y + L2 (K1 + K p2) @1 + Ly - (Cpt = Cp2) - 2

+ L[,,, . (Kpl - Kp2.) cIp = beCpl : itl + beKpl R4 B qucrﬂ ' 2!2 - Lb.thl 5]
4)

where C,;. Cp2, damping coefficients of (front and rear) primary suspensions: K. K ..
stiffness constants of (front and rear) primary suspensions.

The dynamic equations can be manipulated and expressed in terms of the bogie motions at
the front and rear suspensions, i.e. 25 + L@ and 2, — Lp®s, which are shown in Equations
5 and 6. The two equations are almost identical in structure and also in parameters if the two
suspensions are the same. The main difference is that the input of Equation 6 is that of Equation
5 delayed by the lagging lime of the trailing wheelset to the leading one (ie. T = 2L,/ V,).
Therefore, the responses of the bogie at the front and rear suspensions will be very similar
and will have a fixed time delay determined by the wheel-space and vehicle speed, unless a
fault occurs and the suspensions become asymmetrical. The level of difference between the
two responses may be used to determine the health conditions of the system.

as I hed . .
['anb + ?;—bed’b] +2C, {Zb + be%] + 2Kt (26 + Locis)
“bx

=2Cp1 - 20 + 2Kp1 - 20 + (Fy) )

- I hed Ld .
[mblb - Zg—l-b.‘%] +2C [Zb - be%] +2K 52 (25 — Los9s]
bx

= 20,,2 . i,z + 2K,,2 - Zin + (Fy) (6

The above analyses provide a useful insight for the development of the proposed fault detec-
tion method which is illustrated in Figure 2. Only the two accelerations at the leading and
trailing suspensions (or the bounce and pitch accelerations) are required in this example. The
measured signals will be processed to derive the level of the interactions by computing the
cross-correlations between the two measurements, taking into account the time shift between
the track inputs at the two suspensions. As it will be shown in the next section, the detection
scheme is highly sensitive to component faults (partial or complete). with a large change in
the cross-correlation calculations within 1-2s of a fault occurring.
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Figure 2. Block diagram of the proposed fault detection scheme.

3. Assessment of the fault detection technique

The side view models of a conventional bogie vehicle are used to study the effectivencss
of the proposed fault detection method, which include the bounce and pitch motions of the
body frame and the two bogies. Linear dampers in the primary suspension are first studicd,
followed by an investigation for bilinear dampers. The track irregularities of a typical main
line are generated in the simulation to give an appropriate spatial power spectrum (A, /f°)
for the track vertical displacement. The vehicle speed of SO0m/s is used in the simulations.
The leading bogie is used in the study for the simulation of damper faults and assessment of
different fault detection possibilities, but the outcome will equally applied to the trailing bogic.

Figure 3 shows the acceleration and its running rms (x2) just above the front suspension of
the leading bogie, and Figure 4 gives those for the rear suspension. To simulate fault conditions.,
the damping coefficient of the front suspension is reduced to 50% at the time of 6s and that
of the rear suspension at 12s. The reduction in damping has an effect of better filtering of
high frequency excitations from the track, at the expense of a worse resonance of the bogic
modes. The overall responses to the random track data used in the study are reduced at 6 s
for the front acceleration and 12 s for the rear acceleration as indicated in the figures. It may
be possible to use the acceleration measurements as indicator of suspension conditions, either
by computing the running rms or using its frequency responses. Rows 2 and 3 in Table |

Time r;istory
| wememe= Running rms (x2)

g ‘ i

Acceleration (m/s*2)

2 i 6 8 10 5 R 18
Time (s)

Figure 3. Acceleration above the front primary suspension.
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Figure 4. Acceleration above the rear primary suspension.

Table 1. Comparison of different detection options, in % (lincar dampers).

No fault 1 fault 1 fault 2 tault

(%) (50%) (25%) (50%)

Rear acceleration 100 98.05 99.71 63.88
Bounce acceleration 100 82.50 82.36 60,20
Pitch acceleration 100 88.47 90.80 70.93
CCF. front and rear accelerations (at —0.05 s time shift) 100 55.51 3043 4095
CCF. front and rear accelerations (at zero time shift) 100 81.79 87.80 55.12
CCF. bounce and pitch accelerations (at —0.05 s time shift) 100 58.42 3647 44.76
CCF, bounce and pitch accelerations (at zero time shift) 100 —497.86 —492.39 214.50
CCF, bounce and pitch accelerations (at +0.05 s time shift) 100 42.71 246 30,00

show how the rms values of the two accelerations are affected by the fault dampers. When
the damping coefficient in the front suspension is reduced to 50%, the acceleration at the
suspension is reduced to about 76% — a change of 24%. For the rear suspension, when its
damping coefficient is reduced by 50%, the acceleration is reduced to about 68% — a change
of 32%. However, when the damping coefficient is reduced to 25%, the acceleration is actually
slightly increased (to 78%) caused by the increased resonance. Additional measures may he
used to improve the reliability, but the sensitivity to damper faults is clearly less than desirable
to obtain a robust detection for the faults.

Rather than the use of absolute signals directly from the acceleration measurements. the
cross-correlation method explored in this study makes relative comparisons between two
measurements and hence reduces the effect of the factors that influence both outputs. Figure 3
shows the cross-correlation between the two accelerations at the front and rear suspensions.
When there is no fault, the two accelerations are largely independent as explained earlier with
the help of Equations 5 and 6. The track input to the two dynamic equations is the same. but
at the time difference of 0.05 s (for the semi-wheel space of 1.25 m and the speed of 50 m,s ).
Therefore, the cross-correlation is the highest at the time shift of —0.05 s when there is no
fault, but reduces to 56% when the front damper is reduced to 50% and to about 41% when
the second damper is also reduced to 50% (see also Table 1) due to a combination of the
increased interactions and reduced accelerations. There is a sjmilar pattern of change (but less
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Figure 5. Cross-correlation of accelerations at the front and rear suspensions.

obvious) at the zero time shift, which is caused by additional interactions from the non-uniform
distribution of the bogie mass (my, # s/ LE,. see Equations 5 and 6) and effect of the vehicle
body and secondary suspension.

Different degree of a damper failure is also clearly reflected in the cross-correlations as
demonstrated in Figure 6. The peak value at the time shift of —0.05 is reduced from 100% 10
about 56% and 30% as the damping coefficient is reduced to 50% and 25%, respectively. In
both Figures 5 and 6, the effect of reduced damping on the bogie modes in the fault conditions
is evident which appears as a sinusoidal waveform of around 12 Hz.

Altematively, the bounce and pitch accelerations may be considered for the computation ol
the cross-correlations. The rms values of those two measurements are even less sensitive 1o
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Figure 6. Cross-comrelation of accelerations at the front and Fear suspensions.
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the fault conditions than those of the front and rear accelerations — see rows 4 and 5 of Table 1.
but their cross-correlations are more revealing.

