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Abstract 

Electrochemical machining (ECM) is a non-conventional machining process which is based on the localised 

anodic dissolution of any conductive material. One of the main applications of ECM is the polishing of 

materials with enhanced characteristics, such as high strength, heat-resistance or corrosion-resistance, i.e. 

electrochemical polishing. The present work presents an evaluation of the parameters involved in the ECM 

of Stainless Steel 316 (SS316) with the objective of predicting the resulting surface finish on the sample. 

The interest of studying ECM on SS316 resides on the fact that a repeatable surface finish is not easily 

achieved. ECM experimental tests on SS͵ͳ͸ pipes of ͳǤͷǳ ȋͲǤͲ͵ͺͳ mȌ diameter were conducted by varying 
machining parameters such as voltage, interelectrode gap, electrolyte inlet temperature, and electrolyte 

flow rate. The surface finish of the samples was then evaluated in order to find the significance of each of 

these parameters on the surface quality of the end product. Results showed that overvoltage, which is 

dependent on the interelectrode gap and the electrolyte temperature, is one of the main parameters 

affecting the surface finish; additionally there is a strong relationship between the resulting surface finish 

and the electrolyte flow. The interelectrode gap and inlet electrolyte temperature also affect the resulting 

surface finish but their influence was not so evident in this work. Finally, the variation of the electrolyte 

temperature during the process was found to have a great impact on the uniformity of the surface finish 

along the sample. We believe that this contribution enables the tailoring of the surface finish to specific 

applications while reducing manufacturing costs and duration of the ECM process. 

 

Keywords: electrochemical machining, stainless steel 316, surface finish.  

 

Introduction 

ECM of metals with special characteristics, such as enhanced strength, heat or corrosion resistance, is a 

manufacturing option to produce products that could be difficult or impossible to get with conventional 

manufacturing processes. ECM allows manufacturers to shape any conductive material without affecting 

the properties of the tool or the workpiece. In addition, ECM can generate a high quality surface finish at 

the workpiece.  

 

ECM consists of an electric circuit formed by the tool and the workpiece connected to an external electrical 

source. The electrodes are submerged in an electrolyte bath that closes the circuit. When current passes 

through the circuit, a localised anodic dissolution occurs at the workpiece. This results more or less in the 

negative shape of the tool profile [1]. The electrolyte is pumped through the interelectrode gap dragging 

the dissolved material away and cooling down the electrodes. Unfortunately, the ECM process is difficult to 
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predict due to the wide variety of physical phenomena involved and the lack of sufficient quantitative and 

qualitative data that can be used to develop of an accurate simulation model [2, 3]. 

 

One of the main applications of ECM is the polishing of materials, i.e. electrochemical polishing. Several 

studies of electrochemical polishing can be found in the published research [4-10], and studies on applying 

electrochemical polishing for the manufacture of biomedical implants [11], solar cells [12] and electrodes 

for photoelectron guns [13], are still under development. However, electrochemical polishing is a process 

that regularly generates non repeatable results, e.g. the application of the process on stainless steels (SS) 

typically generates widely variable surface finish. Therefore, in many of these studies, special attention has 

been given to ECM on steels with high chromium content. Iron-chromium alloys, such as stainless steels, 

have wide applications in industry due to their characteristic behaviour (oxidation resistance). The 

chromium in SS induces the formation of a protective film of oxide on the material surface that prevents 

further corrosion [8]. However, this oxide film also modifies the ECM at the surface of the material; it has 

low electrical conductivity and prevents the workpiece from making direct contact with the electrolyte. 

Hence, normal anodic dissolution cannot be implemented without the breakdown of the oxide film. Partial 

breakdown of this film often occurs, which causes pitting on the surface [4, 8] or a non-uniform surface 

finish [6, 7, 14].  

 

The surface finish of the samples results from the specular or non-specular reflection of light from the 

crystal faces that have been electrochemically dissolved at different rates during the ECM process [1, 15]. 

