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Review of DC-DC Converters for Multi-terminal HVDC Transmission 
Networks 

G.P. Adam, I. A. Gowaid, S.J. Finney, D. Holliday and B.W. Williams 

 

Abstract: This paper presents a comprehensive review of high-power dc-dc converters for high-voltage direct current (HVDC) 

transmission systems, with emphasis on the most promising topologies from established and emerging dc-dc converters. 

Additionally, it highlights the key challenges of dc-dc converter scalability to HVDC applications, and narrows down the 

desired features for high-voltage dc-dc converters, considering both device and system perspectives. Attributes and limitations 

of each dc-dc converter considered in this study are explained in detail and supported by time-domain simulations. It is found 

that the front-to-front quasi two-level operated modular multilevel converter, transition arm modular converter and controlled 

transition bridge converter offer the best solutions for high-voltage dc-dc converters that do not compromise galvanic isolation 

and prevention of dc fault propagation within the dc network. Apart from dc fault response, the MMC dc auto transformer and 

the transformerless hybrid cascaded two-level converter offer the most efficient solutions for tapping and dc voltage matching 

of multi-terminal HVDC networks. 

 

Key words: High-voltage dc-dc converter; modular multilevel converter; multi-terminal high-voltage dc networks; and 

prevention of dc faults propagation. 

I. INTRODUCTION 

For many decades researchers have recognised the possibilities multi-terminal high-voltage dc (HVDC) transmission networks 

can offer when compared to well-established high-voltage ac (HVAC) systems[1-15]. For the majority of this period, the 

difficulty of power reversal in complex multi-terminal networks based on line commutating converter high-voltage dc (LCC-

HVDC) technology has prevented development of generic dc grids with seamless control over the power flow in any of its 

branches [16]. Also, the increased dependency of the LCC terminal on the ac network strength has caused significant concerns 

regarding ac voltage stability of relatively weak ac networks, especially when large power is being exchanged [8, 16-26]. The 

emergence of voltage source converter high-voltage dc (VSC-HVDC) in the early 1990s [10, 12, 27-46] that can reverse dc 

power without any difficulty (power reversal is achieved without the need to reverse the dc voltage) has reinvigorated research 

into generic multi-terminal HVDC networks. Recent consideration of offshore wind farms by many European countries with 

real possibilities of building offshore multi-terminal HVDC networks and inter-regional dc grids, has encouraged serious 

research and development effort from major HVDC manufacturers and academia [1, 8, 12, 43-45, 47-59]. These efforts include 

all technology chains which are necessary for practical realisation of multi-terminal HVDC networks, such as dc switchgear 

(dc circuit breakers and fast disconnectors) and high-voltage dc-dc converters [44, 47, 60-76]. Besides dc voltage matching, 

high-voltage dc-dc converters are expected to play a pivotal role of splitting a large dc grid into several protection zones 

(smaller dc networks, each capable of sustaining itself as an individual network or operating as part of a large network), thus 

preventing entire system collapse during a severe dc network fault. These dc-dc converters (also known as dc-transformers) are 

expected to provide galvanic isolation. The majority of the most promising dc-dc converters for HVDC applications known 

today are developed around the front-to-front (F2F) dual active bridge originally developed by De Doncker for low and 

medium-voltage applications [65, 77]. The topology is best suited for low and medium transformation ratios. These dc-dc 

converters deliberately use an intermediate ac link to make a dc fault on one side appears as a controllable ac overcurrent at the 

healthy side converter. Blocking the healthy converter will therefore be sufficient to isolate the faulty part. 



These converters must therefore be seen as an enabling technology for a multi-terminal HVDC network as they minimise the 

number of dc circuit breakers, and allow dc grids to behave in a similar fashion as ac grids during dc network faults. Because it 

is not possible to cover all the dc-dc converters proposed in the literature for HVDC applications, this paper focuses on the 

established and emerging dc-dc converters, which show promise for HVDC applications. A brief discussion of each dc-dc 

converter will be presented, with broader emphasis on aspects related to power electronic systems. The discussions will be 

supported by a number of illustrative simulations.  

II. CHALLENGES AND REQUIREMENTS FOR HIGH-VOLTAGE DC TRANSFORMERS 

To focus investigation, this paper summarises some of the technical issues related to scalability of dc-dc converters for multi-

terminal HVDC networks as follows: 

a) F2F two-level and neutral-point clamped dc transformers require robust methods for static and dynamic voltage sharing of 

the series device connection in order to be able to operate with dc voltage suitable for HVDC transmission systems. 

However experiences from early generations of HVDC links show that the use of series connected IGBTs is limited to 

±200 kV [47, 78].  

b) Although adoption of a high fundamental frequency (1 kHz to 2 kHz) is attractive for reduced size and weight of magnetic 

components, switching of large voltage steps (400 kV or higher) at such frequencies impresses extremely high dv/dt upon 

interfacing transformers. This will make transformer design more challenging (that is, insulation and ability to transmit 

powers associated with dominant low-order harmonics such as the 3rd, 5th and 7th). 

c) Benefits of multi-level techniques in dc-dc applications, where fundamental frequencies are much higher than 50Hz may 

not be significant. This is because the reduction in transformer size will be limited by the minimum clearance between 

terminals and phases, bushing creepage, and transformer body structure must be mechanically strong to be able to support 

the weight of long high-voltage bushings, including magnetic forces during normal and abnormal operation. Thus, 

insulation and isolation within high voltage dc-dc converters will present major volume constraints.  

Considering the importance of high-voltage dc-transformers for practical realisation of multi-terminal HVDC network with dc 

operating voltage of up to 800 kV (pole-to-pole), the most desirable features for high-voltage dc-dc converters are: 

1) Scalable to high-voltage, and are likely required to use an interfacing transformer for galvanic isolation [65, 79], and 

better utilisation of switching devices at the converter with higher dc link voltage. In this manner, circulating reactive 

power in the ac link is minimized, without de-rating of the switching devices. Besides voltage matching, a dc-dc 

converter must be able to act as a dc power or dc voltage controller and prevent dc fault propagation within the dc 

network, without exposing its switching devices to risk of damage. 

2) Voltage stresses (dv/dt) presented at the primary and secondary windings of the interfacing transformer, and voltage 

stresses across dc-dc converter switching devices and passive components must be fully controlled. 

3) Since the size and weight reduction of the interfacing transformer in a high-voltage dc-dc converter is limited by the 

level of switching losses and other high-voltage and mechanical considerations as stated previously, the fundamental 

frequency in the ac link must be constrained to less than 1 kHz [65]. In multi-module dc-dc converters, where each 

sub-module operates at relatively low dc voltage and contributes a small fraction of the total output power, higher 

fundamental frequency can be achieved at the ac link [79, 80].  

