
Strathprints Institutional Repository

Liu, Zhiquan and Jin, Hongzhang and Grimble, M. J. and Katebi, Reza 

(2015) Roll reduction and course keeping for the ship moving in waves 

with factorized NGMV control. In: Proceedings of the 53rd IEEE 

Conference on Decision and Control. IEEE, pp. 5692-5697. ISBN 978-1-

4799-7746-8 , http://dx.doi.org/10.1109/CDC.2014.7040280

This version is available at http://strathprints.strath.ac.uk/56320/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42593715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


  

  

Abstract— A factorized Nonlinear Generalized Minimum 

Variance (NGMV) control law is developed for a combined roll 

and yaw motion compensation using rudders and fins. The 

nonlinear model used for control design includes the 

non-minimum phase interaction from rudder to roll motion, 

and the dynamics from fins to yaw motion. This controller is 

developed using the polynomial approach to ensure that the 

non-minimum phase system remains stable in closed-loop. The 

effectiveness of the approach is demonstrated on a simulated 

nonlinear ship model. 

I. INTRODUCTION 

A ship sailing in a seaway experiences variations in 
motions and course track induced by external forces and 
moments i.e. winds, waves and ocean currents. Usually the 
rolling motion is considered as the most severe problem 
because it can affect the performance of surface vessels, 
damage cargo, affect comfort of crews and limit the operation 
of on board equipment. Different devices have been 
developed to reduce roll motion (e.g. bilge keels, anti-roll 
tanks and stabilizer fins). A good review is reported by Perez 
and Blank [1]. 

As well known the rudder can be regarded and used as an 
anti-roll device [2,3] since it can produce an additional roll 
moment. This is especially useful for small vessels like 
trawlers which do not have enough space or finance to support 
the use of fins [4]. A number of commercial rudder roll 
stabilization systems have been developed [17]. However, the 
main function of an autopilot system is to alter or maintain the 
ship heading and track keeping. It can also be combined with 
fins to improve the ship stability for lower roll reduction if the 
rudder rate is sufficiently high [5]. Using rudder and active 
fins for simultaneously yaw and roll motion control has been 
analyzed by numerous authors. Sgobbo and Parsons [6] 
investigated PID control and linear quadratic regulator (LQR) 
technique with different degrees of freedom (DOF) models to 
investigate the effects of rudders on the rolling motion of a 
USCG class of vessel. Sharlf and coworkers [7,8] reported on 
experimental results of full-scale sea trails utilizing the 
existing rudders and fins on board a warship where several 
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classic control strategies were employed. A specific robust 
control technique [9] was also applied to design dual fins and 
rudder controllers for a warship. Katebi and Grimble 
developed a number of control scheme using predictive 
control and NGMV [5,14]. Fang et al. [10,11] developed 
NNPID and sliding mode control strategies to compare 
“compact control” and “separate control” in a fin rudder roll 
stabilization system. The former can reach more roll reduction 
percentage and has less parameters to be chosen.  

All ship motion control devices contain nonlinear dynamic 
parts because of their complicated hydrodynamic 
characteristics. For fin and rudder, the nonlinear term is a 
saturation element, which is used for limiting the angles. 
Grimble [12] has developed a family of controllers called 
Nonlinear Generalized Minimum Variance (NGMV) for 
nonlinear processes using dynamic cost function weightings. 

The main benefits of the so-called NGMV approach lie in 
the simplicity of the concepts. It is a compact control method 
and has successfully applied in integrated yaw and roll motion 
control systems [13,14]. This paper introduces an improved 
version of NGMV called factorized NGMV [15,16] which is 
suitable for non-minimum phase (NMP) system such as the 
rudder roll stabilization control system discussed here and 
provides better performance. 

A roadmap to the structure of this article is as follows. The 

system model is defined in Section Ċ, the factorized NGMV 

control problem and solution are summarized in Section ċ. 

Simulation results and discussion are presented in Section Č 

and finally conclusions are drawn in Section č. 

II. SYSTEM MODELS 

A. System Description 

The basic dynamics of the ship motion control system with 
respect to fins and rudders are shown in Fig. 1. The model has 
several structural features that can be explored for the 
integrated fin and rudder roll reduction control system design. 