Figure 7 compares the cross-correlation in the no fault condition with that in one fault and
two faults, and Figure 8 shows how one fault at a different level affects the outcome. As the
bounce mode is excited by the sum of the two track inputs and the pitch by the difference
of the two, peak values occur at both negative (cross-correlation of input 1 and input 2) and
positive (cross-correlation of input 2 and input 1) time shift of 0.05s. The pattern of change
to the fault conditions is similar to that in the previous case.
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Figure 7. Cross-correlation of the bogic bounce and pitch accelerations.
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Figure 8. Cross-correlation of the bogie bounce and pitch accelerations
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However, the cross-correlation at the zero time shift shows a large (negative) pulse only
when there is an asymmetry between the two suspensions. In the normal condition or with
the same fault in the two suspensions, there is no spike at the zero time shift at all. This is
because the cross-correlation of the bounce and pitch motions due to the track input | (at the
front suspension) cancels that due to the track input 2 (at the rear suspension) in the balanced
conditions, whereas interactions between the two motions due to asymmetry in the suspensions
causes a bias. The change at the point of zero time shift is far more sensitive than those at the
time shift of +/—0.05s, and therefore can potentially provide a far more useful means for
fault detection.

Similar to the previous case, there is a sinusoidal component of around 12 Hz in the cross-
correlations which becomes more significant as the damping reduces. This component itsel!
may be used to detect the damping level in the system, but it would improve the sensitivity and
reliability for the detection based on the cross-correlation values at the specific time shifts. if
the lower frequency component can be removed from the cross-correlations.

For real time condition monitoring of the suspensions, running cross-correlations may be
used. Figure 9 shows the running cross-correlations of the bounce and pitch accelerations.
where the three traces are for the positive time shift of 0.05 s, zero time shift and negative
time shift of 0.05s, respectively. Between the three traces, the normal condition, one fault
(of the front damper at the time of 6s) and the second fault (of the rear suspension at 12s)
can be clearly identified. In the fault condition, the cross-correlations are of high magnitude
at the positive and negative time shifts and low at the zero time shift. With one fault, the
cross-correlation at the zero time shift becomes high while the other two become low. In the
two fault condition, the cross-correlations in all three traces are low.

The proposed fault detection method remains equally effective when there are severe non-
linearities in the system. In this study, a bilinear damper with the damping coefficients in the
rebound and compression modes of 2.56 C; and 0.8 C;, respectively, is used. Figures 10and | |
show the cross-correlations of the bounce and pitch accelerations, which indicate even better
sensitivities to the different fault conditions. At the point of zero time shift, the difference
between the symmetrical and asymmetrical suspensions is more than 50 times. No additional

- Front damper to 50% Rear damper to 50%

1 x 10
08 \
06

\ +0.058 time shift
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0 +

Zero time
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04 "
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2 4 6 8 10 12 14 16
Time Shift: (s)

Figure 9. Running cross-correlation of the bounce and pitch acceleration:.
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Figure 10. Cross-correlation of bounce and pitch accelerations, with bilinear dampers.
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Figure 11. Cross-correlation of bounce and pitch accelerations, with bilinear dampers.

processing of data is needed in this study, which is an advantage compared to the model-based
techniques where a far more complex solution would normally be needed.

The running cross-correlations in Figure 12 also demonstrate a high level of consistency
for the detection of different faults in the suspensions, indicating no fault (high magnitude
at the time shifts of +/—0.05s and low at zero time shift), one fault (high magnitude at the
zero time shift and low values at the other two) and two faults (low values in all three traces ).
Clearly there is no adverse effect on the effectiveness of the detection methods from the use
of the bilinear dampers.

Detailed numerical comparisons are provided in Table 1 (tor the linear damper) and Table 2
(for the nonlinear damper).
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Figure 12. Running cross-correlation, with bilinear dampers.
Table 2. Comparison of different detection options, in % (bilincar dampers).
No fault | fault 1 fault 2 fault
(%) (50%) (25%) (50 )
Front acceleration 100 60.91 51.29 55.06
Rear acceleration 100 96.30 95.81 52.19
Bounce acceleration 100 7954 75.07 52.17
Pitch acceleration 100 B0.68 T7.12 54.04
CCF. front and rear accelerations (at —0.05 s time shift) 100 49.71 23.87 28.04
CCF. front and rear accelerations (at zero time shift) 100 65.78 60.71 29.90
CCF. bounce and pitch accelerations (at —0.05 s time shift) 100 49.96 2531 28 %2
CCF, bounce and pitch accelerations (at zero time shift) 100 —8378 —9900 323
CCF, bounce and pitch accelerations (at +0.05 s time shift) 100 48.56 17.75 26.80

4. Conclusions

This paper has presented an effective method for the fault detection and condition monitoring
of railway suspensions using cross-correlations between the measurements from two bogic
mounted accelerometers.

The proposed method has been shown to be very sensitive and reliable in distinguishing
different fault conditions. It is robust and advantageous in dealing with complex dynamic and
non-linear systems, as there is no need to model (and use in the detection) those difficult char-
acteristics. The measurements required for the detection technique are simple and inexpensive
to obtain. The scheme is simple and largely independent of vehicle configuration/parameters.
and hence easy to implement/tune in practice.

Although the vertical suspensions are the subject of the study in this paper, the technique
may be equally applied to monitor conditions of other suspensions where the interactions may
be introduced by the component failures including primary. secondary, vertical, and lateral
suspensions.
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Abstract: This paper studies a new approach for the condition monitoring of railway vehicle suspensions
based on the comparnison of dynamic behaviours between the suspensions where same components are
nommally used. The techniques requires the use of a sensor box mounted on the bogie to measure the
bounce. pitch and roll accelerations which can be used to denive the accelerations at the four comers
above the suspensions. The denived data are then processed using relative vanance algonthms. The study
will show that these is a close relationship between the relative variances and component faults (and
location of the component faults) and that the detection and isolation are sensitive to faults, but do not
require detailed knowledge of the vehicle/bogie and external conditions (e.g. track inputs).

Keywords: damper, fault, detection and isolation, relative variance.

1. INTRODUCTION

Components of the suspension systems have significant
influence to the performance of a railway vehicle. The
unexpected component fault may deteriorate the ride comfort,
increase the wheel and rail wear and endanger the passenger
safety (Gillespie. 1992). This study 15 focussed on the
detection of damper failures which occur due to the wear of
the seals and the loss of oil etc (Weisppenning, 1997). Rapid
and effective supervision system in detecting and locating the
fault(s) 1s therefore highly desirable to mprove the vehicle
reliability and reduce the mamtenance cost.

There have been recent studies of condition momtonng
techniques for vehicle dynamics, most of which are targeted
for automotive applications. A lot of research has been
focussed on the model-based methods which include the
parsmeter estimation. state estimation and panty equation
checks etc (Brunt of ai., 2007; Charles, of al., 2006; Goda, ot
al.. 2004, Goodall, 2006, Isermann, 2006; Li, er al., 2004;
Willsky, 1976). There are also more empirical approaches

using direct processing techniques to subtract particular
signatures or frequency features in the measured signals
(Suader. ¢t al., 2001).