4) The dc-dc converter must be able to perform black-start at the ac link and controlled recharge of the dc link following 

dc fault isolation on any one of its dc terminals. Thus, modulation index control over a wide (0-1) range is required. 

 



III. REVIEW OF ESTABLISHED AND EMERGING DC-DC CONVERTER TOPOLOGIES 

A) Two-level converter dual active bridge (DAB) 

Fig. 1 shows an example of a dc-dc converter that uses a typical two-level dual active bridge with series connected IGBTs 

(insulated gate bi-polar transistors) to enable operation at high dc voltage. With the use of a fundamental frequency ranging 

from 250 Hz to 1 kHz in the ac link, the overall size and weight of the dc-dc converter can be reduced, without significant 

efficiency sacrifice. Traditionally, such two-level dual active bridges are operated in a square wave mode at the fundamental 

frequency, where each arm conducts for 180o (half a fundamental period), with the load angle between vao1 and vao2 (Fig. 1) is 

traditionally used for power flow control between VSC1 and VSC2 [65, 77, 81-83]. In this operating mode, self-commutated 

semiconductor devices in the DAB tend to turn on and off at zero currents for much of the operating range (while anti-parallel 

diodes are in conduction); thus, low switching loss is achieved [65]. The use of pulse width modulation can provide an 

additional degree of freedom, which can be exploited to minimise the circulating reactive power in the ac link between VSC1 

and VSC2. However, with fundamental frequency range stated, the use of high-frequency pulse width modulation (PWM) must 

be precluded, because the increase in switching losses is expected to outweigh the gain that will be achieved by increased 

control flexibility [65, 76, 84, 85]. To avoid this shortcoming of the high frequency PWM, low-frequency modulation schemes 

such as selective harmonic elimination (SHE) with one notch per quarter cycle can be used to achieve the necessary control 

flexibility, specifically ac voltage and reactive power control in the ac link between VSC1 and VSC2, especially during a dc 

fault. However, with SHE the range at which inherent soft switching during DAB turn-on and off is achieved will be reduced; 

hence, switching losses are expected to increase. 

Fig. 2 (a) shows switched ac voltages VSC1 and VSC2 the two-level DAB in Fig. 1 impress on the primary and secondary 

windings of the medium-frequency transformer in the ac link. In this illustration, the fundamental frequency is 500 Hz, both 

VSC1 and VSC2 are operated using fundamental frequency switching with 180o conduction, input and output dc link voltages of 

VSC1 and VSC2 are ±400 kV and ±350 kV respectively, and the power flow direction is from VSC1 to VSC2. Fig. 2 (c) shows 

sampled dc power measured at the dc link of VSC2 (when VSC2 ramps the power flow from VSC1 and VSC2, from 0 to 800 

MW). The switched voltage waveform at the terminal of VSC1 (vao1 for phase ‘a’) leads that of VSC2 (vao2) as expected when 

the power flow direction is from VSC1 to VSC2. Theoretically, the switch voltages vao1 and vao2 of the VSC1 and VSC2 can be 

expressed as: 
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where į is the angle of vao2 relative to vao1 and n=2j+1, j
  . If the medium-frequency transformer is assumed to be lossless 

and with LT transformer leakage inductance referred to primary, the primary instantaneous current can be expressed as: 
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With the instantaneous power at the terminals of the lead converter VSC1 expressed as p1(t)=3vao1iao1(t), the average power 

VSC1 exchanges with VSC2 is: 
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where k is the turn ratio (primary to secondary). 

Equation (3) indicates that the medium-frequency transformer must be designed to transmit all the powers associated with 

significant low-order harmonics, including that of the fundamental component. Here, the load angle is the only available 



degree of freedom that can be used to control power flow. When SHE is used as depicted in Fig. 2 (b), expressions for vao1 and 

vao2 become [86]: 
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The average power VSC1 exchanges with VSC2 is: 
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Equations (4) and (5) show that with SHE the power flow in the ac link can be controlled using voltage magnitudes at the 

terminals of VSC1 and VSC2, and the phase shift between these voltages (load angle į). Fig. 2(b) and (d) show ac voltages 

VSC1 and VSC2 present at the primary and secondary windings of the coupling transformer, and dc power measured at the dc 

link of VSC2 when power flows from VSC1 and VSC2, and VSC2 ramps its power command from 0 to 800 MW (both VSC1 

and VSC2 are controlled using SHE). From Fig. 2 (b) and (d), although SHE introduces an additional degree of freedom, the 

principle of controlling the DAB remains the same. 

With continuously increasing dc operating voltage of voltage source converter based high-voltage direct current (VSC-HVDC) 

transmission systems, the rate of change of voltage dv/dt that the two-level DAB in Fig. 1 impresses upon the medium-

frequency transformer between VSC1 and VSC2 becomes intolerable, and restricts its applications to relatively low power and 

dc voltages of up to ±200 kV dc, as in early generation two-level and neutral-point clamped based VSC-HVDC links.  

 

Fig. 1: IGBT based two-level converter dual active bridge (Vdc1=800 kV, Vdc2=700 kV, 500Hz fundamental frequency and medium frequency transformer rated 

at 1000 MVA, 500 kV/450 kV with 10% per unit reactance) 

(a) Voltage waveforms at the terminals of VSC1 and VSC2 (vao1 and 

vao2) when power flow is from VSC1 to VSC2 (fundamental 

frequency switching) 

 

(b) Voltage waveforms at the terminals of VSC1 and VSC2 (vao1 and 

vao2) when power flow is from VSC1 to VSC2 (SHE with active 

power and ac voltage control in the high frequency ac link) 



 

(c) Power flow in the dc link of VSC2 (fundamental frequency 

switching, VSC2 ramps its power command from 0 to 800 MW) 

(d) Power flow in the dc link of VSC2 (SHE, VSC2 ramps its power 

command from 0 to 800 MW)  

Fig. 2: Waveforms illustrating the basic operation of a two-level converter DAB (fundamental frequency=500 Hz)  

B) Modular multilevel converter dual active bridge 

As power handling and the dc operating voltage of the VSC-HVDC links continue to increase, the modular multilevel 

converter dual active bridge (MMC-DAB) with a medium-frequency transformer in the ac link in Fig. 3 is more likely to be 

adopted. The use of a medium-frequency ac link is not only beneficial for compact transformer design, but also leads to overall 

reduction in the size of the MMC-DAB passive elements such as cell capacitances and arm reactors. Practically, the ac link of 

an MMC-DAB can be operated using full multilevel modulation with sinusoidal voltage or in a quasi two-level mode with 

trapezoidal voltage as suggested in [53]. These two possibilities will be explored in the subsequent parts. 