The process can be modelled as a TITO (2×2) nonlinear 

systems (Fig. 1) with a controller 0C , actuators (fins and 

rudders) are considered as nonlinear subsystems. This is a 
simple multivariable control system and unlike many 
integrated fin and rudder stabilization control systems the 
design of the roll and heading controllers is not separated [4,5]. 
In classical control scheme, the rolling motion is regulated 
using fin stabilizers, and the heading is controlled with rudders, 
involving two single input single output (SISO) systems. A 
multivariable control scheme will take the system interactions 
into account, allowing rudders to actively attenuate the roll 
motion and to control the heading angle which is possible due 
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to the separation in the roll and yaw frequency bands. It will 
also allow the fins to actively reduce the yaw motion and to 

control the roll angle. In this system, Gφ  and Gψ  are roll 

model and yaw model respectively, dφ  and dψ  denote the 

corresponding wave disturbance time series, 
r

φ  and 
r

ψ  are 

the corresponding input reference signals, respectively. Fin 
angle signals will be converted to wave slopes by the constant 

coefficient block 
w

Gα  as an input of the ship roll motion 

model; for the case of roll motion, it is the slope of the waves 
rather than the wave height that excites the motion, and due to 
this the roll motion frequency responses are often related to the 
wave slope rather than the amplitude. In addition, the transfer 

function Gσφ  is a non-minimum phase coupling term, which 

complicates the control design and Gαψ  is the interaction 

from fins to yaw motion. The model details are described in 
the next sections.  
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Figure 1.    Block diagram of the system 

B. Ship Models 

The roll-yaw model should be simplified from the 3 DOF 
nonlinear motions model of Perez [17] by deleting the sway 
motion equation and nonlinear hydrodynamic items. It will be 
a linear coupling model if the ship forward speed is set as a 
constant value. The 2-DOF equations of motions including 
control forces of fins and rudders are expressed in (1)-(4). 

2( )
x p ur uu pu p

I K p K Ur K U p K U K pφ φ− = + + +   

                   
G F R

g GZ mz Ur K Kρ φ α δ− ∇ + + +        (1) 

( ) r
z r p Gu r u p

I N N U r N p N U p mx Ur− = + + −   

                             
F R

N Nα δ+ +  (2) 

            pφ =  (3) 

 rψ =  (4) 

where U  is the ship speed, ρ  is the sea water density, g is the 

gravity constant, ∇  is the ship volume of displacement, GZ is 

the ship metacentric height, α  and δ  denote fin and rudder 

angles. Roll, yaw and their rates are represented by φ , ψ , p  

and r , respectively. The subscripts F  and R  represent 
stabilizer fins moment and rudder moment, respectively. The 

coordinate ( , , )
G G G

x y z  is the position of the center of gravity 

in the ship fixed coordinate system.  

In order to perform time domain numerical simulations 
and to derive polynomial models in Fig. 1, we convert motion 
equations into the following state space model: 

                               [ , , , ]x p r φ ψ Τ=  (5) 

                                 [ , ]u α δ Τ=  (6) 

Using these variables, the state-space model can be written 
in the standard form, 

                                 x Ax Bu= +  (7) 
where the state matrix is 
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. 

In addition, roll and yaw angle formulas can be described 
as: 

                             [0,0,1,0]x C xφφ = =  (8) 

                             [0,0,0,1]x C xψψ = =  (9) 

Hence, the transfer function which from rudder angle to 

roll motion 1(s) / (s) ( )C sI A Bφφ δ Τ −= −  can be calculated: 
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2 2
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Base on the above, the rudder-roll interaction block and 
ship roll motion (i.e. derived by wave slopes) transfer function 
are:  

                          
1
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T s

δφ
δφ

+
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+
 (11) 

and 

                          

2

2 2s 2
G

φ
φ

φ φ φ

ω
ξ ω ω

=
+ +

 (12) 

Similarly, the fin-yaw interaction block Gαψ  and ship yaw 

motion transfer function Gψ  can be derived in same steps. 

C. Disturbance Models 

Linear wave response approximations are usually 
preferred by ship motion system engineers, due to their 
simplicity and applicability. A second order linear filter is 
adopted to fit the shape of ITTC double parameters spectrum. 
This model is written as: 
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where 
w

ξ  is the wave damping coefficient and φσ  is a 

constant describing the wave intensity which determined by 
wave slopes.  

In the case of yaw motion, the disturbance is assumed to be 
of low frequency nature and is modelled by an integrator 
driven by white noise, described as follow: 

                                  ( )d t
s

ψ
ψ ψ

σ
ξ=  (14) 

where ψσ  is the yaw motion wave strength. (t)φξ  and (t)ψξ  

are white noise sequences of unite variance. 