However, this paper proposes a new approach focused on the
comparnison of different performance from the bogie corer
accelerations, which can be easily denived from the
measurable bounce, pitch and roll accelerations. The idea is
based on the observation that the dynamic symmetry is
removed if any one of the four suspensions (at the four
corners of a bogie) becomes faulty, leading to increased
dynamic mteractions between different bogie modes and in
particular changes of dynamic behaviour of the suspension
concerned. Computation and comparison of relative variances
of the bogre accelerations at all four suspensions reveal a
close link of the vanances to different fault conditions which
are exploited in this study in the fault detection and isolation
for the vehicle suspension systems.

2. MATHEMATICAL MODELLING

#Right

Froat ... 7:;... Rear

Fig 1. A comprehensive conventional vehicle in vertical dynamics
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Figure 1 gives a simplified diagram of a conventional railway
bogie vehicle used m the stady. which consists of a vehicle
body. two bogies. two sets of airspnings for the secondary
suspensions (between the bogies and the body frame) and
four sets of primary suspensions on each of the two bogies
connected the bogie to four wheelsets. Only vertical
springs/arspnngs and dampers are shown and studied,
although in practice there are also longiudimal. lateral and
yaw dynamics. Because the study 15 aimed at monitaring of
the vertical suspensions. only motions affected by the
suspensions are considered. 1.¢. three degrees of freedom 1n
bounce. pitch and roll directions for the body and the boges.
The mathematical models of the leadng bogie are given 1
equations 1-4. where bounce, pitch and roll motions are
converted to the vertical movements at the four suspensions.
Models for the other bogie and for the body frame have also
been developed and used in the simulation.

In general. the bogie modes have a relatively high frequency
range of around 10 Hz (or higher) whereas the body modes
tend to have a lower frequency of around | Hz, as indicated
in Table 1. The lower frequency of the body modes also is a
factor that the transnutted force from the bogies to the body
via the secondary suspension be much lower than that via the
pnmary suspensions. Consequently the effect of the
secondary suspension forces Fy or Fy will be negligible
compared to that of the prnimary suspension forces i the
development of the proposed condition monitoring method.

Table 1. Natural frequency and damping of a bogie

-vehicle

Freq. (Hz) Damping
T Bounce 10.57 023
f:;ﬂ: Pitch 14.07 032
Roll 1479 031
Bounce 0.68 0.16
Body ol 0.84 0.19
Mode Roll 084 019
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4
where
Cr1, Crpy Cap, Cap — Front left, front right, rear left, rear night
dampings of leading bogie
FoF,— Additional forces from the secondary suspension
I, I, - Pitch and Roll inertia of bogie
Kp ~ One spning stiffness of primary suspensions
L L, - Half wheel space of the vehicle bogie in pitch and roll
directions
m, - Mass of bogie
2uL Zu Zup Zex - Front lefl, front night, rear left, rear right track
wnputs of leading bogie.

In practice, the basic movements of bounce, pitch and roll
can be measwed from a solid sensor box (with
acceletometers and gyros) mounted onto the bogie frame
(Charles, et al., 2006). The accelerations of the bogie above
the four suspensions may be easily denived using the output
signals from the three sensors and bogie geometrical
parameters as given m equations 3-8,

Ep=i L, tL -V, &)
bn =5+l -$-1, -y, ®
Ew ==L +L, ¥, m
tm=5-L, #-L, ¥, ®

where 2, &) ¥4- bounce, pitch and roll motions of a bogie

3. SCHEME OF THE PROPOSAL METHOD

Figure 2 shows a block diagram of the proposed technique
for detecting and 1solating damper faults m the primary
suspensions, which may be implemented in three stages. The
first stage will be to denive the bogie accelerations at the
positions above the four pnmary suspensions from bounce,
pitch and roll motions using equations 3-8.
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Fig 2. Proposed Condition Momitoring Scheme

Vanances of the four accelerations can then be calculated
with a fixed number of samples (1.e. fixed tme wmdow) as
shown m equations 9-12, which may be implemented online
with a running (1. shiding) ime window.

ren-l S

V)= T (Enl)-2p) /n (©)
Tt
ken-l o

Vp®) = 3 Gnl)-in)’ /n (10)
-t
ken=l

Vp®) = Y Cyl)-iy) /n an
=t
Rea-l (12)

Va®) = T Eul)- ) /n
£

It is possible to use the varance values for fault detection, as
any change 1n suspension conditions will have a direct effect
on the bogie accelerations especially at the location of the
comesponding suspension. However, there are other factors
which may also affect the vanances, most noticeably the
vehicle speed as mput (vibration) excitations from the track
irregulanities differ significantly at different speeds.

This may be overcome by comparing the four outputs of the
vanance calculations presents using the concept of majority
‘voting’, as the vaniance values should be similar in nominal
(no fault) condition but duffer if there are faults at some of the
suspensions - as far as all four suspensions do not fail at the
same time 10 the same manner the probability of which would
be very low. This 1s based on the fact that same components
are typically used on the railway suspensions and the bogies
are symmetrical 1 configuration i the normal condition and
only become unbalanced when some of suspensions start to
fail To make the companson easier, relative vanance s
mtroduced which 1s normalised between the four vanances as
shown mn equations 13-16.

R )= e s Va0 + Vg (k + m) + Vg ()

4x Vg (k)

RVgy(k) = : (14
Ve (B) + V() +Vy (k+m) + Vg (k+m)

4xVy (k) 15

RVy (k)= - (13)
=®) Ve (k = m) + Vg (k = m) + Vi (k) + Vg (k)

AxVy (k) (16)

RV (k)=

Ve (k=m)+ Vg (k—m)+Vy (k) + Vg (k)

Where & is the step for each set of the sampling acceleration
m 1s the number of delayed sampling mnterval which 15
decided by the wheel space and the vehicle speed.

The relative vanance calculations at the two rear suspensions
(Equation 15 and 16) are almost the identical m strucrure
with those for the front suspensions (Equations 13 and 14)
except the delayed ume mterval m, so that the comparisons
are made based on the same track inputs. The relative
vanance for each of the four accelerations should remain
largely unchanged 1n normal conditions even if the operation
speed changes. Only a fault 1n a component (e.g., a damper
the suspension) can lead to changes m the relative vanances
The most sigmificant change of a relative vanance 1s expected

to correspond with the fault at the parucular suspension and
therefore fault isolation 15 also possible.

4. PERFORMANCE ASSESSMENTS

In this section, the simulation results are given to assess the
performance of the proposed fault detection scheme. Both the
vanances and the relative vanance (1. normalised) for the
four accelerations are presented.