 

(a) 

 

(b) 

Fig. 3: Modular multilevel converter dual active bridge 

a)  Multilevel operation of MMC-DAB with sinusoidal voltage and currents in the ac link 

This mode operates the MMC-DAB in Fig. 3 using multilevel modulation similar to that used in the converter terminal of the 

typical VSC-HVDC link, where the MMC is connected to the ac grid [50]. Basic operating principle of the MMC can be 



explained using sub-converter VSC1 in the MMC-DAB Fig. 3(a). Each of phase-leg of the VSC1 depicted in Fig. 3(a) 

comprises of upper and lower arms, each consists of N1 half-bridge cells such as shown in Fig. 3(b). Each MMC arm supports 

full dc link voltage (Vdc1), with the voltage across each cell capacitor must be maintained strictly around Vcell=Vdc1/N1 or 

Vcell=Vcref/N1, depending on the control method to be employed. To control the power flow between MMC ac and dc sides, 

without unnecessary inrush current in the dc side, the distributed cell capacitors of each MMC phase-leg must be controlled 

such that the upper and lower arms are operated in complementary manner according to the following insertion functions: 
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aforementioned operation allows each MMC phase leg to present sufficient dc or common-mode voltage (va1+va2≈ĮdVcref) to 

counter the input dc link voltage (Vdc1), while keeping sufficiently small voltage mismatch between the two voltages to allow 

the current flow in the dc link as it will be set by the power controller. The arm inductor Ld in Fig. 3(a) is needed to limit the 

inrush current due to mismatch between common-mode voltage and input dc link voltage. The aforesaid operation makes 

MMC is the only VSC, where the upper and lower arms of the same phase leg conduct simultaneously, and with co-existence 

of continuous ac and dc currents in all its arms; with the ac currents are being used to transfer active power from ac side to 

converter, and dc currents for power transfer from converter to the dc side[88]. When ia1 and ia2 are assumed to be phase ‘a’ 

upper and lower arm currents, with both currents have the same direction, phase ‘a’ output current (iao) represents the 

differential-mode current (iao=ia1-ia2). The current component that circulate between the upper and lower arm of phase ‘a’, 

without leaking into output circuit is denoted as common-mode current and it is given by: icom=½(ia1+ia2). If appropriate 

measure is not put in place, MMC arm currents may contain some parasitic component such as 2nd order harmonic current that 

could increase semiconductor losses and cell capacitor voltage ripple. The main features of this mode are:  

 Low switching losses and voltage stresses (dv/dt) on the isolation transformer of the MMC-DAB compared to its two-level 

equivalent (this is achieved through sequential switching of small voltage step, with an average switching frequency per 

device of 3 to 4 times the fundamental frequency).  

 Full modulation index range is available for voltage control in the ac link during dc faults and for provision of black start 

of a dead dc networks following a blackout. 

 This mode does not fully exploit the active powers associated with significant low-order harmonic voltages and currents; 

therefore, MMC-DAB operated in this mode is expected to have lower power density compared to its two-level equivalent 

[62, 75, 89]. Also, full exploitation of soft switching as in the DAB configuration is not possible (only some of the devices 

will turn on and off at zero current).  

Although the use of a medium-frequency ac link between VSC1 and VSC2 of the MMC-DAB may lead to a compact design as 

previously stated, operation with low modulation index during black start following a dc network fault will increase the 

loading on the cell capacitors. Thus, cell capacitance must be oversized to keep cell capacitor voltage ripple within tight limits, 

and avoid exposing switching devices to increased voltage stress.  



The average active power exchange between VSC1 and VSC2 when the MMC-DAB is operated with sinusoidal currents and 

voltages in the ac link can be approximated by: 
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where, m1 and m2 are the modulation indices of VSC1 and VSC2 (m1=2Vm1/Vdc1 and m2=2Vm2/Vdc2, and Vm1 and Vm2 are peak 

fundamental voltages at the terminal of VSC1 and VSC2). Equation (6) only exploits the active power associated with the 

fundamental voltage and current (lower power density is expected). 

 

b) Quasi-two-level (Q2L) operation of MMC-DAB  

Quasi two-level operation of multilevel converters was initially proposed for diode clamped multilevel inverters [90-93] and 

later adopted for modular multilevel converters [75]. This mode operates the modular multilevel converter as a two-level 

converter, except that the cell capacitors of the modular converter are used briefly as a clamping network to facilitate orderly 

transition of the output phase voltage vao1(t) from -½Vdc to ½Vdc and vice versa, as shown in Fig. 4. With the time spent (dwell 

time td) at each intermediate voltage level being sufficient small (5s to 25s), td must be selected taking into account the 

switching capability of employed semiconductor devices. This mode loads the MMC cell capacitors with fundamental current 

for a short time during stepped transitions of the output phase voltage vao1(t) between the positive and negative dc rails as 

illustrated in Fig. 4. In this way, the energy storage requirement of the cell capacitors (cell capacitance) and overall footprint of 

the MMC is reduced drastically. This makes the MMC-DAB operated in the Q2L mode well suited, promising candidate for 

dc-dc converters for multi-terminal HVDC networks. Q2L operation mode bypasses the upper and lower arm cell capacitors of 

each MMC phase-leg for the majority of the fundamental period when the output phase voltage vao1(t) is clamped at -½Vdc or 

½Vdc.Such operation leads to small voltage mismatch between the input dc link voltage and the sum of the cell capacitor 

voltages in each arm. Thus, small arm inductances suffice to limit the circulating currents as demonstrated in [75, 94]. 

Practically, dwell time td can be pre-defined or varied based on the cell capacitor balancing requirements when the MMC-DAB 

is operated with fixed voltage magnitudes in the medium-frequency ac link. Alternatively, the dwell time td can be varied to 

vary the magnitude of the ac voltage at the MMC terminals to minimize circulation reactive power and facilitate black-start 

following blackout in one of the dc or ac sides. However, such variation increases the loading on the cell capacitors by the 

fundamental current as Q2L operation mode converges to typical multilevel operation. This increases the energy storage 

requirement of the MMC cell capacitors; thus, cell capacitance. The output phase voltages vao1(t) and vao2(t) that VSC1 and 

VSC2 of the Q2L operated MMC-DAB present to the primary and secondary windings of the transformer in the ac link are: 
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Following similar procedures as with the two-level DAB, active power of the Q2L operated MMC-DAB is: 
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Implementation of MMC Q2L operation as suggested in [94, 95] results in considerable MMC switching loss reduction as each 

switching device operates at the fundamental frequency, and the upper and lower MMC arms are bypassed alternately every 

half fundamental cycle. Switching losses has been shown in [53] comparable to those of a two-level DAB. A further soft 

switching method has been recently proposed in [96].  



Trapezoidal operation involves each MMC arm being connected in parallel with the input dc link voltage every 180o, with 

rapid recharge of the MMC cell capacitors to the input dc link voltage. This makes the current in each arm drop to zero every 

half fundamental period. The main disadvantage of the implementation suggested in [95] is that modulation index control is 

only achievable within a narrow range (0.81<m<1.27). Auxiliary techniques can be employed to extend this range as detailed 

in [53].  