An electrochemically polished surface is usually associated with the random removal of atoms from the 

anode (workpiece) [15]. Datta and Landolt [16] observed that an active dissolution of material at low 

current density leads to surface etching, and a transpassive dissolution at high current density leads to 

surface brightening. This was also noted by Lee [5] and McGeough [1]; in their studies when the current 

density was raised, the surface finish on the workpiece became smoother. Lozano-Morales [14] found the 

same behaviour with ECM in Niobium samples. Elsewhere, Wagner, T. and Wang, et. al. [17, 18] gave a 

plausible explanation of the effect of the electrolyte flow rate on the surface finish on SS. They argue that 

during ECM, the electric current breaks the oxide film and local electrolyte flow turbulences would ideally 

remove the film particles (oxides, chromium carbides and reaction products). If the turbulence is not 

sufficient for removing these lose particles, Fen+_ diffusion through the surface layer is possible, and the 

current density efficiency decreases drastically, thus affecting the surface finish.  

 

In other works, Lee [5] found that when electropolishing stainless steel 316L, better electropolishing 

results were obtained at a temperature close to 68 °C than at 30 °C. Later on, Deconinck [2] demonstrated 

how the electrochemical reactions rates depend strongly on the electrolyte temperature, which in turn 

depends on the electrolyte flow rate, interelectrode gap and potential applied.  

 

Mount et al. [6-8] built a segmented tool for the further analysis of the ECM process when applied on SS. 

Their results described a change in the surface finish of the samples along the electrolyte flow. It was found 

that this special behaviour is due to the change of the dissolution valence of the alloy. Their results showed 
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that for high dissolution valences, z = 3.5 ±0.1, the resulting surface was reflective and bright. This surface 

fish is characteristic of iron and chromium dissolving in their high valence states (as Fe(III), Fez =3, and 

Cr(VI), Crz =6); however, if z was lower, 2.5 ±0.1, the surface finish was passivated. This surface finish is 

also characteristic of iron and chromium dissolving but now in their low valence states (as Fe(II), Fez =2, 

and Cr(III), Crz =3) [8]. These results are in agreement with the study of Lohrengel et al. [3] and 

Murkherjee, et al. [19].  

 

From the above, we can conclude that it is essential to understand how the ECM parameters affect the 

surface finish. The effective removal of this film is governed by a combination of metal-electrolyte-

machining parameters. Hence, in the present work, the ECM machining parameters, gap, voltage, flow rate 

and inlet electrolyte temperature, are modified in order to evaluate their role on the achievement of the 

expected surface finish and a homogeneous breakdown of the oxide film. To the best of our knowledge, this 

is the first time that the inner surface finish of stainless steel commercial pipes has been enhanced by 

electrochemical polishing to tailor it for industrial applications and large scale production. 

 

Experimental method 

Sample preparation 

The pipes machined were commercial stainless steel 316 (SS316) pipes of 0.17 m length and 0.0381 m 

diameter, which were manufactured by rolling and welding. The surface finish of the pipe prior to 

processing was dark and opaque and its quality was uniform along the pipe. Welding left behind a weld-

flash at the interior face of the pipe. The exterior of the pipe was not treated. 

 

Electrochemical (ECM) setup  
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Figure 1. Schematic of the electrochemical machining system. 

 

Figure 1 shows the ECM array consisting of a cylindrical solid tool and a pipe (workpiece) placed vertically 

and concentric with each other on the bedplate of the ECM machine. The tool was held by the machine head 

and the workpiece was fixed to the bedplate by a non-conductive clamp. The electrolyte flowed from the 

top and between the pipe and the tool, and the setup was positioned in such a fashion that allows the 

electrolyte to exit the array. The temperature of the electrolyte was measured in situ at the entrance of the 

pipe using a digital thermometer. 

 

Test parameters 

The tool had the similar dimensions as the pipe. Its diameter offset from of the interior diameter of the pipe 

(workpiece) but undersized radially by 2, 4 or 8 mm. Electrical clips were connected to the tool-workpiece 

array providing a constant voltage of 18, 24 and 36 Volts (possible voltage losses in the system were not 

considered). The experimental parameters are summarised in Table 1.  

 

Table 1 Variables used for ECM on SS316 experimental tests. 

 Name Value 

y  Interelectrode gap 2, 4, 8 mm 

1V  Voltage 18, 24, 36 V 

Q  Electrolyte flow rate 1.7x10-4, 4.2x10-4, 6.7x10-4, 10x10-4 m3/s 

eT  Inlet electrolyte temperature 7, 15.3 °C 

 

The electrolyte used was Sodium Nitrate (NaNO3) with specific gravity (S.G.) of 1.15. Electrolyte flow rate 

was recirculated and set at 1.7x10-4, 4.2x10-4, 6.7x10-4, 10x10-4 m3/s (10, 25, 40 and 60 L/min). The 

electrolyte was stored in a pool at room temperature, hence the inlet electrolyte temperature was 

considered constant. However the machining was developed on two different days, so the inlet temperature 

changed from 7 to 15.3 °C. Each test lasted for 10 seconds. 