III. FACTORIZED NGMV CONTROL 

The single DOF factorized NGMV [15,16] is developed 

by introducing additional control weighting 0c c
U F  on the 

output of nonlinear block as shown in Fig. 2.  

A.  Models and cost index 

The nonlinear plant model can be separated into a linear 

subsystem 0k
W  and a nonlinear part 1k

  represents the 

actuators of the system, the output of the nonlinear system is 
sometimes referred to as the virtual control input and is 

denoted 0 1( ) ( )( )
k

u t u t=  . It can be written as follows: 

         0 1( )( ) ( )( )k

k k
u t z W u t

−=   (15) 

where k  denotes the plant time-delay. 
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Figure 2.    Single DOF factorised NGMV control system diagram 

The plant itself is nonlinear and may have a quite general 
form (state-space, transfer operators, etc.). However, the 
reference and disturbance signals are assumed to have linear 
time invariant (LTI) model representations. This is often valid, 
since in many applications the models available for the 
disturbance and reference are LTI approximations. The power 
spectrum for the combined reference and disturbance signal 

( )
r d f

f r d W W Yξ ε= − = − =  can be computed as: 

                    *

ff rr dd r r d d
W W W W

∗Φ = Φ + Φ = +  (16) 

where the strictly minimum phase generalized spectral-factor 

f
Y  satisfies *

f f ff
Y Y = Φ , *  denotes the complex conjugate 

transpose operate, 
d

W  represents the disturbance shaping 

filter as the formulas (13) and (14). For the anti-roll problem, 
the reference model is a constant set point. ( )tε  is a zero mean 

white noise and a  measurement noise model has not been 
included to simply the equations. 

Assuming the linear disturbance, reference and plant linear 
subsystem models have the left-coprime polynomial matrix 
representation: 

                       1

0 0[ , , ] [ , , ]
d r k d r k

W W W A C E B
−=  (17) 

then the spectral factor 
f

Y  can be written in the polynomial 

matrix form as 1

f f
Y A D

−= . 

The signal whose variance is to be minimized is defined: 

                0 0 0( ) ( ( ) ( )) ( )( )
c c c c

t U P e t F u t u tφ = + +   (18) 

This signal includes a dynamic cost-function weighting 

polynomial matrix 1

c n d
P P P

−=  on the error signal and an input 

weighting polynomial matrix 1

0c n d
F F F

−= . It also involves a 

nonlinear control signal costing term ( )( )
c
u t . Typically, 

1( )
c

P z
−  is low-pass and 1( )

c
F z

−  is a constant or a high-pass 

transfer. The weighting 1

0 ( )
c

F z
−  can often be a constant. The 

all pass matrix 1

20 20c s
U L L

−=  is determined from factorized 

terms involving the cost weightings. The signal variance of 

0 ( )tφ  is to be minimized, so the cost function is: 

                                    2

0{ ( )}J E tφ=  (19) 

where {}E ⋅  is the expectation operator. 

If the plant time-delay is regarded as k , this means the 

control at time t  affects the output k  steps later. So the 

control signal operator can be defined as: 

                              ( )( ) ( )( )k

c ck
u t z u t

−=   (20) 

                            0 0 0 0( )( ) ( )( )k

c c k
F u t z F u t

−=  (21) 

typically the delay free control weighting operators are 
assumed invertible. 

B. Optimal solution 

From Fig. 2, the error signal 0 0e r y r d W u= − = − − , 

defining the right coprime polynomial matrices 
fa

D , 0d
A  and 

0d
B , 

fb
D  satisfy: 

                               1 1

0d fa f d
A D D AP

− −=  (22) 

                             1 1

0 0

k

d fb f k d
B D z D B F

− − −=  (23) 

Also, the first term in (18) may be rewritten as: 

                   1

0( )
c c f n fa d

P r d PY P D Aε ε−− = =        (24) 

Then the inferred output becomes: 

1 1 1

0 20 20 0 20 20 0 0 0( ) ( )
s n fa d s c c c

t L L P D A L L F PW u uφ ε− − −= + − + (25) 

Introducing an operator 0 0c k c k
PW F−  that in the 

asymptotic case 0
c

→  is strictly minimum phase. Defining 

the right coprime factorization: 