Fig. 4 shows illustrative simulation results from a Q2L operated MMC with the scheme suggested in [95].  Waveforms in Fig. 

4 are for a 250Hz fundamental frequency. Fig. 4 (a) and (b) show phase voltage relative to dc ground of a symmetrical 

monopole and its expanded version during transition from ½Vdc (+400 kV) to -½Vdc (-400 kV). Fig. 4 (c) shows the line-to-line 

voltage. Upper and lower arm currents displayed in Fig. 4 (d) show each arm current falls to zero as stated. Fig. 4 (e) shows 

that despite the significant reduction achieved in the magnitudes of the arm inductance and cell capacitance, the cell capacitor 

voltages of the Q2L operated MMC are tightly controlled, with voltage ripple well below 10%. This means a further reduction 

in cell capacitance may be possible from the converter operational point of view. Fig. 4 (f) shows samples of the currents in the 

switching devices Sx and Sm (Sx is the IGBT connected in series with the cell capacitor, and Sm is the IGBT that bypasses the 

cell capacitor), and highlights that both switches (Sx and Sm) operate at the fundamental frequency. Additionally, switch Sx of 

each cell experiences lower current stresses than with full multilevel operation. Switch Sm of each cell experiences higher 

current stresses than with full multilevel operation (since the total power each phase contributes is being exchanged through 

one arm at any instant time instead of two arms as in full multilevel operation). Because of the reduce cell capacitance, the dc 

link current ripple is higher than with full multilevel operation. 

 

(a) Output voltage (vao1) that Q2L operated MMC presents to its 

interfacing transformer 

 
(b)  ‘vao’ expanded around the transition from +½Vdc to -½Vdc illustrating the 

low dv/dt on the interfacing transformer 

 

 

(c) Line-to-line voltage Q2L operated MMC presents to its 

interfacing transformer (d) Upper and lower arm currents (ia1 and ia2), and output phase ‘a’ current 
iao 



(e) Phase ‘a’ cell capacitor voltages 

 

(f) Current in switching devices of one cell (ISx is the current in the device in 

series with cell capacitor, and ISm is the current in the main device that 

bypasses the cell capacitor) 

Fig. 4: Waveforms illustrating the suitability of the Q2L operated MMC for dc-dc conversion (21-cell switch model, dc link voltage is 800 kV, arm inductor 

Ld=50 µH, combined internal resistance of the arm reactor and the on-state resistance of switching devices Rd=0.3 Ω, cell capacitor Cm=50 µF, modulation 

index m=1.26 and fundamental frequency=250 Hz) 

 

c) Dual active bridge based Controlled Transition Bridge (CTB) converter 

Fig. 5 shows a dual active bridge dc-dc converter based on three-phase controlled transition bridge multilevel converter 

proposed in[97]. Consider converter 1 of DAB in Fig. 5, the circuit structure of CTB is similar to that of the T-type inverter 

discussed in[98, 99], except the series connected switches of the T-inverter between each output pole (a1, b1 and c1) and the 

neutral-point (O1) are replaced by full-bridge (FB) chain links. A CTB multi-level converter with N1 FB cells per limb can 

generate ‘2N1+1’ voltage levels per phase, between (a1, b1 and c1) and O1. When a CTB multilevel converter is operated as 

suggested in [97], the switching devices of its main two-level bridge operate at the fundamental frequency; thus, negligible 

switching loss is incurred in this stage. Operationally, the chain link of each limb needs to block only half the input dc link 

voltage (Vdc1); hence, the voltage across each cell capacitor must be maintained at ½Vdc/N1. This means the number of 

semiconductor devices in conduction path in each limb is 2N1, which is the same as the main two-level bridge and as in a 

conventional two-level converter. As an example, for a CTB with a 640kV dc link voltage that employs 4.5kV IGBT with 55% 

device utilization (2.5kV per IGBT at two-level bridge and chain links), the number of IGBT in the conduction path in each 

instant is 256 and number of full-bridges per limb is 128. This indicates that the CTB converter is expected to have lower on-

state losses than a HB-MMC. The chain links and two-level bridge of the CTB converter in Fig. 5 operate in a complementary 

manner, with the chain links of each phase being used to facilitate controlled transitions between the positive and negative dc 

buses (+½Vdc and -½Vdc) through intermediate voltage levels.  

Generally, the CTB converter can be operated using established modulation strategies, especially when it is used as a converter 

terminal of the VSC-HVDC link. For dc-dc converter applications, where converter footprint and weight are increasingly 

important, Q2L operation of the CTB offers several advantages (as presented in [56]): 

 Smaller footprint compared to Q2L operated MMC. 

 Low semiconductor losses (the number of switching devices in the conduction path is lower than that in an MMC and 

most he hybrid converters of similar rating). 

 Retains most of the attributes of the Q2L operated MMC such as low dv/dt, readily scalability to high voltage, and 

modular structure. 

However, its main disadvantage is that the discharge of its concentrated dc capacitor at the input dc link may result in high 

current stresses in the freewheel diodes of the two-level stage during a dc side fault. But this is not a major issue in dc-dc 

converters because the ac link between the two CTB converters in Fig. 5 is weak (freewheel diodes of the faulty converter will 

see only short duration discharge current of the dc link plus cable capacitors).  

 



 

 
Fig. 5: Two-level Cascaded Transition Bridge (CTB) 

To illustrate the suitability of the Q2L operated CTB converter for dc-dc converters, a three-phase 21-cell CTB converter is 

simulated with a 800 kV input dc voltage, connected to a passive load of 300 Ω with 0.98 power factor lagging per phase. Cell 

capacitance and current limiting inductance inserted in each limb are 100 µF and 50 µH respectively. In this illustration, SHE 

is used with 0.9 modulation index, and the results are shown in Fig. 6. Fig. 6 (a) shows the phase output voltage the CTB 

presents to the load when SHE based Q2L operation is adopted. Fig. 6 (b) shows the voltage stress across phase ‘a’ upper 

switches of the two-level stage. The use of a Q2L operated CTB converter permits gradual increase of the voltage across the 

series IGBTs of the two-level stage. This offers the possibility of turning on and off the IGBTs (that form the composite 

switches of the two-level stage) individually and in a sequential manner (snubber circuits are avoided). Fig. 6 (c) shows the 

current waveform in the converter limb (that is, a series string of FB cells), and it indicates that the FB cascaded cells are 

recharged when the output phase is clamped to either the positive or negative dc rail, with the limb current dropping to zero 

when the sum of the voltages across the cascaded FB cells equals the dc link voltage. Also, each limb conducts for a small part 

of the fundamental period; hence switching devices with relatively low current rating can be used in the FB cells. Fig. 6 (d) 

shows that the cell capacitor voltages of the CTB converter are maintained around the desired set point, ½Vdc/N. The results in 

Fig. 6 show that the CTB converter is promising as a HVDC dc-dc converter, without the constraints of the conventional two-

level converter counterpart in terms of dv/dt and losses. However, its input dc link capacitor may increase the magnitude of 

transient discharge current during dc faults, which may increase the let-through current in the dc circuit breakers and other 

switchgear connected to the dc side to isolate dc faults.  