Figure 3 compares the acceleration at the front left comer
the cases of no fault and the damper with 50% of the nonunal
damping coefficient. The overall acceleration is slightly
reduced, as the (partial) damper fault reduces the damping of
the bogie modes and increases the corresponding resonances
even though the responses at higher frequencies are lowered

Thus faulty damper also affects the accelerations at the other
three comers. although these changes are much smaller

Although there is a link between the bogie vibrations and the
suspension conditions, the sensitivity 1s relatively low for
practical applications.

oy

8 £ 8k o w8 8 8 8

i 2 i i A i " A "
082 04 006 008 O Q12 3 046 0§ C2
Tme (5}

Fig 3. Front left acceleration change wth front left damper
fault
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Clear mprovements may be obtamned with the vanance
approach. Figure 4 shows the variance change for the four
comer accelerations front left. front right. rear left and rear
nght — with the damping coefficient of the front left damper
reduced from the nonunal value to 50% at 8s. A 5 seconds
moving (1e. shding) tme window 1s used to calculate the

running vanances

i858 88

Fig 4. Running vanance of comer acceleration with front left
damper faulty

The vaniance of the front left acceleration 15 the most
sensitive to the fault for obvious reasons. There are also
changes m the other three variances, but those are much
smaller. A potential 1ssue with the direct use of the vanance
values 1s that there are some noticeable fluctuations m both
normal and fault conditions, which makes setting/tuning of
threshold difficult The fluctuations are caused by the
changes of bogie responses to varymg track mput excitation
which 1s mevitable as track nusalignment is of random
feature.

The proposed use of the relative vanance overcomes the
problem. as all calculations are normahised which removes
the effect of the mput vanations. Figure 5 show the relative
vanance changes of the four comer accelerations when the
front left damper has a 50% fault, where only the relative
vanance of the front nght acceleration 1s significantly lower.
Figure 6 shows the results with front right damper at 50% of
the nonunal damping coefficients and agamn only the relative
vanance of the acceleration at the corresponding suspension
becomes much lower m the fault condition. More
significantly. 1t 1s clear from the figures that the (running)
relative vanances give much smooth results and the
vanations due to different mputs are considerably smaller
compared to the vanance values because of the normalisation.
The advantage of the normalisation is also clear when the
mput excitations are vaned due to different vehicle speed.
Figures 7 and 8 compare the vanance and relative variance of
the front left acceleration at the speeds of 25my/s and 50mys.
The vanance value of the acceleration 1s nearly twice at
50my/s as that at 25m/s, m both the normal and damper fault
sttuations. However, the relative vaniance change is more
consistent which has sinular magnitude and reduction for
either normal or faulty circumstance. With a proper threshold,
the fault could be detected effectively when relative variance
approach 1s applied.
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Fig 5. Relative variance change with front left damper fault
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4.3 Fault Identification

The proposed reltive vanance approach 1s not only valid for
detecting faults m the suspensions, but also useful to their
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1dentification. because of the stong link between the relative
vanance of any particular acceleration and the corresponding
suspension. Table 2 confirms how each of the damper faults
(at 30%) affect the relative vanances and 1t is clear that only
significant change 1o the relauve variance of the acceleration
corresponds to the damper fault at the same position whereas
the effect on the three other relative variances is limited.
Table 3 and 4 present how the relative vanances (of the bogie
accelerations at the front left and rear nght damper
respectively) change when a damper fails pamally to
dafferent damping coefficients. mdicating a clear correlation
between the level of the fault(s) and comesponding relatve
vanances.

Table 2. Changes of relative variances for different
damper fault at the same level conditions

aul Froat Front Rear
dimpz it | cight | ot R g
at 50% Acc Acc Acc
No fault 106 106 94 94
Front left 743 1115 1128 101 4
Frontnght | 1100 746 101.1 1132
Rear left 1348 1137 534 98.1
Rearnght | 113.0 1357 978 535

Table 3. Changes of relative variances for front left
damper faults at different level conditions

Front left Front Rear
ey | Pt | T [t |
remams Acc Acc
75% 854 109.0 106 4 99.2
50 743 1115 1128 1014
25% 680 109.1 1173 105.7
0% 636 101.0 120 1134

Table 4. Changes of relative variances for rear right
damper faults at different level conditions

Rear
ight | Frontlef f":;: Rear left m
dampumg | Acc Acc Ace Acc
7% | 1086 | 1200 | 983 | 7.0
5% | 1130 | 1357 | 918 | 535
2% | 1167 | 1478 | 953 | 402
® | 1216 | 1548 | %02 | 334

5. CONCLUSIONS

A novel condition monitoring technique for faulty
components detection in rilway suspeasion is developed in
this paper. Based on the dynamics study of a comprehensive
conventional vehicle, 1t is vernified that the suspension
accelerations have the same structure and thetr interactions
may change due to damper fault The reliable fault
monrtoring technique using relative variance is developed to

detect the change. Simulation resuits show that the
performance of relanve variance is effective and acceptable,
for both damper fault detection and isolation in primary
suspension.
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Abstract: This paper presents a novel method for the fault detection and isolation for rail vehicle
suspensions that explores the additional dynamic interactions between different motions of a bogie or body
caused by the fallure of suspension components by taking advantage of symmetrical mechanical
configurations of railway bogies. The study is focused on the monitoring of the vertical primary
suspensions of a conventional bogie vehicle to demonstrate the general principle and effectiveness of the
proposed method in detecting damper faults, although the technique 1s equally applicable for suspensions

in other directions.

Keywords: fault detection, isolation. vehicle dynamics, suspension, damper

1. INTRODUCTION

Comitionmonitoringiscmsidaedasamvelmaof&uh
Detection and Isolation (FDI) m railway suspension systems,
which is starting to show great potentials (Bruni er al., 2007). A
failure to the suspension component may not only increase the
wear of wheel and rail, but also affect system stability, deteriorate
nde comfort and even endanger passenger safety in extreme cases
(Gillespie, 1992). The monitoring of the suspension condition
changes in an early stage can prevent further damages, and rapid
and effective monitoring techniques are essential to increase
vehicle reliability and reduce mamtenance cost.

The condition monitoring for vehicle system has drawn mereased
attention 1 academic research and some techmques have been
recommended in automobile mdustry. There have been a number
of theoretical studies and expenimental investigations on different
approaches for FDI (Willsky, 1976; Isermann, 2001: Fisher ef al.,
2003), and mn railway applications (Goda et al., 2004, Li ef al.,
2004: Goodall. 2006: Me1 et al., 2007). Most of the studies are
concemed with model based techniques which use mathematical
models to generate additional output signals and compare with the
ongmal measurable parameters. Those methods rely on a well-
developed model to estunate the prior and postenor difference of
the parameter or the residual between them Therefore the
detection quality 1s clearly affected by the accuracy and the
complexaty of the mathematical mode! (Isermann, 2001).

This paper studies a different and potentially very powerful
technique for detecting and isolating suspension faults. The
configuration and modelling of a typical bogie vehicle is firstly
presented. The pnnciple and development of the proposed fault

detection technique are ntroduced and applied to the bogie vehicle.

Only faults mn dampers are considered which are much more
common than springs failures in practice. Different fault
conditions are assessed and computer simulations are used to
show how those suspension faults may be detected and identified.

The sensitivity to faults and robustness against extemal condition
changes are demonstrated.