  

                            1 1 1

0 1 1d k d k
P A B F B A

− − −=  (26) 

Substituting it into the operator and removing the delay 
times: 

                 1

0 0 1 1 1( )( )
c k c k n k nk d

PW F P B F A F A
−− = −  (27) 

Now let the matrix 
0 0c k c k

PW F−  be factorized into strictly 

minimum phase 
1L  and non-minimum phase 

2L  terms. That 

is the factorized polynomial matrix: 

                               
2 1 1 1n k nk

L L P B F A= −  (28) 

Given the factor 
2L  the strictly minimum phase 

2s
L  may 

be introduced that satisfies the relationship: * *

2 2 2 2s s
L L L L= . 

Also defining the relationship 1

2 2c s
U L L

−= , then the all pass 

function can satisfy *

c c
U U I= . 

Introducing the following Diophantine equation to expand 
the first term in (25) into two groups: 

                          
0 0 20 0 20

k

d s n fa
F A L z G L P D

−+ =  (29) 

According to (24), then the last equation can be written: 

                   1 1 1

20 20 20 0 0 0

k

s c f d
L L PY L F z G A

− − − −= +               (30) 

Recalling (23) and (29), the first term in the left hand of 
(25) with time delay can be obtained: 

1 1 1 1 1

0 0 20 0 0 20 20 0 0 0

k k k

s f k s d f k
PW L F z D B L L z G A z D B

− − − − − − − −=+  (31) 

To obtain an expression for the above operator, 
introducing the second Diophantine equation: 

                           
0 0 20 0 20

k

d s n fb
F B L z H L F D

−− =  (32) 

Combining (23) and (32), the second term in the left hand 
of (25) with time delay can be obtained, 

         1 1 1 1 1

0 20 0 0 20 20 0

k k

c s f k s fb d
F L F z D B L L z H D F

− − − − − − −− = − +  (33) 

Adding (31) and (33), and substituting (22) into this result, 
then obtaining an implied equation: 

             1 1 1

0 0 0 2 1 1( ) ( ) ( )
d fa d fb s d

G P D W H F D L L F A
− − −+ =  (34) 

Finally,  the k  steps ahead of the inferred output signal, 

involving the weighted error , input and control signals, may 
therefore be written as: 

1

0 20 0( ) ( )t k L F t kφ ε−+ = +  

1 1
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G P D e H F D u t
− −+ − −  (35) 

1

0 ( )
d fa

G P D
− 1

ck

−

1

0 ( )
d fb

H F D
−

1k
W

r

−
−+

+

d

y

Ship

+u

 
Figure 3.    Factorised NGMV controller modules 

The first term in the right hand of (35) is independent of 
the control term and the smallest variance is obtained when the 
remaining terms are zero. Therefore, the control command 
must satisfy : 

1 1 1

0 0 1( ) ( ( ) ( ) ( ) ( ))
ck d fa d fb k

u t G P D e t H F D u t
− − −= − −   (36) 

so the factorized NGMV controller structure is presented by 
the Fig. 3. 

IV. SIMULATION RESULTS 

The ship model introduced in reference [17] is a navy 
vessel with a design forward speed 15 knots and a magnitude 
constraint for the fins of 25° and the mechanical angle of 40° 
for rudders  (i.e. this vessel is equipped with two rudders). The 
main objectives are following the tracking of heading set point 
and the roll reduction. For the sake of convenience, the yaw 
tracking can be measured using the integral absolute error 
(IAE) criterion. Similarly, the actuators usage can be 
measured by integral of absolute their mechanical angles.  
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              Figure 4.    The simulatuion of roll angle 
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                Figure 5.    The simulation of heading error 

In order to evaluate the efficiency of the proposed control 
scheme for ship anti-roll control in random seas, the roll 
reduction percentage formula [18] can be used: 

               Roll Reduction (%) 100×
−

=
AP

RCSAP
 (37) 

where AP is the standard deviation of the rolling amplitude 
when the ship is moving forward without roll reduction 

control and RCS is the one including anti-roll control. 
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            Figure 6.    The simulation of fin angle 
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              Figure 7.    The simulation of rudder angle 

TABLE I.  COST VALUE AND PREFORMANCE 

No. 
Comparison of Different Controllers 

Control Method Heading Error Roll Reduction 

1 NGMV 708.8 90.8 

2 Factorised NGMV 637.1 93.1 

 Control Method Fins Usage Rudders Usage 

3 NGMV 2300.0 675.7 

4 Factorised NGMV 2177.0 579.6 

 

Using a sea environment described by the ITTC 

(International Towing Tank Conference) double parameter 

spectrum with a wave height of 3 m, encounter angle β =  

135° and average wave period of 8 s.  The wave damping 

coefficient 
w

ξ  and yaw motion wave strength ψσ  are set as 

0.25 and 0.5, respectively. The dynamics of fins and rudders 

are in the special limiting case where nonlinear actuators 

revert to pure saturation blocks.  