 

Results and discussion  

Table 2 summarises the resulting surface finish qualities of the SS samples after ECM. The samples were 

divided in four categories according to their surface finish quality: (a) passivated entrance Ȃ reflective and 

bright exit; (b) reflective and bright; (c) reflective and dark; and (d) passivated. 
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Table 2. Surface finish classification of the SS316 pipes machined by ECM. 

(a) Passivated entrance Ȃ  

reflective and bright exit 

 

(b) Reflective and bright 

 

 

(c) Passivated 

 

 

(d) Reflective and dark 

 

 

 

 

Passivated entrance Ȃ reflective and bright exit 

Table 1(a) presents a typical sample with a passivated surface finish at the entrance and a reflective and 

bright surface finish at the exit. An average roughness in the top part of the sample (passivated entrance) of ʹǤ͵Ͳ͵ Ɋm was measured with a Mitutoyo® profilometer. A small ring of passivated surface at the exit of 

the pipe is visible; this passivation is due to the accumulation of the electrolyte in this area forming a small 

pool before it can exit the array. The weld-flash is also visible but just at the entrance of the pipe. 

 

Passivated 

Table 1(b) shows an example of a sample with passivated surface finish. Average roughness of 540 nm was 

measured with a Mitutoyo® profilometer. The sample presented in Table 1(b) exhibits flow marks. This 

was characteristic of the 8 mm gap, and this behaviour of the electrolyte flow in an annulus system has 

been observed before in fluid dynamics studies [20][15]. 

 

Reflective and Bright 

A typical reflective and bright sample is presented in Table 1(c). An average roughness of 116 nm was 

measured with a Mitutoyo® profilometer and 265 nm with an optoelectronic ZYGO® microscope. These 

values are higher than the expected values of an electrochemical machined surface; this variation however 

is believed to be due to the curvature of the samples, which made difficult the roughness measurement. A 

small ring of passivated surface at the exit of the pipe is visible, similar to the passivated entrance Ȃ 

reflective and bright exit samples; this passivation is due to the accumulation of the electrolyte in this area 

forming a small pool before it can exit the array. The weld-flash is also visible in the entire length of the 

pipe, and some flow marks can also be observed.  

 

Reflective and Dark 
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A typical example of the samples with reflective and dark surface finish is presented in Table 1(d). Average 

roughness of 308 nm was measured with a Mitutoyo® profilometer and 426 nm using the optoelectronic 

ZYGO® microscope. Similar to the results obtained for the reflective and bright samples, this roughness is 

higher than the expected one due to the curvature of the samples. The same small ring of passivated surface 

is visible at the exit of these samples, but the weld-flash is barely visible along the length of the pipe. No 

flow marks can be observed.  

 

Visual similarity between the passivated surface (Table 1(b)) and the reflective and dark surface (Table 

1(d)) can be observed; this is due to the presence of the oxide film in both cases. The difference is that in 

the first case this film is loose, and in the second the film is firmly attached to the surface of the metal. 

 

The ECM parameters, such as current density ( J ), overpotential ( 0V ) and temperature difference ( T ), 

which are dependent on the controlled parameters (voltage, gap, electrolyte inlet temperature and flow 

rate), were compared with the objective of finding which of them had an influence, if any, on the resulting 

surface finish of the sample. By properly adjusting the process parameters, we expected to achieve a 

reflective and bright surface finish. 

 

Overpotential ( 0V ) 

Metal dissolution was accomplished by the deliberated application of an external potential difference 

between the electrodes during the ECM process. The potential needed to ensure a continuous discharge of 

metal between the electrode and the electrolyte is named overpotential ( 0V ). The overpotential was 

calculated by using equation (1) [21]: 

 

y

AVVk
I e )( 01 

       (1) 

 

where ek (S/m) is the electrolyte conductivity, y (m) is the interelectrode gap, 0V (V) is the overpotential, 

and A(m2) is the tool surface area. 