2. SYSTEM DESCRIPTION
2.1 Vehicle Configuration

Figure 1 shows the configuration of a conventional bogie vehicle.
The vehicle consists of a vehicle body. two bogie frames and four
solid axle wheelsets. The mamn external excitations are track
geometries (deterministic input of gradients and curves) and
uregularities (random input) transmitted to a vehicle through the
wheelsets, but attenuated through the use of suspensions. The
p:mysmpensonsaselocmdbetweenﬁ:ewi\edsmmdbogle
frame, which nommally includes coil springs and hydraulic damper
in longidmal, lateral and vertical directions. Nomally, same
suspension components are used for all suspensions at the four
comers of each of the two bogies and therefore the bogie
configurations are mostly symmetrical. The secondary
suspensions are mounted between the bogie and the vehicle body.
which are often comprised of rbber airsprings. The primary
suspensions are mainly used to control the running behaviour,
whereas the secondary suspensions are designed to ensure good
ride comfort of passengers. Similar to the primary suspensions,
same airbags tend to be used for the secondary suspensions on
bod;sides(rcfuredtoaskﬁandxighxsides)ofmchofﬂrm
bogies.

Because this paper deals with vertical suspensions, only motions
related to vertical dynamics are included in the models which are
the bounce, pitch and roll movements of the vehicle body and two
bogie frames. Motions in other directions (and comresponding
suspensions) are largely decoupled and excluded from the stdy.
The vertical movements of the wheelsets are considered to be
constramed to the track surface, which is a nonmal practice in the
study of railway vehicle dynamics.

The natural frequencies and damping ratios of the modes derived
from a typical railway vehicle are given in Table 1, where the first
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three rows show those for the bounce, pitch and roll movements of
the bogies and the last three rows those for the bounce, pitch and
roll motions of the car body. It 15 clear that the frequencies of the
bogies are above 10Hz and much higher than those of the body
modes.

Table 1 Natural frequency and damping of a bogie vehicle

Freq (Hz)  Dampmg
Bounce 10.57 023
Pitch 14.07 032

Mode
Roll 1479 031
Bounce 068 0.16

Body
Pitch 084 0.19

Mode
Roll 084 0.19

2.2 The Characteristic of Track Inputs

Apart from mntended track features such as gradients, there are
considerable random excitations due to track misalignments which
may be somewhat different on two sides of a track. In the vertical
direction. the random track input 1s usually descnibed m terms of a
powuspecmmfumemckvemcaldisplacm’l,whinhism
approximate function of frequency given by 4./ (Met, et al.,
2001). In thus paper, two random nputs that conform to the power
spectrum distribution are used mn the simlations for the left and
right sides of the track, where the difference between the two sides
is typically 10% (also in a random manner) of the inputs. The
mnputs to all the wheelsets are the same, but there are time shifts
between them, which are determuned by 1=2-Ly/V; between the
leading and tratling wheelsets of each bogie and r=2(L-Ly/V,
between the trailing wheelset of the leading bogie and leading
wheelset of the trailng bogie, where L, 1s the half wheel space, L,
15 the half distance between the centre positions of the two bogies,

3. FAULT DETECTION METHOD

Railway vehicles tend to use identical suspension components
which result m symmetrical arrangements n the pnmary or
secondary suspensions. A previous study based on the analysis of
a simple side view model of a rallway bogie shows that the
bounce and pitch mwtions of the bogie are decoupled in nommal
conditions, but dynamic interactions are introduced once an
asymmetry occurs due to a fault at one of the suspensions which
may be readily explored for fault detection (Me1 et al., 2007). The
study m this paper is extended much further than the initial
mvestigation. A detailed and practical scheme for both fault
datection and solation for all vertical primary suspensions is
developed to demonstrate a clear link between the level/nature of
the interactions and different fault conditions.

Equations | -3 give the equations of motion for the bounce (z;,),
pitch (1) and roll (Ys1) movements of the leading bogie m no
fault conditions. Clearly the three motions are independent from
one another and the primary suspensions do not introduce any
nteractions. The forces from the secondary suspension affect the
bogie bounce (fiom the total secondary suspension force, or IF,)
and roll (from the difference in force between the left and night
sides, or AF,), which tum out to be trivial.

mbfﬂ +4Cp-jﬂ ##p “Zn

= ’(:,u +:rlr +2’y +:r2')+k’(3,u +Z0 +30) +:,2,)+2F., (l)

Uy 'Ly ¥y +4c, Ly gy + 4k, L, -y
"';(:xu =iy 'jt:r)"'kp(:ru + I =T~ Zny) @

(Ih’33)35"5"’51*‘4‘,35'%*4"’35'%1

=y Car =ty +2 =20, Ry =2 + 2 =2 +0F, O
The mam connections between the three motions are the track
mputs from the four wheels, where the bounce 15 excited by the
sum of the four, the pitch by the difference of the front and rear
two. and the roll by the difference between the two sides of the
wheelsets. This balanced condition will no longer be true, if any

and J’ is the vehicle operating velocity. ane of the suspension components becomes faulty which m most
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Fig 1 Tllustration of a conventional vehicle
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cases reduces the dampmg coefficient Therefore the cross
correlations between the three motions of a bogie wall vary with
the level as well the location of unbalances, especially at no tune
shift (due to excitations of the mput at the same wheel) and to tme
shft =2L,/V, (due to the tune delay between the leadng and
trailing wheelsets of the same bogie, which 15 fixed for any given
speed).

Figure 2 shows the overall scheme of the proposed fault detection
and 1solation method.

[ Vehicle / Bogle |

Sensor Box Output
|m»'mu | [Mhreshold2| [Thresholds]
o oo e i
|Dapt:'cl:itnn 1 hpt:cx:ltnn \ ne]::i:on
. ! :
Fault  Diagnosis

Fig 2. Proposed Fault Detection and Diagnosis Scheme

A smgle sensor box may be mounted onto the bogie frame to
pronide the measurements of the bounce, pich and roll
accelerations (Charles, ef al., 2006). This type of the sensor box
often consists of one accelerometer (for bounce) and two gyros
(for pitch/roll velocities), so the pitch and roll accelerations be
denved from the rate of change m pitch and roll gyros. The cross
comrelaon (CCF1, CCF2, CCE3) between any two of the three
signals are computed using equations 4-6. There are additional
benefits to compute cross comelation coefficients as given m
equations 7-9 mstead of the cross comelations which will be
further explauned m the performance assessments.

Ry (m)=Y #1(nsm)g,)(n)

N

Ry(m)=3 sl(nem)y}(n) W)

nel

x,.(-)-zlé'.’(un)-v'.‘(n) ®

Ry (m)

C"(.).v_x—Rn(O)'R"(O) @
Rgp (m)

W T R ®
Rpp (m)

Con(m) = 0) & (©) o

For a fixed step size 4t, the tme window T=N4r should be
selected far greater than 4t so that there is sufficient amount of
data to produce consistent results. In this paper. a step size 47 for
sunulation 1s set to Jms and the time window 1s chosen to s.

The output of each of the cross correlation (or cross
correlation coefficient) calculations is compared to a pre-
defined threshold for fault detection, and the outcome of the
all three channels will then be used to identify which one of
the dampers has failed. On-line real time detection is possible
by computing running cross correlations or coefficients with
amoving tume window of data.