For the purpose of controller design, the continuous time 

models of system were discretized using the sample time of 1 

s. The classical PID controller was discretized and used for the 

initial choice of the weighting operators 
c

P  and 
ck
  [12]. 

Assuming the plant is controlled by the nominal PID 

controller matrix is { }1

0 ( )C z diag C Cφ ψ
− = and with 

parameters: 

1 2
1

1 2

7.2 9.26 2.25
(z )

1 1.05 0.05

z z
C

z z
φ

− −
−

− −

− +
=

− +
 

1 2
1

1 2

11.1 12.46 2.4
( )

1 1.05 0.05

z z
C z

z z
ψ

− −
−

− −

− +
=

− +
 

As assumed in [12], the nominal NGMV design can be 
based up on these parameters and thus the error weighting 

matrix is 1 1

0( ) ( )
c

P z C z
− −=  and the control weighting matrix 

is { }1( ) 1 1
ck

z diag
− = − − . Finally, the added input 

weighting is { }1

0 ( ) 1 1
c k

F z diag
− = − . 

To demonstrate the effectiveness of this proposed method, 

a series of simulations are performed with the reference input 

signals 
r

φ =  0 and 
r

ψ =  0° (i.e. the reference signal matrix is 

{ }0 0
r

W diag= ) . Simulation results are shown in Figs. 4-7. 

Due to the factorized polynomial matrix (27), the factorised 

NGMV can be simply named as L2-NGMV. 

For the roll motion time responses in Fig. 4, the roll 
reduction ratio of L2-NGMV is a little higher (i.e. 2.3%) than 
that of NGMV, because their values are both over 90% which 
is a relatively high performance value. Therefore, the two 
schemes have a similar effectiveness in terms of roll damping 
performance. That is also one reason why the fins usage did 
not have a significant improvement in Fig. 6. In contrast, the 
yaw motion is significantly further reduced with good speeds 
of response, shown in Fig. 5. Additionally, the rudder time 
response results are presented in Fig. 7, the rudder usage is 
also decreased effectively that will both save driving energy 
and reduce the mechanical wear of rudder shaft. The values 
calculated from the cost function are listed in Table I, which 
indicates the proposed algorithm indeed provide a good 
performance compare with the normal NGMV method, both 
in terms motions control and actuators usage. The less 
improvement in fins usage may be because of the element 

Gαψ . The gain of this interaction from fins to yaw motion is 

smaller than that from rudder to roll motion, therefore, fins 
provide the similar moment in the two methods. 

By varying the design parameters, it is possible to achieve 
different of trade-off between required course keeping and roll 
reduction. Further work will involve including a fully 
nonlinear multivariable coupling model and an analysis of 
how the optimal control deals with windup. 

V. CONCLUSION 

In this paper, a factorized NGMV control scheme with 

dynamic weightings was proposed for a combined fin rudder 

anti-roll control system. The roll reduction performance was 

demonstrated on a linear model of a ship with hard actuator 

constraints which represent nonlinear parts of the whole 



  

system. This system is represented by a more complete 

multivariable coupling form which involved both the 

interaction from rudders to roll motion and fins to yaw motion. 

The advantage of this method was to provide better 

performance and better stability characteristics for  the 

non-minimum phase system under low control costing. In the 

limiting case when 1k
I=  (i.e. no constraints in the ship 

model) and 0
ck

→  , the controller collapses to a version of 

the standard GMV controller but with weighted  output and 

reference signals in the cost criterion. While the classical 

NGMV approach will collapses to the standard MV controller 

in the same case. Using this approach, we have formulated the 

control problem using a more general form of the NGMV 

controller. The initial choice of the weighting operators was 

still based on the classical PID controllers form. Finally, The 

simulation results were presented to demonstrate the 

improvement in ship sailing performance. 
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