 

The results of the present work show the importance of 0V  in the resulting surface finish at the SS316 

samples. Previous works [4, 6, 7] found that a bright and reflective surface finish is achieved when 0V  is in 

the range of 9.7 and 12.4 V. In our study, this range is wider, 9.1 Ȃ 15.0 V. See Figure 2. 
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Figure 2. Power, P , and overpotential, 0V , in relation with the surface finish: passivated entrance Ȃ 

reflective and bright exit (rhomboids), reflective and bright (squares), reflective and dark (triangles), 

and passivated (circles). 

 

Power supply (P) in ECM is a function of the voltage applied and the current measured. P controls the 

volume and rate of material removed during the process and affects the resulting surface finish. Tailor [22] 

explained that with a very low combined current-voltage value, the material removal is minimal, and 

attained this behaviour to the formation of a very thin passive film on the surface of the anode that stops 

further reactions. At a moderate level of current-voltage combination, brightening of the surface is 

observed. In this region, the current is high enough to dissolve the material at the surface of the anode. A 

further increase in voltage generates over-polishing or pitting, and further cause of electrolytic by-products 

that may generate a dull surface finish [22]. This behaviour is evident in Figure 2 and Figure 3.  

 

The samples that present a more uniform reflective surface finish (squares and triangles in Figure 2) are 

observed when the power is over 7KW and the overpotential is limited between 7 and 15 V. In the samples 

where the surface finish is not uniform (rhomboids), i.e. a passivated surface was found at the entrance and 

a reflective and bright surface at the exit; the overpotential is over 14 V and the power is low (below 7 KW). 

Published studies [4, 16] have shown that the mass transport control of the dissolved material is a critical 

factor for the resulting surface finish. Therefore a plausible explanation for this behaviour is that the 

potential difference is not sufficient to maintain a steady ion migration though the oxide film. Hence a non-

uniform surface finish is attained. This is consistent with other studies [8, 16] where the areas of variable 

surface finish were related with a variation in the valence ( z ) of SS316. In the present work, however it 

was not possible to measure the valence during the ECM process, and therefore, these findings could not 
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be verified. Additionally, when the overpotential is below 7 V, the surface finish is passivated (circles in 

Figure 2). In these cases the potential drop between the electrodes is considered too high. Thus, even 

though the oxide film is broken, the dissolution of the metal is uncontrolled [23]. 

 

Current density ( J ) 

Current density, J , can be explained simply as the quantity of electric current that flows on a unit of area 

during ECM. The current during the ECM process was recorded by a data acquisition software, and the 

dimensions of the tool/workpiece were known. Hence these data are used to calculate the current density. 

Figure 3 presents the influence of J  in the resulting surface finish. For J  over 4.5 A/cm2 (squares and the 

triangles in Figure 3) a reflective surface is achieved. However, when J dropped below those values, there 

was not sufficient energy to break the oxide film uniformly. Hence, a passivated or non-uniform surface 

finish was obtained. This is in agreement with the work presented by Wang [18] where ECM on stainless 

steel was carried out under low current density (up to 2.5 A/cm2). It was found that at low current density 

a compact oxide film is formed on the surface of the metal and it can hinder the metal dissolution.  

 

Moreover when V0 is too high and J is not sufficient to maintain a stable migration of ions from the 

workpiece, a non-uniform surface finish is attained (rhomboids in Figure 3). 

 

Figure 3 Current density, J , and voltage within the cell, V, in relation with the surface finish: 

passivated entrance Ȃ reflective and bright exit (rhomboids), reflective and bright (squares), reflective 

and dark (triangles), and passivated (circles). 

 

There is an evident relationship between the overvoltage and the current density. A variation in 0V  is 

evidence of a change in the electrochemical reactions at the electrode surface [24] and this affects the 
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surface finish of the sample. Figure 4 presents this relationship. It can be observed that when 0V  increases, 

more energy is needed to drive the reactions at the sample surface. If this energy is not enough to maintain 

a stable migration of ions from the workpiece, a non-uniform surface finish is attained (blue rhomboids in 

Figure 4).  

 

 

Figure 4 Current density, J , and overpotential, 0V  , in relation with the surface finish: passivated 

entrance Ȃ reflective and bright exit (rhomboids), reflective and bright (squares), reflective and dark 

(triangles), and passivated (circles). 

 

In practice, not all the current is used for the removal of material, which influences the results presented 

here. Other side reactions such as oxide precipitation, or metal dissolution due to high valence, may exist 

and affect the current density efficiency. Moreover, the electrolyte conductivity plays a crucial role in J , 

ek , in turn, is dependent on the temperature, electrolyte flow rate, electrolyte concentration, etc. [25], thus 

affecting the overall outcome. 