 

(a) Phase voltage (vao) measured relative to supply mid-point 

 
(b) Voltage across upper switch of phase ‘a’ 



 

(c) Sample current in the limb that connects full-bridge cells of phase 

‘a’ to neutral –point or dc link mid-point 

 
(d) Full-bridge cell capacitor voltages 

Fig. 6: Waveforms illustrating the suitability of the CTB two-level converter in dc-dc converter application, with modulation index control over the linear 

range (21-cell detailed switch model, V
dc

=±400 kV, L
d
=50 µH, C

m
=100 µF, fundamental frequency=250 Hz, modulation index m=1) 

d) Dual active bridge based on Transition arm multilevel converter (TAC) 

Transition arm multilevel converter (TAC) proposed in [100] offers possibilities for further reduction of footprint and 

semiconductor area in dc-dc converters for multi-terminal HVDC networks, see Fig. 7a. It is realized by replacing the HB 

chain links of the upper or lower arm chains in typical MMCs by high-voltage composite switches such as series connected 

IGBTs. In the TAC, only the upper arms are used to facilitate controlled stepped transitions between the positive and negative 

dc rails when synthesizing the output ac voltage that will be imposed on the DAB ac transformer, see Fig. 7a and b. The lower 

arm high-voltage series switch of each phase leg is turned on only when the output voltage of -½Vdc needs to be synthesized at 

the ac output poles ‘a’, ‘b’ and ‘c’. Otherwise, these high-voltage series switches remain off. For example, when turning on the 

high-voltage series switch of the phase ‘a’, all the cell capacitors of the upper arm of the phase ‘a’ are inserted into the power 

path, in parallel with the input dc link voltage. This causes a common-mode current to flow in both arms (upper and lower) to 

recharge the cell capacitors of the upper arm to Vdc/Nc, where Vdc and Nc are input dc link voltage and number of cell capacitors 

per transition arm (see Fig. 7c, d and e). With such operation, the voltage stress across the high-voltage series switches will be 

built gradually; thus there is no need for complex snubber circuits to facilitate dynamic voltage sharing between the series 

connected IGBTs. The upper and lower arm currents of the TAC drop to zero every half fundamental period as in the Q2L 

operated MMC previously discussed, since the output poles of the TAC are clamped to the positive and negative dc rails 

alternatively every 180o, for the majority of the fundamental period. The arm inductance of the TAC operated in this mode is 

expected to be small, similar to that of the Q2L operated MMC. This discussions show that TAC is promising for high-voltage 

dc transformer application. 



 

(a) Transition arm modular multilevel converter 

 

(b) Terminal voltage (vao) 

 

(c) Zoomed voltage across the upper arm 

 

(d) Samples of the upper and lower arm currents 

 

(e) Sample cell capacitor voltage 

Fig. 7: Transition arm modular multilevel converter and its selected waveforms that aim to illustrate its operational principle (average model of TAC, Vdc=640 

kV, Ld=0.1 mH, Cm=60 µF(equivalent cell capacitance Ce=Cm/21), 50 Hz fundamental frequency and operated using trapezoidal modulating signals, and 

equivalent load connected to ac side is 812 MW and 85 MVAr inductive)  

 

e) Dual active bridge dc-dc converter based on alternative arm modular multilevel converter (A2M2C-DAB) 

Fig. 8 shows the A2M2C-DAB dc-dc converter proposed in [101] and [63] that reduces the number of full-bridge cells 

required per arm when compared with the FB-MMC. By altering the basic operation of the FB-MMC, each arm of the A2M2C 

operates for 180o, while a director switch is used to ensure that each arm is able to block the full dc link voltage. With the aid 

of a brief overlap time (where the upper and lower arms of the A2M2C conduct simultaneously), the director switches of each 

phase are able to facilitate a relatively smooth current commutation between the upper and lower arms over a limited power 

factor range. This modification allows the A2M2C to achieve dc fault blocking capability with reduced semiconductor losses 

when compared to the FB-MMC and hybrid cascaded two-level converter [53, 102-104], and a modest reduction in footprint. 

Operation of the A2M2C in the Q2L mode further reduces its footprint (size of cell capacitors and arm inductor), hence it is a 

suitable HVDC dc-dc converter. However, its overall efficiency remains lower than that of the Q2L operated half-bridge MMC 

due to the large number of switching devices it inserts in the conduction path. Additionally, the A2M2C-DAB is less likely to 

be adopted for high-voltage high-power dc-dc converters as dc fault blocking is not necessary and its concentrated input dc 

link capacitor may increase the peak of transient component of the dc fault current. 



 

 

 
Fig. 8: Alternative arm modular multilevel converter dual active bridge (A2M2C-DAB)] 

 

f) Dual active bridge based on hybrid cascaded two-level converter 

Fig. 9 shows a dc-dc converter configuration that employs hybrid cascaded two-level converters with ac side FB cells [53, 105-

107]. Although the numbers of switching devices and cell capacitors in the hybrid cascaded two-level converter shown in Fig. 

9 are the same as in the CTB converter in Fig. 6, it offers reverse blocking capability during a dc fault. However, its main 

disadvantages are: it has a large number of switching devices (4N) in conduction path when compared to the CTB converter 

(2N), thus, higher semiconductor losses are expected even with Q2L operation; and its input dc link capacitor increases the 

magnitude of the dc fault currents experienced by the switchgear in the dc side as stated with CTB and A2M2C based DABs. 

Based on this discussion, the cascaded two-level converter is unlikely to be used for high-voltage dc-dc converters. 

 

Fig. 9: Hybrid cascaded two-level converter 

C) Multi-module dc-dc converters 

Fig. 10a shows a flexible multi-module dc-dc converter with unidirectional power flow capability that can be used in medium-

voltage high-power applications. In this arrangement, each sub-module operates at the rated voltage of a single device and 

contributes a fraction of the total output power; thus, operation with higher switching frequencies (>1 kHz) is achievable 

without significant design challenge or efficiency sacrifice. This type of dc-dc converter is also suited for applications where 

bi-directional power flow capability is not needed. Normally, the active front-end converter of each individual sub-module 

regulates that sub-module’s output voltage with inner loop control that regulates the inductor current iLj (where j=1 to N, and N 



is the sub-module number) and constraints the sub-module current contribution during dc network transients. Additional 

control is needed to ensure equal output voltage and input current sharing between the sub-modules, and to facilitate extra 

functionality such as black-start of the dc network, etc. At high fundamental frequency, the leakage inductance of the ac link 

transformer must be designed carefully in order to avoid exacerbating the reverse recovery problem at each diode bridge, 

which is connected to the secondary side of each high-frequency transformer [77, 108]. In high-power applications, the 

rectifier diodes suffer from high reverse recovery currents, a limited zero voltage switching range of the front end converter 

FB, and duty cycle loss [65, 77, 83, 108-111]. Several solutions to the reverse recovery current problem of the rectifier diodes, 

high-voltage ringing and circulating reactive power have been suggested [65, 77, 79, 108].  