One umportant basis for the new method s that the
probability of two or more identical components (used at
different locations) failing at the exactly same time i the
same manner and to the same degree may be considered
extremely low.

4. PERFORMANCE ASSESSMENTS
4.1 Use of Cross-Correlations (CCF) in Fault Detection

Figure 3 compares cross correlation berween the bounce and pirch
accelerations in no fault and when the damping coefficient of the
front-left damper 15 reduced to 50% of its nonumnal value. Figure 4
shows a companison of bounce/roll comrelations between the two
conditions and Figure 5 give that of pitch/roll comelations. The
vehicle speed 15 50m/s. and the tune delay between the wack
mputs at the leading and trailng wheelsets of a bogie is calculated
as 0.05s.
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Fig 3. CCF between bounce and pitch accelerations
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Fig 4. CCF between bounce and roll accelerations
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Fig 5. CCF between pitch and roll accelerations

It 1s clear that the mamn changes occur at three pomts of the ame
shift 0, -0.05s and +0.05s. In nonmal conditions, the two peaks at
the +/-0.03s n Fig 3 ndicate the level of correlation between the
bounce and pitch accelerations caused by the mputs to the two
wheelsets (the same mput, but wath a tme shaft of 0.05s). There
are 1o delays between the two sides of the bogie, and therefore no
significant correlations are observed m the no fault conditon.

The dynanuc mteractions caused by the fault condition reduce the
level of comelation at the tme shufts t=+/-0.03s, but cause a new
(negatrve) spike at t=0. The latter 15 due to the imbalance between
suspenstons at the leading and trailing wheelsets as the effect of
mput at the leadmg suspensions can no longer cancel out that at
the traling suspensions. Smmlar spikes are observed at =0
(negative) and =0.03s (negative) in Fig 4, and at =0 (negative)
and t=0.05s (positive) m Fig 3 due to the same reasons.

When the damper fault occurs at a different position, e.g. the rear-
nght on. the effect of the dynanuc mteractions on the cross-
comrelations 1s equally obwious, but the pattem of the changes 1s
different as shown m Figs 6-8. In tus case the peak at =0
becomes positive for the bounce/pitch and bounce/roll cross
correlations. The bounce/roll CCF also results in a positive peak at
t==0.05s (rather than a negative one at =0.05s as m the previous
case). The pitch/ioll CCF gives a positive peak at t=-0.055 (rather
than =0 05s).
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Fig 6. CCF value between bounce and pitch accelerations

The detection of the spikes and thewr level of changes provide an
essential mdication of the suspensions conditions, but the
differences between the different faults can be used to help and
locate where a fault has occurred.

There 1s a smusoidal component m some of the cross correlations
which 15 caused by one of the bogie modes. The oscillations tend
to become larger when the level of a fault becomes worse due 1o
reduced damping to the bogie.
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Fig 7. CCF value between bounce and roll accelerations
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Fig8. CCF value between pitch and roll accelerations
4.2 On Line Fault Detection with Running CCF

Foronhnc(mlﬁme)detecﬁon.nmmgcmsscourlanms\\m
have to be used to find changes at the three specific tune shufis
Figs 9 and 10 show the running CCFs of the bouncepitch and
bounce/roll accelerations respectively, where the dampmg
coefficient of the front left suspension is reduced by 50% at the

T — e
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\ +0.054 time delay =
- W——'-\-_ow
i m
w 0,055 time delay
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ST T PR R R e (e T
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Fig9 Running CCF value with bounce and pitch acceleranons

ThcdnngeshCCFsuhrdwm&ﬁnrslﬂﬁsmckaﬂyhnked
0 the assumed fault condition. but the bounce/roll CCF appear 10
be more sensitive (o the fault than the bounce/pitch one.
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Fig. 10. Running CCF value with bounce and roll accelerations
4.3 Use of CCF Coefficients

There are two robustess 1ssues m practical myplementation of the
proposed technique usng cross comrelation calculations - both are
related to the level of mput excitations but m different ways. One
15 that the actual geometry of the track may vary from one section
of a track to another Although track wregulanties may be
considerad as random noises, real measured data suggest that there
are sometimes vanations i the magnitude. Also there are other
types of changes such as jomts and swatches. Those variations will
cause certam fluctuations m the mput exatations and consequently
m the output of the CCF calculations — some of the effect may be
observed m Figs 9 and 10. The other 1s that the travelling speed of
rail vehicles is not necessary constant Changes m speed will
change the level of excitations for the same track. which can affect
the cross comelations more than fault conditions. Threshold levels
for fault detection may be adjusted according to speed, but tuning
would be dufficult and track specific.

The effect of the vanations can be removed by usng cross
correlation coefficients, which are relative quantities as illustrated
m equations 7-9. Fig 11 shows the CCF coefficient of the
bounce/roll accelerations. The changes at the time shifis of =0 and
1=0.05s are sularly sensitive to the fault (the coefficient of the
front left damper 15 reduced by 50% at t=6s), but are more
consstent (or smoother) compared to the CCFs in Fig 10

1 v —

®

08
us

0na

.05 tme delay

07
04 Oz time delay
s
+0.053 time deloy
08 K
P MRS —— . . s " "
2 3 4 5 L] 14 8 ] 10 n 12

Time. (v)

Fag 11. CCF coefficient between bounce and roll accelerations

Fig 12 compares the bounce/roll cross comelations at the speeds of
25m's and 50uy's, where the difference 1s self-evident even though
the fault condition 15 the same. In Fig 13, however, the effect of
the fault on the cross correlation coefficients at the different speeds

15 virtually the same.
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Fig 12. Companison of bounce/roll CCFs

1 — =

v=25mis, 23 window

R

Time: () :

Fig 13. Comparison of bounce and roll CCF coefficients

To study the robustness of the proposed technique agamst sensing
emors, a sensor notse of 1% of the measurement range 15 also
mcluded m the analysis which showed little adverse effect. Thus 1
because the noses from different sensors are m general
uncorrelated and their effects at the specific time shifts of the cross
correlation calculations are expected to be small.

4.4 Fault Isolation

CCF coefficient results of different suspension faults at four
comers of the bogie show that the any mdividual fault mav be
readuly isolated by explonng different ways the CCF coefficients
are altered by the different faults. Table 2 shows each fault affects
the CCF coefficients of bounce/pitch, bounce/roll and pitch ol
accelerations at the time shuft of Os. where the vehicle speed 15 set
to 50m's.

Table 2. Changes of CCF coefficients in different fault conditions
(at the tume shift of Os only).

o, RO Bovnceich  Bomceroll  Pichol
No fault 0 0 0

Footkfiduper 030 08 056
Frontnght daper 030 057 057
Rear let damper 031 0% 056
Rewnghtduper 031 057 57
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It 15 clear that any two of the CCF coefficients wall be sufficient
for the purpose of fault isolation. although some are more sensitive
than others. Smular results are obtamned for CCF changes at the
tme shifts =005 and =005, so there 15 no shortage of
mformation.