 

Flow rate 

The role of the electrolyte flow rate is twofold: it flushes away the metal ions (ECM products) dissolved 

from the anode before they can reach the cathode and, at the same time, mitigates the temperature increase 

of the system. The accumulation of the machining products could lead to a shortcut of the system, and the 

increase of the temperature affects the conductivity of the electrolyte [1]. Hence, there is an impact of the 

flow rate in the overpotential during the process. 

 

Figure 5 demonstrates the influence of the electrolyte flow rate on the surface finish. Low flow rates 

(<3.3x10-4 m3/s) or  low electrolyte velocities (<1 m/s) led to the formation of a passive oxide film (which 
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are subject to pitting) [4] or resulted in a non-uniform surface finish along the sample. This may be due to 

the heat generated during the ECM process which was not well dissipated. Usually the change in 

temperature results in a change in the conductivity of the electrolyte, which is temperature dependent, thus 

affecting the resulting surface finish. McGeough [1] stated that the surface was smoother when the 

electrolyte velocity was increased. However, if the flow rate is too high (>6.7x10-4 m3/s) or the electrolyte 

velocity is over 2 m/s, the process results in a dark surface (triangles in Figure 5). From previous works 

[26], it is known that this film is mainly formed by Fe, C and small traces of Cr, and that it is strongly attached 

to the metal surface. Additionally, this oxide film limit the current efficiency [18, 27] during the ECM 

process. Results show that the flow rate that generates a reflective and bright surface finish is 

approximately 4.2x10-4 m3/s, electrolyte velocities between 1 Ȃ 2 m/s (squares in Figure 5 and Figure 6). 

In addition, high flow rates lead to a small diffusion layer at the anode, hence a higher current density is 

needed to achieve surface brightening [15]; however, from previous works [28, 29], it was observed that 

an stable and even flow is critical to keep the supersaturated films (presented by Lohrengel [29]) and to 

obtain smoother surface finish. 

 

 

Figure 5. Electrolyte flow rate, Q , and overpotential, V0 , in relation with the surface finish: passivated 

entrance Ȃ reflective and bright exit (rhomboids), reflective and bright (squares), reflective and dark 

(triangles), and passivated (circles). 

 

Interelectrode gap 

The distance between the electrodes and in where the electrolyte flows is named interelectrode gap; and it 

has been demonstrated to be another important parameter determining the resulting surface finish of the 

sample. Figure 6 shows that a big gap ȋγͺ mmȌ and low electrolyte flow rates (<1 m/s) generates a 

passivated surface finish. This is due the fact that the interelectrode gap is related inversely to the current 
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density of the ECM process [15, 16, 28, 30]; when J  is reduced, e.g. by increasing the gap, there is not 

enough energy during the process to break the oxide film uniformly.  

 

Figure 6 shows the relationship between the surface finish, the electrolyte flow and the interelectrode gap. 

From fluid dynamic studies, it is known that the velocity of the flow increases when the interelectrode gap 

is smaller, and that when the electrolyte velocity is too low, the turbulence in the fluid is not sufficient for 

flushing away of the ECM products, hence affecting the process. This behaviour was also observed by Lee 

[5], where an optimum gap of 1 mm, in order to obtain a smooth surface, was found.  

 

Figure 6. Electrolyte velocity and overpotential, 0V , in relation with the surface finish: passivated 

entrance Ȃ reflective and bright exit (rhomboids), reflective and bright (squares), reflective and dark 

(triangles), and passivated (circles). 

 

Temperature difference ( T ) 

Some samples were found to have two different surface finish along their length following the flow path of 

the electrolyte. This non-uniform surface finish is usually characterised by a passivated section at the 

entrance and a reflective and bright one at the exit. We believe that this behaviour is as a result of an 

increment in temperature of the electrolyte while flowing along the length of the sample due to Joule 

heating. Hence, for this study the electrolyte inlet temperature for each sample was measured in situ, and 

the electrolyte outlet temperature was calculated applying heat transfer equations based on the ECM 

parameters used.  