Fig. 10b shows a generic version of a multi-module dc-dc converter with bi-directional power flow, where any of the 

submodules in Fig. 10 (c), (d) and (e) can be used. In the resonant version, the FB converters are used to adjust their operating 

frequencies to the resonant frequency of the ac link, thereby presenting near sinusoidal voltages to the primary and secondary 

windings of the high-frequency transformer, enabling switching devices of both bridges to operate at nearly zero current 

switching. However, the main disadvantage of this approach is that the voltage across the series resonant capacitor tends to be 

extremely high. As a result the resonant capacitor of each submodule tends to be relatively large and heavy. This makes the 

non-resonant version in Fig. 10c lighter and smaller than its resonant counterpart in Fig. 10d [79].  

The half-bridge multi-module dc-dc converter with a split capacitor has been proposed in [80], see Fig. 10e. However, the 

topology in Fig. 10e has lower power density than the full-bridge version, Fig. 10c (should both topologies be fed from the 

same dc link voltage) and requires a larger filter capacitor to attenuate the large current ripple of the half-bridge cells (thus, 

larger footprint is expected). The multi-module dc-dc converters discussed in this section, and their derivatives, are expected to 

offer better solutions at medium-voltage when compared to the single large dc-dc converters discussed (over a wide range of 

operating frequencies). The main disadvantage associated with all multi-module dc-dc converters when employed beyond 

medium-voltage is the use of multiple transformers and their requirement for varying and high insulation from real ground.  

 

(a) Unidirectional power flow 

 

(b) Bi-directional power flow 



 

(c) Bidirectional based on full-bridge bridge sub-module 
(d) Bidirectional based on series resonant single-phase full-

bridge module 

 

(e) Bidirectional based on half-bridge single-phase module 

Fig. 10: Generic schematic diagram of dc-dc modular multilevel converter [112] 

 

D) Non-isolated dc-dc converters 

a) Resonant based transformerless dc-dc converters 

Fig. 11 shows a non-isolated resonant based dc-dc converter with bi-directional power flow capability [113, 114]. It was 

originally proposed as a high stepping voltage ratio (V2/V1) multi-functional unit for use in multi-terminal HVDC transmission 

systems, with the ability to control power flow in both directions and to limit the impact of a dc fault to within well-defined 

sections of the HVDC network. The claimed advantage of high stepping voltage ratio [113] may not be viable practically 

because the series-connected thyristors of the low-voltage side converter must be rated to withstand the peak voltage across the 

resonant tank capacitor, which is 1.2 to 1.4 times the nominal rated voltage of the high-voltage side (V2). Although 

transformer-less operation is attractive, it may lead to poor device utilization at the high-voltage side and low efficiency with 

circulating reactive power in the ac link. The utilisation shortcoming is not only limited to this dc-dc converter, Fig. 11, but to 

all non-isolated dc-dc converter based DAB configurations. Being based on single phase concepts, the power ripple on both dc 

link sides at twice the resonant frequency and must be filtered, which adds to the dc fault current levels. Pre-existing grounding 

and filtering arrangements may preclude its connection to established dc links. Switch transient voltage sharing mechanisms 

have to be addressed, making a Q2L MMC approach attractive provided the link inductances are transferred to the ac sides. 

 

 

 
Fig. 11: Non-isolated resonant based dc-dc converter with bidirectional power flow capability 

b) MMC transformerless dc converter topologies 

Recently, the modular dc/dc converter topology of Fig. 12a was proposed [115, 116]. It generates output voltages that contain 

ac plus dc bias at the nodes (p1, p2 and p3) and (n1, n2 and n3) relative to ground. Therefore, it requires extremely large output 



filter inductance and capacitance to attenuate the fundamental ac voltage components from each phase voltage when measured 

relative to ground (Lf=990 mH is used for the ±17.6 kV, 40 MW system in [115]); otherwise, pole-to-ground dc voltage of the 

low-voltage side will be modulated at the fundamental frequency used to exchange power between converter arms. The claim 

that this dc-dc converter offers dc blocking capability is correct only when the dc fault occurs at the high-voltage side; but 

during pole-to-pole and pole-to-ground dc faults at the low-voltage side, sub-modules of the innermost arms are exposed to 

excessive current stresses. However, reverse blocking capability can be achieved if the inner and outer arms adopt mixed cells 

(combination of HB and FB cells). 

Two versions of the non-isolated dc-dc converter, known as the tuned filter and the push-pull modular multilevel dc converter 

are presented in [89, 117]. Again both converter versions require significant filtering at the output dc port, with the tuned filter 

version reported to require more filtering than the push-pull version[89] . In [89] detailed design of the push-pull version 

concluded that filtering the ac components necessitate a similar amount of magnetics as in an equivalent multi-module DAB 

dc-dc converter. Therefore, they may not be competitive in medium and high-voltage applications..  

The auto dc transformer proposed in [118] and shown in Fig. 12b only converts part of the total dc power exchange between 

the two dc sides into ac power to be transferred to the lower converter through the coupling transformer in the ac link. The dc 

power converted into ac power is Pac=(Vdc1-Vdc2)Idc1=Idc1Vdc1(1-Vdc2/Vdc1)=Pdc1(n-1)/n and is fed to the dc side of the lower 

converter (where, Pdc1=Vdc1Idc1 and n=Vdc1/Vdc2). The remaining part of the dc power will be transferred directly to the lower 

converter dc side, using the common mode currents of the upper converter (dc component of the arm currents), and this 

amount of power can be expressed as Pdc12=Pac/n. Thus, the MVA rating of the coupling transformer in the ac link is reduced 

or even halved when Vdc1:Vdc2=2:1 or (Vdc1-Vdc2):Vdc2=1:1. With power flow shown by the direction of the dc currents in Fig. 