5. CONCLUSIONS

A novel condition monitoning technique for the detection of faulty
components m ralway suspensions has been developed m this
paper. Based on the dynamics study of a conventional boge
vehicle, it 1s shown that the dynamic interactions between different
modes of the bogie frame are mtroduced by faults m the
suspensions and their cross correlations can be used to not only
detect but also 1solate damper faults. The effectiveness as well as

using computer sumulations.
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LIST OF PARAMETERS

An — Track roughness factor i vertical direction

B, - Half wheel space of the vehicle bogie in lateral direction
¢~ Normal damping of each damper i primary suspensions
Ji—Spatial frequency

Iy, Iy - Roll and pitch mertia of bogie

&, — Suffness of each coil spring in primary suspensions

my - Mass of bogie

N—Number of sampled data in each time window
T—Length of the chosen time window

241, 2o - Left vertical track inputs for front and rear wheels
Zun Zor - Right vertical track mputs for front and rear wheels
4t—Time step between each sampling
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Abstract

This paper presents two simple and potentially powerful
approaches for the condition momtoring of rail vehicle
suspensions, which explore the relative changes between
different dynamic motions caused by suspension faults.
Damper failures m vertical (pnmary) suspensions of a
conventional bogie are detected based on the measurements
of the bounce, pitch and roll accelerations of the bogie frame.
The effectiveness of the proposed fault detection methods 1s
demonstrated

1 Introduction

On line fault detection and condition monitoring for railway
applications have attracted much mterest m research and
development [1]. Conventional approaches are mainly based
on the direct measurement of relevant signals which are
analysed using sophisticated time and/or frequency domain
signal processing, e.g. to find features or signatures related to
particular faults [5, 9]. More recently, there have been a
number of developments that mvestigate the use of model-
based techniques to ether identify the parameters of the
components required monitoring or estimate the system states
and their residuals [2, 3, 4, 10]. The model based techniques
compare a real system with a mathematical model of the
system, and the performances are therefore affected by the
appropriateness and complexity of the models. There are
potential difficulties related non-linear properties in some
suspension components such as the dampers and the ‘normal’
vaniations i the system, which may lead to very complex
solutions.

This paper presents two different approaches that takes
advantage of the vehicle (suspension) configurations and
explores the additional dynamic nteractions between
different motions of a bogie or body caused by the failure of
suspension components. The detection methods require very
little prior knowledge of the system (ie. the bogie), apart
from some basic parameters such as vehicle travelling speed
and distance between suspensions. Instead. it is focussed on
the companson of dynamuic behaviours between the

suspensions at different positions of a bogie where identical
components are normally used.

The proposed techniques are simple but very effective for the
detection of suspension faults. There 1s no need for complex
modelling and detailed knowledge of external conditions (e.g.
track mputs). therefore 1t offers extra benefits of robustness
against nonlinearities and uncertainties as well as that of easy
funing.

The paper 15 organised as follows. Detail of the vehicle
configuration used in the study is given in section 2. The two
fault detection techniques are explamed m section 3. The
effectiveness of the methods is assessed using computer
simulations in section 4, and conclusions are given in section
-

2 System Configuration

A conventional railway vehicle consisting of a body frame
and two bogies 1s used in the study, a schematic diagram of
which 1s given in Figure 1. The fault detection of the vertical
primary suspensions is studied in the paper to demonstrate the
principle and effectiveness of the proposed methods, although
the techniques may be extended for the condition monitoring
of the suspensions in other directions or positions. Therefore
only motions directly related to the vertical suspensions are
modelled, mcluding the bounce, pitch and roll movements of
the body and those of the two bogie frames resulting in a 9
DoF model. The dynamics of the air-springs in the secondary
suspensions are approximated using a lineanised model.

In the normal condition where there is no fault in any
suspensions, the four primary suspenstons and two secondary
suspensions of each bogie are typically symmetrical in
structure and i parameters. The effect of the suspensions on
the bogie dynamics 1s expected to be similar and interactions
between the different motions will be minimal. The dedicated
balances between the suspensions and between the motions
would be broken up if one (or more) of the suspensions
develop a fault, leading to asymmetrical behaviours and
additional mteractions. The manner of the changes is closely
related to the type and location of a fault and therefore may be
explored for fault detection and isolation. by using cross
correlations [6. 7] and/or variance comparisons [8].
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Figure 1. Velucle Configuration
Spp(k

3 Fault Detection Methods SCpp (k)= ez (k) Q)

The general prnciples of the proposed fault detection
techniques are introduced 1n [6-8], but this paper 1s to focus
on relative comparnisons using normalised cross correlations
and normalised variances which offers additional advantages
mn terms of easy tuning and improved detection reliability 1n
different operation conditions.

The detection of either scheme involves the use of a smgle
sensor box mounted on the bogie frame 1n a centre position to
measure the bounce, pitch and roll accelerations of the bogie.
Those measurements can also be used to denive the bogie
accelerations above the four pnmary suspensions.

3.1 Cross Correlation

This method computes cross correlations between any two of
the bounce, pitch and roll accelerations, and compares the
results at three specific tme shufts — 0 time delay for
correlations due to the same input excitations, +/- time delays
due to the time difference between the track inputs at the
leading and trasling wheelsets.

Equations 1-3 give the cross comrelation coefficients between
the bounce and pitch accelerations, between the bounce and
roll accelerations, and between the pitch and roll
accelerations. The cross correlation coefficients reflect the
normalised correlations between two signals, and therefore
are much less affected by the changes in operation conditions
due to a vehicle travelling at different speeds and/or on
different tracks where the vibrations expenienced on the bogie
frame would vary even when the vehicle condition remains
the same.

Sty S2®) _

S350 Spp(0) ®

Sga (k)

S>3 0)- 50

@

Spp(0)-Szr (0)

The auto correlation S, of a signal (x) and the cross
correlation S, of any two signals (x. y) may be calculated

using equations 4 and 5 respectively.
N
5,(0)= 3 x(D)-x() @
=l
Nk
S» (k)= Zx(l+k)l’(l) )

i=N-k

For any chosen sampling interval of T, the time window for
each cross correlation calculation i1s 7,=N*T, from a total of
N number of sampling intervals. The number of shifted
wntervals k may be varied from -N to N for a complete set of
cross correlation calculations, although in practice only values
at and near k=0 and = time delay between the two wheelsets /
sampling interval T; are of particular interest for the proposed
fault detection scheme.

3.2 Relative Variance

This method detects changes i vanance of the accelerations
of the bogie frame above the four prumary suspensions caused
by suspension component failures. Normalisation of the
vaniances as defined in equations 6-9 provides a means for
relative comparisons to overcome the problems related to
variations in operation conditions or external nputs which
may appear to be similar to a fault condition.

4V, (k)
RV, (k)= =
O T ©
RV (0= 4V (k) o

Ver () + Ve (k) + Vg (ke +mm) + Vg (k +mi)
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. 4xVy, (k)

RYu(k)= Vn(k —m)+Vn(k -m)+V; u(k )+Vn(k) (8)
Verlk

1 AxViglk) ©)

Vgl —m)+Veglk—m)+ Vi, (k) + ViglK)

The variance of a signal in a time window of N number of
sampling intervals s calculated as shown in equation 10.