 

When the temperature increases, the conditions of the ECM process change, resulting in a different surface 

finish. The change in temperature along the workpiece surface observed in the samples presented here 

may be a result of a change in the electrolyte flow rate. Hence, the electrolyte cannot control efficiently the 
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temperature of the electrodes, promoting the change in valence at different points on their surface. It is 

known that the electric conductivity is directly related with the temperature of the electrolyte [31, 32]. 

When the conductivity changes, the electrochemical reactions during the ECM also change, thus affecting 

the resulting surface finish on the sample.  

 

The difference in temperature within the sample may be also affected by the interelectrode gap. ECM 

products are more easily accumulated in a small gap than in a larger one, equivalently the velocity of the 

electrolyte flow is higher in the small gap compared with the larger gap. If the electrolyte velocity within 

the interelectrode gap is not enough, some ECM products may be accumulated at the end of the pipe, 

provoking a change in the concentration and conductivity of the electrolyte at this point. This effect was 

also observed by Tang et al. [28] when the surface finish of their samples improved when adding 

backpressure to the electrolyte flow, hence avoiding the accumulation of products at the surface of the 

workpiece. For a uniform surface finish, the temperature difference, T , of the electrolyte across the length of the pipeǡ and in consequence its variation in conductivityǡ should be small ȋδͺ ǏCȌǤ 

 

Figure 7. Temperature difference, T , between the electrolyte inlet and outlet temperature, and 

overpotential, 0V , in relation with the surface finish: passivated entrance Ȃ reflective and bright exit 

(rhomboids), reflective and bright (squares), reflective and dark (triangles), and passivated (circles). 

 

Figure 7 shows T along the length of the samples and their relationship with the resulting surface finish. 

The samples that present two different surface finish (rhomboids in Figure 7) are the ones whose T is 

high. This difference is usually result of an electrolyte flow rate that is not enough (<25 L/min) to dissipate 
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the heat of the ECM process. Additionally, it can be observed that a uniform surface finish is presented when 

T  is low (squares, triangles and circles in Figure 7). 

 

Valence, z  

Valence, z , has also been demonstrated to influence the surface finish on SS during the ECM process. The 

transition from active to transpassive dissolution, and in turn the surface finish, is accompanied by a change 

in the anode potential, surface microstructure and change in the valence of the metal, as observed in Figure 

3 [6, 16]. As it has been seen previously [7, 8, 16], the decrease in dissolution valence corresponds with a 

progressive change in the electrode surface, i.e. from a smooth bright surface to a passivated one. In the 

present work the valence during the ECM process could not be measured, so these findings could not be 

verified for our samples. 

 

Conclusions 

The paper presented an experimental analysis of the parameters that influence the surface finish of SS316 

samples machined with ECM. The machining parameters, voltage, gap, electrolyte flow rate, and electrolyte 

inlet temperature, were varied in turn, and the samples were divided according to the resulting surface 

finish.  

 

Results highlighted a strong relationship between surface finish and overpotential during ECM. The 

overpotential is dependent of the current density and the characteristics of the electrolyte. Thus the 

electrolyte flow rate, conductivity and inlet temperature directly affect the resulting surface finish. An 

overpotential between 9 and 15 V is necessary to obtain the desirable reflective and bright surface finish; 

if the overpotential was lower, a passivated surface usually was obtained. The variation in the electrolyte 

temperature during the process was found to have a great impact on the uniformity of the surface finish 

along the sample. A non-uniform surface finish along the length of some samples was characteristic of a 

low electrolyte flow rate, and hence deficient heat and ECM products dissipation. Additionally the 

interelectrode gap also affect the resulting surface finish but its influence was not so evident, however a big 

interelectrode gap, 8 mm, usually results in a passivated surface finish. Current density (J) during the ECM 

process also demonstrated to have a big influence in the resulting surface finish; J higher than 4.5 A/cm2 

is needed to obtain a reflective surface finishǤ (owever itǯs important to remember that J is related with 

the interelectrode gap, and the temperature and conductivity of the electrolyte. 

 

The results presented in this paper could be used as a tool for the achievement of the desired surface finish 

on a sample of SS316. We believe that this analysis and subsequent further development could be applied 

with other metal alloys. Moreover, it is an important step towards the understanding of the ECM process 

and an adequate prediction of the resulting surface finish.  The accurate determination of the fundamental 

relationships between the power, overpotential, interelectrode gap, current density and electrolyte flow 

rate and electrolyte temperature, will lead to more accurate computational simulations of the ECM process 

and aid the tool design techniques. However more experimental work is still needed. 
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