12(b) and Id1 and Id2 being the magnitudes of the common mode currents in the arms of the upper and lower converters, 

respectively, the dc link current of the lower converter (Idc2) is: Idc2=3(Id1+Id2), where Id1=̃Idc1 and Id2=̃(Vdc1-

Vdc2)Idc1/Vdc2=Pdc1(n-1)/n×1/Vdc2=Pac/Vdc2 (Id2 is set by the ac power transferred through the ac link). For example, when 

Vdc1=2Vdc2, Id1=Id2=̃Idc1 and Idc2=2Idc1, and these indicate that the auto dc transformer in Fig. 12b is expected to have higher 

efficiency than the F2F equivalent. This is because the semiconductor switches of the low-voltage side converter experience 

half the current stresses relative to that of an equivalent F2F connection (at a conversion ratio of 2). However, insertion of large 

number of FB cells in some of its arms in order to be able to cope with dc network faults at either dc side represents a 

limitation as it will jeopardize the high efficiency that could be achieved when only HB cells are employed. An additional 

problem of the asymmetric auto dc transformer in Fig. 12(b) is that it exposes both windings of the coupling transformers to 

high dc voltage stresses. This situation could be avoided should the auto dc transformer is rearranged to be symmetrical 

configuration so that both transformer windings avoid dc voltage stress. To support this discussion, the auto dc transformer of 

Fig. 12(b) is simulated using an average model, with the operating conditions shown in the caption of Fig. 13. Fig. 13 (a), (b) 

and (c) show current waveforms in the ac link and in the arms of the upper and lower converters of the auto dc transformer. 

The total power of 1400 MW is exchanged between the two dc sides, and the switching devices of the upper and lower 

converters experience equal current stresses (because Vdc1=2Vdc2). Fig. 13 (d) and (e) show the dc link currents at the high and 

low voltage side, and dc current components in the arms of the upper and lower converters. The dc currents components in the 

arms of the upper and lower converters in Fig. 13 (e) are equal, and this supports the results in Fig. 13 (b) and (c). Fig. 13 (f) 

shows dc powers at the terminal of the upper and lower converters and the ac power measured at the ac terminal of the lower 

converter. These results confirm this discussion regarding the internal power distribution in the auto dc transformer.  

A multiport topology auto dc transformer has been recently presented in [119], which exhibits the same operating principles as 

the two port auto dc transformer explained but uses multiple ac transformers. 



 
(a)  

(b) 
Fig. 12: (a) and (b) are possible configurations of symmetrical and asymmetrical auto dc transformer (dc-dc converter) [112, 118]  

 

(a) Current waveforms in the ac link measured at 
the terminal of the lower converter 

 

(b) Arm currents of the upper converter 

 

(c) Arm currents of the lower converter 

 

(d) DC link currents of the high and low voltage 
sides (Idc1 and Idc2) 

 

(e) DC current components of the arm currents of 
the upper and lower converters (Id1 and Id2) 

 

(f) PdcU and PdcL are dc power measured at the 
terminal of the upper and lower converters 

and Pac is the ac power measured at the 
terminal of the lower converter 

Fig. 13: Selected waveforms obtained when 2600 MVA auto dc transformer in Fig. 12b is simulated with Vdc1=2Vdc2, Vdc2=640 kV, 320 kV/320 kV ac 

transformer rated at 1300 MVA (initial power flow is 1400 MW from upper converter to lower converter and reverse at t=1s). Although 50Hz is used in the ac 

link for illustration and for faster simulation speed, a fundamental frequency in order of 250 Hz to 1 kHz could be adopted (high fundamental frequency 

requires small time-step). 

c) The hybrid cascaded transformerless dc converter 

 

Fig. 14 shows possible high-voltage transformer-less dc transformers recently proposed in [120], which are developed around 

the hybrid cascaded two-level converter. Fig. 14 (a) shows the so called hybrid cascaded parallel two-level auto dc 

transformers. The six-pulse bridge of the two-level converter stage is connected in series with the positive pole of the dc line, 



while its ac side chain links are tied to ground or the negative pole of the dc line through current limiting inductors Ld. In this 

dc transformer, the HB chain links of each limb are rated at the full dc voltage of the high-voltage side so as to be able to 

switch alternatively between Vdc1 and Vdc2 using the series connected IGBTs of the two-level converter stage (for example, S1 

and S4 for phase ‘a’) without exposing the cell capacitor and switching devices of individual HB cells to excessive voltage 

stresses. When Vdc2>Vdc1, the series device IGBTs of the high and low voltage sides must be rated to withstand Vdc2-Vdc1, which 

is attractive from a semiconductor loss point of view. In the proposed dc transformer, the HB cell capacitors are clamped by 

the voltage across the submodule switching devices during abrupt switching between Vdc2 and Vdc1 in one large voltage step of 

Vdc2-Vdc1. The main weakness of the dc transformer topology of Fig. 14 (a) is that during a dc fault on its high-voltage side, the 

freewheel diodes of the two-level stage and main switches of the HB cells that bypass the cell capacitors will be exposed to 

high current stresses (unable to prevent fault propagation as in F2F topologies).  

Fig. 14 (b) shows a type 1 hybrid cascaded series two-level dc transformer. When the dc link of the two-level stage is 

designated as the high-voltage side (Vdc2>Vdc1), the submodules of the cascaded chain links at the low-voltage side must be of 

the full-bridge type. In this arrangement, the FB chain link of each limb generates a bipolar ac voltage waveform that can be 

described by  *
S ig n ( )
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1  in order to generate a ripple free dc voltage with magnitude Vdc1 at the low-voltage 

side. This means the series connected switching devices of the two-level stage must be rated to block the full dc voltage of the 

high-voltage side (Vdc2). To prevent propagation of dc fault from one side to the other independent of fault location, the FB 

cascaded cells of each limb must be capable of supporting the full dc voltage of the high-voltage side, Vdc2. This feature is 

achieved with more semiconductor devices in the conduction path (thus, higher conversion loss is expected) compared to that 

in Fig. 14 (a), but losses remain lower than F2F dc transformer topologies.  

Fig. 14 (c) shows a type 2 hybrid cascaded series two-level converter where the dc link of the two-level converter stage is 

designated as the low-voltage side. In this arrangement, the HB cells can be used in the chain link instead of the FB cells as 

each limb only needs to generate a unipolar voltage waveform to boost the output dc voltage. In this scenario, the chain link of 

each limb must be able to support the full dc voltage of the high-voltage side.  

To support this discussion, a type 1 hybrid cascaded series two-level dc transformer, Fig. 14(b), is simulation with the high-

voltage side connected to an active dc link voltage of Vdc2=800 kV and the low-voltage side is connected to a 500 passive 

load. The modulating function of the dc transformer in Fig. 14(b) is set so that it generates Vdc1=560kV across the passive load 

at its low-voltage side. Fig. 15(a), (b) and (c) show the voltage across the FB chain link (VFBa) and voltage waveforms at one 

terminal of the two-level converter stage (vao), and ripple-free dc voltage (Vdc1) converter in Fig. 14(b) presents across the 

passive load, which is connected to the low-voltage side. Fig. 15(a) shows the cascaded FB cells of each limb operates as an 

active series power filter that attenuates the ac voltage components generated at the terminals of the two-level converter stage 

(vao), see Fig. 15(a) and (b). Plot of the voltages across the cell capacitors shows that the voltage stresses on the cell capacitors 

and switching devices of the FB submodules are regulated (see Fig. 15(d)). Fig. 15(e) displays current waveforms in the three 

limbs of the active power filter stage that removes the ac voltage component from the va0, vb0 and vc0 in order to generate a 

ripple-free dc voltage (Vdc1) at the low-voltage side of hybrid cascaded converter Fig. 14(b). Observe that the fundamental 

current components of the three limbs cancel at the star point of the output dc node; thus, a ripple-free dc current is observed in 

the passive load connected to the low-voltage side, with each limb contributes approximately one third of the output dc current 

in the low-voltage side, Fig. 15(e) and (f). 