N+b-]

l ™ |
V,(k) =l Z(x(i)-x)' (10)
n s

4 Simulations and Performance Assessments

Computer simulations based on the models for the bogie
vehicle described 1n section 2 are used to study the
performance of the proposed fault detection schemes. Unless
otherwise specified, a damper fault where the damping
cofficient 1s reduced by 50% at the front left suspension 1s
assumed for fault detection — similar results can be obtained
for faults at different suspensions. The track iregulanties
used 1n the study are generated in the simulation to represent
the roughness of a typical main line with evenly distributed
power spectrum density mn the denvative of the vertical
displacement.

0 02 04 08 08 1
Time: (s)

Figure 2. Acceleration above the front left suspension (my/s’).
V=50m/s

Figure 2 compares the accelerations at the front left
suspension m the normal and half-fault conditions. The
reduced damping ratio increases resonances at the bogie
modes, but suppresses higher frequency components more —
leading to a reduced overall acceleration for the track input.
The accelerations above the other three suspensions remain
largely unchanged. which 1s expected because of the location
of the only fault assumed in the study.

It is possible to use the changes in magnitude as an indicator
of component condition, but there are certamn limitations.
Figures 3 and 4 show the running rms values of the
acceleration (over a 3s moving time window) at the speeds of
50nvs and 25m/s respectively. The difference between the

normal and fault conditions 1s fairly obvious. However there
are relatively large fluctuations even at a constant speed. as
the bogie accelerations are very sensitive to changes i the
mput irregulanties which may vary from one section of a
track to another. It may not always be possible to make a
clear distinction between a lower s value in the normal
condition and a higher one i a fault condition. Furthermore
any changes mn the operation speed or rail tracks wall result m
large corresponding changes in the vibrations detected from
the bogie frame. Therefore the use of thresholds for fault
detection will have to be highly adaptive to both vehicle
speed and track conditions which would not be straight
forward to achieve in practice.
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Figure 3. Running rms of the acceleration above the front left
suspension (nvs” 3, V:=50mls
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Figure 4. Running rms of the acceleration above the front left
suspension (m/sz). V=25mls

4.1 Fault Detection with Cross Correlation Coefficient

Cross correlations (CCF) between different bogie motions are
more sensitive to condition changes in the suspensions
Figure 5 compares the CCF of the bounce and pitch
accelerations i the nominal condition with that 1n a half-fault
condition where the damper coefficient of the front left
suspension 1s reduced by half.

The peak values at the zero time shift and at the +/-0.05s (the
delays between the two wheelsets) are clearly related to the
changes in the dynamic interactions caused by the fault. For
real ume detection, running CCF coefficients with a moving
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time window of fixed duration are proposed to be used to
monitor the changes at the specific time shufts.
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Fig 5. CCF between bounce and pitch accelerations

Figures 6-8 give the running cross correlation coefficients
(SC) between two of the measured bogie accelerations of the
bounce, yaw and roll motions. The moving time window for
the computations 1s set to 2s and the vehicle speed 1s 50m/s.

The reduction of the damping coefficient by 50% causes
changes in the cross correlations at the 0 and +0.05s time
shifts, but almost no change at the -0.05s time shift because
the failure occurs at the leading wheelset. The latter is only
shown in Figure 5 and not 1n other two figures as there are no

significant changes.

Compared to the running rms shown in Figures 3 and 4, there
are noticeably less fluctuations m the cross correlation
coefficients where the same track irregularities (with the same
variations m the mput excitation) are used in the simulation.

In Figure 6, the change i SC of the bounce and pitch
accelerations for the 0 tume shift from 0 to around -0.2 1s
clearly larger than that at the positive time shift, but more
sensitive changes are observed from SC of the bounce and
roll (from 0 to nearly -0.5 at the 0 time shift, and to around -
0.6 at the positive time shift) and that of the pitch and roll
(from 0 to nearly -0.5 at the 0 time shift, and to around +0.7 at
the positive time shift) as indicated i Figures 7 and 8.

The manner of the changes such as at what time shifts and
signs of the SC values helps to identify the specific position
of a faled damper, e.g a damper falure at the trailing
wheelset will lead to SC changes in the negative time shift.

Because of the normalisation, the cross comelation
coefficients are insensitive to changes m the vehicle speed.
Figures 9-11 show the same SC results as in Figures 6-8. but
at half of the speed (25my's). Only minor differences may be
observed between the two sets of results, which make the use
and tuning of thresholds for fault detection much easier.
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Figure 6. Running cross comrelation coefficient between the
bounce and pitch accelerations, V:=50m/s
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Figure 7. Runming cross comelation coefficient between the
bounce and roll accelerations, ¥,=50m/s
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Figure 8. Running cross correlation coefficient between the
pitch and roll accelerations, V;=50m/s
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Figure 9. Runniyg cross correlation coefficient between the
bounce and pitch accelerations, V=25m/s
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Figure 10. Running cross correlation coefficient between the
bounce and roll accelerations, V:=25m/s
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Figure 11. Running cross correlation coefficient between the
pitch and roll accelerations, V,=25m/s

.2 Fault Detection with Relative Variance

The use of relative vanance 1s also effective in overcoming
the difficulties assoctated with the (normal) vanations i the
track input and mn the vehicle travel speed. Figures 12 and 13
show the running relative vanances (over a moving time
window of 3s) of the bogie acceleration above the front left
suspension at the speeds of 50m/s and 25m/s respectively.
The change 1n RV due to the component failure is from 1 to
around 0.6/0.7 (or 30-40%) mn both cases, demonstrating
excellent robustness agamnst the (non-fault) condition
varations.

Normal - solid nes.
Faulty (50%) - dashed ines

I R ~ s MR L )=l
WY TS Wy Y
oy [\artus® i T e
08
0s
4 L} 8 10 12

Time: (s)

Figure 12 Running relative vanance of the acceleration
above the front left suspension (m/s’), V;=50m/s
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Figure 13. Running relative vanance of the acceleration
above the front left suspension (m/s’). V:=25m/s

Fault 1solation is also possible with the relative vanance
method, as the effect of a component failure 1n the RVs at
other suspensions 1s negligible as shown 1n Figures 14 and 15
where the changes i RV are 1 the order of 10% or less. The
small increases in the relative vamance are due to reduced
(absolute) vanance at the fault suspension which 1s one of the

four denominate terms 1n tions 6-9.
equal
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Figure 14. Running relative vanance of the acceleration
above the front right suspension (mv/'s”), V;=50m/s
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Figure 15. Running relative vanance of the acceleranon
above the front right suspension (m/s’), V;=25m/s

§ Conclusions

Effective fault detection and condition monitoring of vehicle
suspensions do not necessarily require sophisticated and or
difficult to mmplement techmques. This paper has present=d
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two relatively simple approaches which explore the structure
symmetries i conventional railway bogies for a reliable
detection of component failures. The use of relative quantities
enhances the robustness of the detection schemes against
other non-fault changes such as the operation speed and track

wregulanties.
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