 

(a) Hybrid cascaded parallel two-level dc-dc converter 

 

 

(b) Hybrid cascaded series two-level dc-dc converter-type 1 (full-

bridge cells) 

 

(c) Hybrid cascaded series two-level converter type 2 (half-bridge cells) 

Fig. 14: Some of the transformer-less arrangement of dc-dc converter proposed in [120]  

 

(a) Sample of the voltage waveform 

across the FB chain link 
(b) Sample of the pole voltage (vao) at the 

terminal of the two-level converter 

stage 

 

(c) DC Voltage generated at the low-

voltage side (Vdc1) 

 

(d) Samples of the cell capacitor voltages  

 

(e) Current waveforms in the three limbs 

of the low-voltage side 
(f) DC current of the low-voltage side 

Fig. 15: Waveforms for type 1 hybrid cascaded series two-level converter dc transformer simulated with 800 kV at high-voltage side and 560 kV imposed on 

the low-voltage side (detailed switched model with 21 cells per limb, Cell capacitance Cm=1 mF, Ld=4 mH, 250 Hz fundamental frequency, and 500  load 

resistance)  



 

IV. CONCLUSIONS AND SUMMARY OF MAIN OBSERVATIONS 

This paper presented a review of a number of dc-dc converters which are scalable and applicable to multi-terminal HVDC 

networks. It has defined a set of general desirable features for high-voltage dc-dc converters to be used when judging the 

applicability of each dc-dc converters being considered in this study. Based on the discussion presented in this paper and 

desirable features defined in section II, the following conclusions are drawn:  

1) Semiconductor losses, footprint and initial cost are expected to be decisive factors that determine the viability of all high-

voltage dc-dc converters, especially in F2F topologies where semiconductor losses resemble that of the back-to-back 

HVDC link. On this basis, the Q2L operated CTB-DAB offers the best solution for HVDC applications, because it 

satisfies the majority of the desirable features drawn in section II.Error! Reference source not found. However, its 

concentrated dc link capacitors are expected to contribute significantly to any dc fault current and this may expose the 

freewheeling diodes of the converter connected to faulty side and dc switchgears to excessive current stresses. 

2) Holistically, the Q2L operated MMC and TAC offer better overall performance during normal and fault conditions 

(reduced footprint, low losses, and reduced risk to freewheel diodes in the converter connected to a faulty dc side as the 

distributed cell capacitance in the MMC do not contribute to the dc fault current). This latter dc fault current weakness 

could be mitigated if their arm inductances be slightly oversized to limit the magnitude of the common-mode currents 

during dc faults, and their rate of rise. Also, the cell capacitors must be slightly oversized to accommodate short duration 

active power sinking or sourcing due to mismatch between ac and dc powers as expected during ac network faults, without 

creating significant overcharge or discharge of the cell capacitors. Additionally, it has been shown the MMC and TAC 

with trapezoidal modulation increases the power density since most of the significant low-order harmonics contribute to dc 

power transfer. Also, the main switching devices that bypass the cell capacitors are rated for full load current, but the 

auxiliary switches (those in series with the cell capacitors) are rated at a fraction of the load current. A Q2L operated 

MMC, TAC, and CTB DAB present controllable dv/dt to both windings of the medium-frequency transformer in the ac 

link. However the Q2L operated TAC-DAB has smaller semiconductor area than in MMC and CTB DABs, and this may 

be advantageous in terms of initial cost. 

3) Based on the features outlined in section II, it is concluded that both the A2M2C and cascaded two-level converters are 

less competitive for F2F high-voltage dc-dc converters, because they suffer from relatively high semiconductor losses, and 

their large concentrated input dc link capacitors tend to increase the current stresses in the dc side switchgear during dc 

network faults. Also, achieving dc fault blocking at the expense of extra semiconductor losses as in the A2M2C and 

cascaded two-level converters, is not necessary in F2F dc-dc converters, although it is for the terminal converters of the 

VSC-HVDC link.  

4) Most of the resonant topologies of the dc-dc converters tend to either increase current or voltage stresses of the switching 

devices. Although this may be tolerable in low-voltage applications, it is not acceptable in high-voltage applications. 

Generally they are single phase hence introduce large current ripple on both dc links (and possibly discontinuous link 

current). Thus it is concluded that resonant based dc-dc converters are less likely to be adopted in high-voltage 

applications. 

5) A transformer is necessary for galvanic isolation in F2F dc-dc converter topologies for the following reasons: better 

switching device utilisation of both converters, and minimises the circulating reactive power in the ac link when the input 

and output dc link voltages are significantly different (by keeping the per-unit ac voltages VSC1 and VSC2 presented to 

both transformer windings, similar). Without such an isolating transformer, a dc-dc converter with different input and 

output dc link voltages may suffer from high losses due to excessive reactive power circulation. To avoid this scenario 



without using isolation transformer, the converter with higher dc voltage must be under-modulated to keep the magnitudes 

of the ac voltages applied at both ends of the power transfer inductor between the F2F converters near equal. Such a 

solution results in poor device utilisation in the converter connected to the higher dc link voltage and higher current in its 

switches, hence more losses. A transformer may be necessary when connecting to existing HVDC links where established 

filter grounding arrangement dictate connection isolation. 

6) Among the auto dc transformer topologies considered in this study, the asymmetrical partially isolated dc modular auto 

transformer proposed in [118] offers an efficient solution for dc voltage matching and tapping in multi-terminal HVDC 

networks (reduced transformer MVA rating and better switching device utilization). However, it requires FB cells in the 

outer arms, instead of HB cells, to prevent dc fault propagation from one side to the other, and it exposes both windings of 

the coupling transformer to high voltage stresses of ½(Vdc1+Vdc2) and ½ Vdc2 respectively. Type 2 of non-isolated hybrid 

cascaded series two-level auto-dc transformer proposed in [120] provides an interesting method for voltage matching and 

tapping in multi-terminal HVDC networks without the use of coupling transformer. Its main weaknesses are: requires a 

large number of semiconductor valves in a conduction path (indication of high losses); and discharge of the dc link 

capacitor at the dc terminal of the two-level converter stage during a dc fault (at the two-level converter side) may expose 

freewheeling diodes of the two-level converter stage to high current stresses. 
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